/* provide some functions which dump the trace buffer, in a nice way for people * to read it, and understand what is going on * * Copyright 2004-2010 Analog Devices Inc. * * Licensed under the GPL-2 or later */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_DEBUG_VERBOSE #define verbose_printk(fmt, arg...) \ printk(fmt, ##arg) #else #define verbose_printk(fmt, arg...) \ ({ if (0) printk(fmt, ##arg); 0; }) #endif void decode_address(char *buf, unsigned long address) { #ifdef CONFIG_DEBUG_VERBOSE struct task_struct *p; struct mm_struct *mm; unsigned long flags, offset; unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic(); struct rb_node *n; #ifdef CONFIG_KALLSYMS unsigned long symsize; const char *symname; char *modname; char *delim = ":"; char namebuf[128]; #endif buf += sprintf(buf, "<0x%08lx> ", address); #ifdef CONFIG_KALLSYMS /* look up the address and see if we are in kernel space */ symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf); if (symname) { /* yeah! kernel space! */ if (!modname) modname = delim = ""; sprintf(buf, "{ %s%s%s%s + 0x%lx }", delim, modname, delim, symname, (unsigned long)offset); return; } #endif if (address >= FIXED_CODE_START && address < FIXED_CODE_END) { /* Problem in fixed code section? */ strcat(buf, "/* Maybe fixed code section */"); return; } else if (address < CONFIG_BOOT_LOAD) { /* Problem somewhere before the kernel start address */ strcat(buf, "/* Maybe null pointer? */"); return; } else if (address >= COREMMR_BASE) { strcat(buf, "/* core mmrs */"); return; } else if (address >= SYSMMR_BASE) { strcat(buf, "/* system mmrs */"); return; } else if (address >= L1_ROM_START && address < L1_ROM_START + L1_ROM_LENGTH) { strcat(buf, "/* on-chip L1 ROM */"); return; } /* * Don't walk any of the vmas if we are oopsing, it has been known * to cause problems - corrupt vmas (kernel crashes) cause double faults */ if (oops_in_progress) { strcat(buf, "/* kernel dynamic memory (maybe user-space) */"); return; } /* looks like we're off in user-land, so let's walk all the * mappings of all our processes and see if we can't be a whee * bit more specific */ write_lock_irqsave(&tasklist_lock, flags); for_each_process(p) { mm = (in_atomic ? p->mm : get_task_mm(p)); if (!mm) continue; if (!down_read_trylock(&mm->mmap_sem)) { if (!in_atomic) mmput(mm); continue; } for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) { struct vm_area_struct *vma; vma = rb_entry(n, struct vm_area_struct, vm_rb); if (address >= vma->vm_start && address < vma->vm_end) { char _tmpbuf[256]; char *name = p->comm; struct file *file = vma->vm_file; if (file) { char *d_name = d_path(&file->f_path, _tmpbuf, sizeof(_tmpbuf)); if (!IS_ERR(d_name)) name = d_name; } /* FLAT does not have its text aligned to the start of * the map while FDPIC ELF does ... */ /* before we can check flat/fdpic, we need to * make sure current is valid */ if ((unsigned long)current >= FIXED_CODE_START && !