/* * Copyright 2007 David Gibson, IBM Corporation. * * Based on earlier code: * Matt Porter * Copyright 2002-2005 MontaVista Software Inc. * * Eugene Surovegin or * Copyright (c) 2003, 2004 Zultys Technologies * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include "types.h" #include "string.h" #include "stdio.h" #include "ops.h" #include "reg.h" #include "dcr.h" /* Read the 4xx SDRAM controller to get size of system memory. */ void ibm4xx_sdram_fixup_memsize(void) { int i; unsigned long memsize, bank_config; memsize = 0; for (i = 0; i < ARRAY_SIZE(sdram_bxcr); i++) { bank_config = SDRAM0_READ(sdram_bxcr[i]); if (bank_config & SDRAM_CONFIG_BANK_ENABLE) memsize += SDRAM_CONFIG_BANK_SIZE(bank_config); } dt_fixup_memory(0, memsize); } /* Read the 440SPe MQ controller to get size of system memory. */ #define DCRN_MQ0_B0BAS 0x40 #define DCRN_MQ0_B1BAS 0x41 #define DCRN_MQ0_B2BAS 0x42 #define DCRN_MQ0_B3BAS 0x43 static u64 ibm440spe_decode_bas(u32 bas) { u64 base = ((u64)(bas & 0xFFE00000u)) << 2; /* open coded because I'm paranoid about invalid values */ switch ((bas >> 4) & 0xFFF) { case 0: return 0; case 0xffc: return base + 0x000800000ull; case 0xff8: return base + 0x001000000ull; case 0xff0: return base + 0x002000000ull; case 0xfe0: return base + 0x004000000ull; case 0xfc0: return base + 0x008000000ull; case 0xf80: return base + 0x010000000ull; case 0xf00: return base + 0x020000000ull; case 0xe00: return base + 0x040000000ull; case 0xc00: return base + 0x080000000ull; case 0x800: return base + 0x100000000ull; } printf("Memory BAS value 0x%08x unsupported !\n", bas); return 0; } void ibm440spe_fixup_memsize(void) { u64 banktop, memsize = 0; /* Ultimately, we should directly construct the memory node * so we are able to handle holes in the memory address space */ banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B0BAS)); if (banktop > memsize) memsize = banktop; banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B1BAS)); if (banktop > memsize) memsize = banktop; banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B2BAS)); if (banktop > memsize) memsize = banktop; banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B3BAS)); if (banktop > memsize) memsize = banktop; dt_fixup_memory(0, memsize); } /* 4xx DDR1/2 Denali memory controller support */ /* DDR0 registers */ #define DDR0_02 2 #define DDR0_08 8 #define DDR0_10 10 #define DDR0_14 14 #define DDR0_42 42 #define DDR0_43 43 /* DDR0_02 */ #define DDR_START 0x1 #define DDR_START_SHIFT 0 #define DDR_MAX_CS_REG 0x3 #define DDR_MAX_CS_REG_SHIFT 24 #define DDR_MAX_COL_REG 0xf #define DDR_MAX_COL_REG_SHIFT 16 #define DDR_MAX_ROW_REG 0xf #define DDR_MAX_ROW_REG_SHIFT 8 /* DDR0_08 */ #define DDR_DDR2_MODE 0x1 #define DDR_DDR2_MODE_SHIFT 0 /* DDR0_10 */ #define DDR_CS_MAP 0x3 #define DDR_CS_MAP_SHIFT 8 /* DDR0_14 */ #define DDR_REDUC 0x1 #define DDR_REDUC_SHIFT 16 /* DDR0_42 */ #define DDR_APIN 0x7 #define DDR_APIN_SHIFT 24 /* DDR0_43 */ #define DDR_COL_SZ 0x7 #define DDR_COL_SZ_SHIFT 8 #define DDR_BANK8 0x1 #define DDR_BANK8_SHIFT 0 #define DDR_GET_VAL(val, mask, shift) (((val) >> (shift)) & (mask)) void ibm4xx_denali_fixup_memsize(void) { u32 val, max_cs, max_col, max_row; u32 cs, col, row, bank, dpath; unsigned long memsize; val = SDRAM0_READ(DDR0_02); if (!DDR_GET_VAL(val, DDR_START, DDR_START_SHIFT)) fatal("DDR controller is not initialized\n"); /* get maximum cs col and row values */ max_cs = DDR_GET_VAL(val, DDR_MAX_CS_REG, DDR_MAX_CS_REG_SHIFT); max_col = DDR_GET_VAL(val, DDR_MAX_COL_REG, DDR_MAX_COL_REG_SHIFT); max_row = DDR_GET_VAL(val, DDR_MAX_ROW_REG, DDR_MAX_ROW_REG_SHIFT); /* get CS value */ val = SDRAM0_READ(DDR0_10); val = DDR_GET_VAL(val, DDR_CS_MAP, DDR_CS_MAP_SHIFT); cs = 0; while (val) { if (val && 0x1) cs++; val = val >> 1; } if (!cs) fatal("No memory installed\n"); if (cs > max_cs) fatal("DDR wrong CS configuration\n"); /* get data path bytes */ val = SDRAM0_READ(DDR0_14); if (DDR_GET_VAL(val, DDR_REDUC, DDR_REDUC_SHIFT)) dpath = 8; /* 64 bits */ else dpath = 4; /* 32 bits */ /* get address pins (rows) */ val = SDRAM0_READ(DDR0_42); row = DDR_GET_VAL(val, DDR_APIN, DDR_APIN_SHIFT); if (row > max_row) fatal("DDR wrong APIN configuration\n"); row = max_row - row; /* get collomn size and banks */ val = SDRAM0_READ(DDR0_43); col = DDR_GET_VAL(val, DDR_COL_SZ, DDR_COL_SZ_SHIFT); if (col > max_col) fatal("DDR wrong COL configuration\n"); col = max_col - col; if (DDR_GET_VAL(val, DDR_BANK8, DDR_BANK8_SHIFT)) bank = 8; /* 8 banks */ else bank = 4; /* 4 banks */ memsize = cs * (1 << (col+row)) * bank * dpath; dt_fixup_memory(0, memsize); } #define SPRN_DBCR0_40X 0x3F2 #define SPRN_DBCR0_44X 0x134 #define DBCR0_RST_SYSTEM 0x30000000 void ibm44x_dbcr_reset(void) { unsigned long tmp; asm volatile ( "mfspr %0,%1\n" "oris %0,%0,%2@h\n" "mtspr %1,%0" : "=&r"(tmp) : "i"(SPRN_DBCR0_44X), "i"(DBCR0_RST_SYSTEM) ); } void ibm40x_dbcr_reset(void) { unsigned long tmp; asm volatile ( "mfspr %0,%1\n" "oris %0,%0,%2@h\n" "mtspr %1,%0" : "=&r"(tmp) : "i"(SPRN_DBCR0_40X), "i"(DBCR0_RST_SYSTEM) ); } #define EMAC_RESET 0x20000000 void ibm4xx_quiesce_eth(u32 *emac0, u32 *emac1) { /* Quiesce the MAL and EMAC(s) since PIBS/OpenBIOS don't * do this for us */ if (emac0) *emac0 = EMAC_RESET; if (emac1) *emac1 = EMAC_RESET; mtdcr(DCRN_MAL0_CFG, MAL_RESET); while (mfdcr(DCRN_MAL0_CFG) & MAL_RESET) {}; } /* Read 4xx EBC bus bridge registers to get mappings of the peripheral * banks into the OPB