/* * linux/arch/m32r/mm/fault.c * * Copyright (c) 2001, 2002 Hitoshi Yamamoto, and H. Kondo * Copyright (c) 2004 Naoto Sugai, NIIBE Yutaka * * Some code taken from i386 version. * Copyright (C) 1995 Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* For unblank_screen() */ #include #include #include #include #include #include #include extern void die(const char *, struct pt_regs *, long); #ifndef CONFIG_SMP asmlinkage unsigned int tlb_entry_i_dat; asmlinkage unsigned int tlb_entry_d_dat; #define tlb_entry_i tlb_entry_i_dat #define tlb_entry_d tlb_entry_d_dat #else unsigned int tlb_entry_i_dat[NR_CPUS]; unsigned int tlb_entry_d_dat[NR_CPUS]; #define tlb_entry_i tlb_entry_i_dat[smp_processor_id()] #define tlb_entry_d tlb_entry_d_dat[smp_processor_id()] #endif extern void init_tlb(void); /*======================================================================* * do_page_fault() *======================================================================* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. * * ARGUMENT: * regs : M32R SP reg. * error_code : See below * address : M32R MMU MDEVA reg. (Operand ACE) * : M32R BPC reg. (Instruction ACE) * * error_code : * bit 0 == 0 means no page found, 1 means protection fault * bit 1 == 0 means read, 1 means write * bit 2 == 0 means kernel, 1 means user-mode * bit 3 == 0 means data, 1 means instruction *======================================================================*/ #define ACE_PROTECTION 1 #define ACE_WRITE 2 #define ACE_USERMODE 4 #define ACE_INSTRUCTION 8 asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address) { struct task_struct *tsk; struct mm_struct *mm; struct vm_area_struct * vma; unsigned long page, addr; int write; int fault; siginfo_t info; /* * If BPSW IE bit enable --> set PSW IE bit */ if (regs->psw & M32R_PSW_BIE) local_irq_enable(); tsk = current; info.si_code = SEGV_MAPERR; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. * * This verifies that the fault happens in kernel space * (error_code & ACE_USERMODE) == 0, and that the fault was not a * protection error (error_code & ACE_PROTECTION) == 0. */ if (address >= TASK_SIZE && !(error_code & ACE_USERMODE)) goto vmalloc_fault; mm = tsk->mm; /* * If we're in an interrupt or have no user context or are running in an * atomic region then we must not take the fault.. */ if (!mm || pagefault_disabled()) goto bad_area_nosemaphore; /* When running in the kernel we expect faults to occur only to * addresses in user space. All other faults represent errors in the * kernel and should generate an OOPS. Unfortunately, in the case of an * erroneous fault occurring in a code path which already holds mmap_sem * we will deadlock attempting to validate the fault against the * address space. Luckily the kernel only validly references user * space from well defined areas of code, which are listed in the * exceptions table. * * As the vast majority of faults will be valid we will only perform * the source reference check when there is a possibility of a deadlock. * Attempt to lock the address space, if we cannot we then validate the * source. If this is invalid we can skip the address space check, * thus avoiding the deadlock. */ if (!down_read_trylock(&mm->mmap_sem)) { if ((error_code & ACE_USERMODE) == 0 && !search_exception_tables(regs->psw)) goto bad_area_nosemaphore; down_read(&mm->mmap_sem); } vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (error_code & ACE_USERMODE) { /* * accessing the stack below "spu" is always a bug. * The "+ 4" is there due to the push instruction * doing pre-decrement on the stack and that * doesn't show up until later.. */ if (address + 4 < regs->spu) goto bad_area; } if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: info.si_code = SEGV_ACCERR; write = 0; switch (error_code & (ACE_WRITE|ACE_PROTECTION)) { default: /* 3: write, present */ /* fall through */ case ACE_WRITE: /* write, not present */ if (!(vma->vm_flags & VM_WRITE)) goto bad_area; write++; break; case ACE_PROTECTION: /* read, present */ case 0: /* read, not present */ if (!