((unsigned long)current & 0x3)) { if (current->mm && (address > current->mm->start_code) && (address < current->mm->end_code)) offset = address - current->mm->start_code; else offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT); sprintf(buf, "[ %s + 0x%lx ]", name, offset); } else sprintf(buf, "[ %s vma:0x%lx-0x%lx]", name, vma->vm_start, vma->vm_end); up_read(&mm->mmap_sem); if (!in_atomic) mmput(mm); if (buf[0] == '\0') sprintf(buf, "[ %s ] dynamic memory", name); goto done; } } up_read(&mm->mmap_sem); if (!in_atomic) mmput(mm); } /* * we were unable to find this address anywhere, * or some MMs were skipped because they were in use. */ sprintf(buf, "/* kernel dynamic memory */"); done: write_unlock_irqrestore(&tasklist_lock, flags); #else sprintf(buf, " "); #endif } #define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1) /* * Similar to get_user, do some address checking, then dereference * Return true on success, false on bad address */ bool get_instruction(unsigned short *val, unsigned short *address) { unsigned long addr = (unsigned long)address; /* Check for odd addresses */ if (addr & 0x1) return false; /* MMR region will never have instructions */ if (addr >= SYSMMR_BASE) return false; switch (bfin_mem_access_type(addr, 2)) { case BFIN_MEM_ACCESS_CORE: case BFIN_MEM_ACCESS_CORE_ONLY: *val = *address; return true; case BFIN_MEM_ACCESS_DMA: dma_memcpy(val, address, 2); return true; case BFIN_MEM_ACCESS_ITEST: isram_memcpy(val, address, 2); return true; default: /* invalid access */ return false; } } /* * decode the instruction if we are printing out the trace, as it * makes things easier to follow, without running it through objdump * These are the normal instructions which cause change of flow, which * would be at the source of the trace buffer */ #if defined(CONFIG_DEBUG_VERBOSE) && defined(CONFIG_DEBUG_BFIN_HWTRACE_ON) static void decode_instruction(unsigned short *address) { unsigned short opcode; if (get_instruction(&opcode, address)) { if (opcode == 0x0010) verbose_printk("RTS"); else if (opcode == 0x0011) verbose_printk("RTI"); else if (opcode == 0x0012) verbose_printk("RTX"); else if (opcode == 0x0013) verbose_printk("RTN"); else if (opcode == 0x0014) verbose_printk("RTE"); else if (opcode == 0x0025) verbose_printk("EMUEXCPT"); else if (opcode >= 0x0040 && opcode <= 0x0047) verbose_printk("STI R%i", opcode & 7); else if (opcode >= 0x0050 && opcode <= 0x0057) verbose_printk("JUMP (P%i)", opcode & 7); else if (opcode >= 0x0060 && opcode <= 0x0067) verbose_printk("CALL (P%i)", opcode & 7); else if (opcode >= 0x0070 && opcode <= 0x0077) verbose_printk("CALL (PC+P%i)", opcode & 7); else if (opcode >= 0x0080 && opcode <= 0x0087) verbose_printk("JUMP (PC+P%i)", opcode & 7); else if (opcode >= 0x0090 && opcode <= 0x009F) verbose_printk("RAISE 0x%x", opcode & 0xF); else if (opcode >= 0x00A0 && opcode <= 0x00AF) verbose_printk("EXCPT 0x%x", opcode & 0xF); else if ((opcode >= 0x1000 && opcode <= 0x13FF) || (opcode >= 0x1800 && opcode <= 0x1BFF)) verbose_printk("IF !CC JUMP"); else if ((opcode >= 0x1400 && opcode <= 0x17ff) || (opcode >= 0x1c00 && opcode <= 0x1fff)) verbose_printk("IF CC JUMP"); else if (opcode >= 0x2000 && opcode <= 0x2fff) verbose_printk("JUMP.S"); else if (opcode >= 0xe080 && opcode <= 0xe0ff) verbose_printk("LSETUP"); else if (opcode >= 0xe200 && opcode <= 0xe2ff) verbose_printk("JUMP.L"); else if (opcode >= 0xe300 && opcode <= 0xe3ff) verbose_printk("CALL pcrel"); else verbose_printk("0x%04x", opcode); } } #endif void dump_bfin_trace_buffer(void) { #ifdef CONFIG_DEBUG_VERBOSE #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON int tflags, i = 0; char buf[150]; unsigned short *addr; #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND int j, index; #endif trace_buffer_save(tflags); printk(KERN_NOTICE "Hardware Trace:\n"); #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND printk(KERN_NOTICE "WARNING: Expanded trace turned on - can not trace exceptions\n"); #endif if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) { for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) { decode_address(buf, (unsigned long)bfin_read_TBUF()); printk(KERN_NOTICE "%4i Target : %s\n", i, buf); addr = (unsigned short *)bfin_read_TBUF(); decode_address(buf, (unsigned long)addr); printk(KERN_NOTICE " Source : %s ", buf); decode_instruction(addr); printk("\n"); } } #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND if (trace_buff_offset) index = trace_buff_offset / 4; else index = EXPAND_LEN; j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128; while (j) { decode_address(buf, software_trace_buff[index]); printk(KERN_NOTICE "%4i Target : %s\n", i, buf); index -= 1; if (index < 0) index = EXPAND_LEN; decode_address(buf, software_trace_buff[index]); printk(KERN_NOTICE " Source : %s ", buf); decode_instruction((unsigned short *)software_trace_buff[index]); printk("\n"); index -= 1; if (index < 0) index = EXPAND_LEN; j--; i++; } #endif trace_buffer_restore(tflags); #endif #endif } EXPORT_SYMBOL(dump_bfin_trace_buffer); void dump_bfin_process(struct pt_regs *fp) { #ifdef CONFIG_DEBUG_VERBOSE /* We should be able to look at fp->ipend, but we don't push it on the * stack all the time, so do this until we fix that */ unsigned int context = bfin_read_IPEND(); if (oops_in_progress) verbose_printk(KERN_EMERG "Kernel OOPS in progress\n"); if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) verbose_printk(KERN_NOTICE "HW Error context\n"); else if (context & 0x0020) verbose_printk(KERN_NOTICE "Deferred Exception context\n"); else if (context & 0x3FC0) verbose_printk(KERN_NOTICE "Interrupt context\n"); else if (context & 0x4000) verbose_printk(KERN_NOTICE "Deferred Interrupt context\n"); else if (context & 0x8000) verbose_printk(KERN_NOTICE "Kernel process context\n"); /* Because we are crashing, and pointers could be bad, we check things * pretty closely before we use them */ if ((unsigned long)current >= FIXED_CODE_START && !((unsigned long)current & 0x3) && current->pid) { verbose_printk(KERN_NOTICE "CURRENT PROCESS:\n"); if (current->comm >= (char *)FIXED_CODE_START) verbose_printk(KERN_NOTICE "COMM=%s PID=%d", current->comm, current->pid); else verbose_printk(KERN_NOTICE "COMM= invalid"); printk(KERN_CONT " CPU=%d\n", current_thread_info()->cpu); if (!((unsigned long)current->mm & 0x3) && (unsigned long)current->mm >= FIXED_CODE_START) verbose_printk(KERN_NOTICE "TEXT = 0x%p-0x%p DATA = 0x%p-0x%p\n" " BSS = 0x%p-0x%p USER-STACK = 0x%p\n\n", (void *)current->mm->start_code, (void *)current->mm->end_code, (void *)current->mm->start_data, (void *)current->mm->end_data, (void *)current->mm->end_data, (void *)current->mm->brk, (void *)current->mm->start_stack); else verbose_printk(KERN_NOTICE "invalid mm\n"); } else verbose_printk(KERN_NOTICE "No Valid process in current context\n"); #endif } void dump_bfin_mem(struct pt_regs *fp) { #ifdef CONFIG_DEBUG_VERBOSE unsigned short *addr, *erraddr, val = 0, err = 0; char sti = 0, buf[6]; erraddr = (void *)fp->pc; verbose_printk(KERN_NOTICE "return address: [0x%p]; contents of:", erraddr); for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10; addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10; addr++) { if (!