(vma->vm_flags & (VM_READ | VM_EXEC))) goto bad_area; } /* * For instruction access exception, check if the area is executable */ if ((error_code & ACE_INSTRUCTION) && !(vma->vm_flags & VM_EXEC)) goto bad_area; /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ addr = (address & PAGE_MASK); set_thread_fault_code(error_code); fault = handle_mm_fault(mm, vma, addr, write ? FAULT_FLAG_WRITE : 0); if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGBUS) goto do_sigbus; BUG(); } if (fault & VM_FAULT_MAJOR) tsk->maj_flt++; else tsk->min_flt++; set_thread_fault_code(0); up_read(&mm->mmap_sem); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: /* User mode accesses just cause a SIGSEGV */ if (error_code & ACE_USERMODE) { tsk->thread.address = address; tsk->thread.error_code = error_code | (address >= TASK_SIZE); tsk->thread.trap_no = 14; info.si_signo = SIGSEGV; info.si_errno = 0; /* info.si_code has been set above */ info.si_addr = (void __user *)address; force_sig_info(SIGSEGV, &info, tsk); return; } no_context: /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs)) return; /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ bust_spinlocks(1); if (address < PAGE_SIZE) printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); else printk(KERN_ALERT "Unable to handle kernel paging request"); printk(" at virtual address %08lx\n",address); printk(KERN_ALERT " printing bpc:\n"); printk("%08lx\n", regs->bpc); page = *(unsigned long *)MPTB; page = ((unsigned long *) page)[address >> PGDIR_SHIFT]; printk(KERN_ALERT "*pde = %08lx\n", page); if (page & _PAGE_PRESENT) { page &= PAGE_MASK; address &= 0x003ff000; page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT]; printk(KERN_ALERT "*pte = %08lx\n", page); } die("Oops", regs, error_code); bust_spinlocks(0); do_exit(SIGKILL); /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (!(error_code & ACE_USERMODE)) goto no_context; pagefault_out_of_memory(); return; do_sigbus: up_read(&mm->mmap_sem); /* Kernel mode? Handle exception or die */ if (!(error_code & ACE_USERMODE)) goto no_context; tsk->thread.address = address; tsk->thread.error_code = error_code; tsk->thread.trap_no = 14; info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void __user *)address; force_sig_info(SIGBUS, &info, tsk); return; vmalloc_fault: { /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "tsk" here. We might be inside * an interrupt in the middle of a task switch.. */ int offset = pgd_index(address); pgd_t *pgd, *pgd_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; pgd = (pgd_t *)*(unsigned long *)MPTB; pgd = offset + (pgd_t *)pgd; pgd_k = init_mm.pgd + offset; if (!pgd_present(*pgd_k)) goto no_context; /* * set_pgd(pgd, *pgd_k); here would be useless on PAE * and redundant with the set_pmd() on non-PAE. */ pmd = pmd_offset(pgd, address); pmd_k = pmd_offset(pgd_k, address); if (!pmd_present(*pmd_k)) goto no_context; set_pmd(pmd, *pmd_k); pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) goto no_context; addr = (address & PAGE_MASK); set_thread_fault_code(error_code); update_mmu_cache(NULL, addr, pte_k); set_thread_fault_code(0); return; } } /*======================================================================* * update_mmu_cache() *======================================================================*/ #define TLB_MASK (NR_TLB_ENTRIES - 1) #define ITLB_END (unsigned long *)(ITLB_BASE + (NR_TLB_ENTRIES * 8)) #define DTLB_END (unsigned long *)(DTLB_BASE + (NR_TLB_ENTRIES * 8)) void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep) { volatile unsigned long *entry1, *entry2; unsigned long pte_data, flags; unsigned int *entry_dat; int inst = get_thread_fault_code() & ACE_INSTRUCTION; int i; /* Ptrace may call this routine. */ if (vma && current->active_mm != vma->vm_mm) return; local_irq_save(flags); vaddr = (vaddr & PAGE_MASK) | get_asid(); pte_data = pte_val(*ptep); #ifdef CONFIG_CHIP_OPSP entry1 = (unsigned long *)ITLB_BASE; for (i = 0; i < NR_TLB_ENTRIES; i++) { if (*entry1++ == vaddr) { set_tlb_data(entry1, pte_data); break; } entry1++; } entry2 = (unsigned long *)DTLB_BASE; for (i = 0; i < NR_TLB_ENTRIES; i++) { if (*entry2++ == vaddr) { set_tlb_data(entry2, pte_data); break; } entry2++; } #else /* * Update TLB entries * entry1: ITLB entry address * entry2: DTLB entry address */ __asm__ __volatile__ ( "seth %0, #high(%4) \n\t" "st %2, @(%5, %0) \n\t" "ldi %1, #1 \n\t" "st %1, @(%6, %0) \n\t" "add3 r4, %0, %7 \n\t" ".fillinsn \n" "1: \n\t" "ld %1, @(%6, %0) \n\t" "bnez %1, 1b \n\t" "ld %0, @r4+ \n\t" "ld %1, @r4 \n\t" "st %3, @+%0 \n\t" "st %3, @+%1 \n\t" : "=&r" (entry1), "=&r" (entry2) : "r" (vaddr), "r" (pte_data), "i" (MMU_REG_BASE), "i" (MSVA_offset), "i" (MTOP_offset), "i" (MIDXI_offset) : "r4", "memory" ); #endif if ((!inst && entry2 >= DTLB_END) || (inst && entry1 >= ITLB_END)) goto notfound; found: local_irq_restore(flags); return; /* Valid entry not found */ notfound: /* * Update ITLB or DTLB entry * entry1: TLB entry address * entry2: TLB base address */ if (!inst) { entry2 = (unsigned long *)DTLB_BASE; entry_dat = &tlb_entry_d; } else { entry2 = (unsigned long *)ITLB_BASE; entry_dat = &tlb_entry_i; } entry1 = entry2 + (((*entry_dat - 1) & TLB_MASK) << 1); for (i = 0 ; i < NR_TLB_ENTRIES ; i++) { if (!(entry1[1] & 2)) /* Valid bit check */ break; if (entry1 != entry2) entry1 -= 2; else entry1 += TLB_MASK << 1; } if (i >= NR_TLB_ENTRIES) { /* Empty entry not found */ entry1 = entry2 + (*entry_dat << 1); *entry_dat = (*entry_dat + 1) & TLB_MASK; } *entry1++ = vaddr; /* Set TLB tag */ set_tlb_data(entry1, pte_data); goto found; } /*======================================================================* * flush_tlb_page() : flushes one page *======================================================================*/ void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { if (vma->vm_mm && mm_context(vma->vm_mm) != NO_CONTEXT) { unsigned long flags; local_irq_save(flags); page &= PAGE_MASK; page |= (mm_context(vma->vm_mm) & MMU_CONTEXT_ASID_MASK); __flush_tlb_page(page); local_irq_restore(flags); } } /*======================================================================* * flush_tlb_range() : flushes a range of pages *======================================================================*/ void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm; mm = vma->vm_mm; if (mm_context(mm) != NO_CONTEXT) { unsigned long flags; int size; local_irq_save(flags); size = (end - start + (PAGE_SIZE - 1)) >> PAGE_SHIFT; if (size > (NR_TLB_ENTRIES / 4)) { /* Too many TLB to flush */ mm_context(mm) = NO_CONTEXT; if (mm == current->mm) activate_context(mm); } else { unsigned long asid; asid = mm_context(mm) & MMU_CONTEXT_ASID_MASK; start &= PAGE_MASK; end += (PAGE_SIZE - 1); end &= PAGE_MASK; start |= asid; end |= asid; while (start < end) { __flush_tlb_page(start); start += PAGE_SIZE; } } local_irq_restore(flags); } } /*======================================================================* * flush_tlb_mm() : flushes the specified mm context TLB's *======================================================================*/ void local_flush_tlb_mm(struct mm_struct *mm) { /* Invalidate all TLB of this process. */ /* Instead of invalidating each TLB, we get new MMU context. */ if (mm_context(mm) != NO_CONTEXT) { unsigned long flags; local_irq_save(flags); mm_context(mm) = NO_CONTEXT; if (mm == current->mm) activate_context(mm); local_irq_restore(flags); } } /*======================================================================* * flush_tlb_all() : flushes all processes TLBs *======================================================================*/ void local_flush_tlb_all(void) { unsigned long flags; local_irq_save(flags); __flush_tlb_all(); local_irq_restore(flags); } /*======================================================================* * init_mmu() *======================================================================*/ void __init init_mmu(void) { tlb_entry_i = 0; tlb_entry_d = 0; mmu_context_cache = MMU_CONTEXT_FIRST_VERSION; set_asid(mmu_context_cache & MMU_CONTEXT_ASID_MASK); *(volatile unsigned long *)MPTB = (unsigned long)swapper_pg_dir; }