((unsigned long)addr & 0xF)) verbose_printk(KERN_NOTICE "0x%p: ", addr); if (!get_instruction(&val, addr)) { val = 0; sprintf(buf, "????"); } else sprintf(buf, "%04x", val); if (addr == erraddr) { verbose_printk("[%s]", buf); err = val; } else verbose_printk(" %s ", buf); /* Do any previous instructions turn on interrupts? */ if (addr <= erraddr && /* in the past */ ((val >= 0x0040 && val <= 0x0047) || /* STI instruction */ val == 0x017b)) /* [SP++] = RETI */ sti = 1; } verbose_printk("\n"); /* Hardware error interrupts can be deferred */ if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR && oops_in_progress)){ verbose_printk(KERN_NOTICE "Looks like this was a deferred error - sorry\n"); #ifndef CONFIG_DEBUG_HWERR verbose_printk(KERN_NOTICE "The remaining message may be meaningless\n" "You should enable CONFIG_DEBUG_HWERR to get a better idea where it came from\n"); #else /* If we are handling only one peripheral interrupt * and current mm and pid are valid, and the last error * was in that user space process's text area * print it out - because that is where the problem exists */ if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) && (current->pid && current->mm)) { /* And the last RETI points to the current userspace context */ if ((fp + 1)->pc >= current->mm->start_code && (fp + 1)->pc <= current->mm->end_code) { verbose_printk(KERN_NOTICE "It might be better to look around here :\n"); verbose_printk(KERN_NOTICE "-------------------------------------------\n"); show_regs(fp + 1); verbose_printk(KERN_NOTICE "-------------------------------------------\n"); } } #endif } #endif } void show_regs(struct pt_regs *fp) { #ifdef CONFIG_DEBUG_VERBOSE char buf[150]; struct irqaction *action; unsigned int i; unsigned long flags = 0; unsigned int cpu = raw_smp_processor_id(); unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic(); verbose_printk(KERN_NOTICE "\n"); if (CPUID != bfin_cpuid()) verbose_printk(KERN_NOTICE "Compiled for cpu family 0x%04x (Rev %d), " "but running on:0x%04x (Rev %d)\n", CPUID, bfin_compiled_revid(), bfin_cpuid(), bfin_revid()); verbose_printk(KERN_NOTICE "ADSP-%s-0.%d", CPU, bfin_compiled_revid()); if (bfin_compiled_revid() != bfin_revid()) verbose_printk("(Detected 0.%d)", bfin_revid()); verbose_printk(" %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n", get_cclk()/1000000, get_sclk()/1000000, #ifdef CONFIG_MPU "mpu on" #else "mpu off" #endif ); verbose_printk(KERN_NOTICE "%s", linux_banner); verbose_printk(KERN_NOTICE "\nSEQUENCER STATUS:\t\t%s\n", print_tainted()); verbose_printk(KERN_NOTICE " SEQSTAT: %08lx IPEND: %04lx IMASK: %04lx SYSCFG: %04lx\n", (long)fp->seqstat, fp->ipend, cpu_pda[raw_smp_processor_id()].ex_imask, fp->syscfg); if (fp->ipend & EVT_IRPTEN) verbose_printk(KERN_NOTICE " Global Interrupts Disabled (IPEND[4])\n"); if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG13 | EVT_IVG12 | EVT_IVG11 | EVT_IVG10 | EVT_IVG9 | EVT_IVG8 | EVT_IVG7 | EVT_IVTMR))) verbose_printk(KERN_NOTICE " Peripheral interrupts masked off\n"); if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG15 | EVT_IVG14))) verbose_printk(KERN_NOTICE " Kernel interrupts masked off\n"); if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) { verbose_printk(KERN_NOTICE " HWERRCAUSE: 0x%lx\n", (fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14); #ifdef EBIU_ERRMST /* If the error was from the EBIU, print it out */ if (bfin_read_EBIU_ERRMST() & CORE_ERROR) { verbose_printk(KERN_NOTICE " EBIU Error Reason : 0x%04x\n", bfin_read_EBIU_ERRMST()); verbose_printk(KERN_NOTICE " EBIU Error Address : 0x%08x\n", bfin_read_EBIU_ERRADD()); } #endif } verbose_printk(KERN_NOTICE " EXCAUSE : 0x%lx\n", fp->seqstat & SEQSTAT_EXCAUSE); for (i = 2; i <= 15 ; i++) { if (fp->ipend & (1 << i)) { if (i != 4) { decode_address(buf, bfin_read32(EVT0 + 4*i)); verbose_printk(KERN_NOTICE " physical IVG%i asserted : %s\n", i, buf); } else verbose_printk(KERN_NOTICE " interrupts disabled\n"); } } /* if no interrupts are going off, don't print this out */ if (fp->ipend & ~0x3F) { for (i = 0; i < (NR_IRQS - 1); i++) { if (!in_atomic) raw_spin_lock_irqsave(&irq_desc[i].lock, flags); action = irq_desc[i].action; if (!action) goto unlock; decode_address(buf, (unsigned int)action->handler); verbose_printk(KERN_NOTICE " logical irq %3d mapped : %s", i, buf); for (action = action->next; action; action = action->next) { decode_address(buf, (unsigned int)action->handler); verbose_printk(", %s", buf); } verbose_printk("\n"); unlock: if (!in_atomic) raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags); } } decode_address(buf, fp->rete); verbose_printk(KERN_NOTICE " RETE: %s\n", buf); decode_address(buf, fp->retn); verbose_printk(KERN_NOTICE " RETN: %s\n", buf); decode_address(buf, fp->retx); verbose_printk(KERN_NOTICE " RETX: %s\n", buf); decode_address(buf, fp->rets); verbose_printk(KERN_NOTICE " RETS: %s\n", buf); decode_address(buf, fp->pc); verbose_printk(KERN_NOTICE " PC : %s\n", buf); if (((long)fp->seqstat & SEQSTAT_EXCAUSE) && (((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) { decode_address(buf, cpu_pda[cpu].dcplb_fault_addr); verbose_printk(KERN_NOTICE "DCPLB_FAULT_ADDR: %s\n", buf); decode_address(buf, cpu_pda[cpu].icplb_fault_addr); verbose_printk(KERN_NOTICE "ICPLB_FAULT_ADDR: %s\n", buf); } verbose_printk(KERN_NOTICE "PROCESSOR STATE:\n"); verbose_printk(KERN_NOTICE " R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n", fp->r0, fp->r1, fp->r2, fp->r3); verbose_printk(KERN_NOTICE " R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n", fp->r4, fp->r5, fp->r6, fp->r7); verbose_printk(KERN_NOTICE " P0 : %08lx P1 : %08lx P2 : %08lx P3 : %08lx\n", fp->p0, fp->p1, fp->p2, fp->p3); verbose_printk(KERN_NOTICE " P4 : %08lx P5 : %08lx FP : %08lx SP : %08lx\n", fp->p4, fp->p5, fp->fp, (long)fp); verbose_printk(KERN_NOTICE " LB0: %08lx LT0: %08lx LC0: %08lx\n", fp->lb0, fp->lt0, fp->lc0); verbose_printk(KERN_NOTICE " LB1: %08lx LT1: %08lx LC1: %08lx\n", fp->lb1, fp->lt1, fp->lc1); verbose_printk(KERN_NOTICE " B0 : %08lx L0 : %08lx M0 : %08lx I0 : %08lx\n", fp->b0, fp->l0, fp->m0, fp->i0); verbose_printk(KERN_NOTICE " B1 : %08lx L1 : %08lx M1 : %08lx I1 : %08lx\n", fp->b1, fp->l1, fp->m1, fp->i1); verbose_printk(KERN_NOTICE " B2 : %08lx L2 : %08lx M2 : %08lx I2 : %08lx\n", fp->b2, fp->l2, fp->m2, fp->i2); verbose_printk(KERN_NOTICE " B3 : %08lx L3 : %08lx M3 : %08lx I3 : %08lx\n", fp->b3, fp->l3, fp->m3, fp->i3); verbose_printk(KERN_NOTICE "A0.w: %08lx A0.x: %08lx A1.w: %08lx A1.x: %08lx\n", fp->a0w, fp->a0x, fp->a1w, fp->a1x); verbose_printk(KERN_NOTICE "USP : %08lx ASTAT: %08lx\n", rdusp(), fp->astat); verbose_printk(KERN_NOTICE "\n"); #endif }