address space */ void ibm4xx_fixup_ebc_ranges(const char *ebc) { void *devp; u32 bxcr; u32 ranges[EBC_NUM_BANKS*4]; u32 *p = ranges; int i; for (i = 0; i < EBC_NUM_BANKS; i++) { mtdcr(DCRN_EBC0_CFGADDR, EBC_BXCR(i)); bxcr = mfdcr(DCRN_EBC0_CFGDATA); if ((bxcr & EBC_BXCR_BU) != EBC_BXCR_BU_OFF) { *p++ = i; *p++ = 0; *p++ = bxcr & EBC_BXCR_BAS; *p++ = EBC_BXCR_BANK_SIZE(bxcr); } } devp = finddevice(ebc); if (! devp) fatal("Couldn't locate EBC node %s\n\r", ebc); setprop(devp, "ranges", ranges, (p - ranges) * sizeof(u32)); } #define SPRN_CCR1 0x378 void ibm440ep_fixup_clocks(unsigned int sysclk, unsigned int ser_clk) { u32 cpu, plb, opb, ebc, tb, uart0, m, vco; u32 reg; u32 fwdva, fwdvb, fbdv, lfbdv, opbdv0, perdv0, spcid0, prbdv0, tmp; mtdcr(DCRN_CPR0_ADDR, CPR0_PLLD0); reg = mfdcr(DCRN_CPR0_DATA); tmp = (reg & 0x000F0000) >> 16; fwdva = tmp ? tmp : 16; tmp = (reg & 0x00000700) >> 8; fwdvb = tmp ? tmp : 8; tmp = (reg & 0x1F000000) >> 24; fbdv = tmp ? tmp : 32; lfbdv = (reg & 0x0000007F); mtdcr(DCRN_CPR0_ADDR, CPR0_OPBD0); reg = mfdcr(DCRN_CPR0_DATA); tmp = (reg & 0x03000000) >> 24; opbdv0 = tmp ? tmp : 4; mtdcr(DCRN_CPR0_ADDR, CPR0_PERD0); reg = mfdcr(DCRN_CPR0_DATA); tmp = (reg & 0x07000000) >> 24; perdv0 = tmp ? tmp : 8; mtdcr(DCRN_CPR0_ADDR, CPR0_PRIMBD0); reg = mfdcr(DCRN_CPR0_DATA); tmp = (reg & 0x07000000) >> 24; prbdv0 = tmp ? tmp : 8; mtdcr(DCRN_CPR0_ADDR, CPR0_SCPID); reg = mfdcr(DCRN_CPR0_DATA); tmp = (reg & 0x03000000) >> 24; spcid0 = tmp ? tmp : 4; /* Calculate M */ mtdcr(DCRN_CPR0_ADDR, CPR0_PLLC0); reg = mfdcr(DCRN_CPR0_DATA); tmp = (reg & 0x03000000) >> 24; if (tmp == 0) { /* PLL output */ tmp = (reg & 0x20000000) >> 29; if (!tmp) /* PLLOUTA */ m = fbdv * lfbdv * fwdva; else m = fbdv * lfbdv * fwdvb; } else if (tmp == 1) /* CPU output */ m = fbdv * fwdva; else m = perdv0 * opbdv0 * fwdvb; vco = (m * sysclk) + (m >> 1); cpu = vco / fwdva; plb = vco / fwdvb / prbdv0; opb = plb / opbdv0; ebc = plb / perdv0; /* FIXME */ uart0 = ser_clk; /* Figure out timebase. Either CPU or default TmrClk */ asm volatile ( "mfspr %0,%1\n" : "=&r"(reg) : "i"(SPRN_CCR1)); if (reg & 0x0080) tb = 25000000; /* TmrClk is 25MHz */ else tb = cpu; dt_fixup_cpu_clocks(cpu, tb, 0); dt_fixup_clock("/plb", plb); dt_fixup_clock("/plb/opb", opb); dt_fixup_clock("/plb/opb/ebc", ebc); dt_fixup_clock("/plb/opb/serial@ef600300", uart0); dt_fixup_clock("/plb/opb/serial@ef600400", uart0); dt_fixup_clock("/plb/opb/serial@ef600500", uart0); dt_fixup_clock("/plb/opb/serial@ef600600", uart0); } void ibm405gp_fixup_clocks(unsigned int sysclk, unsigned int ser_clk) { u32 pllmr = mfdcr(DCRN_CPC0_PLLMR); u32 cpc0_cr0 = mfdcr(DCRN_405_CPC0_CR0); u32 cpc0_cr1 = mfdcr(DCRN_405_CPC0_CR1); u32 cpu, plb, opb, ebc, tb, uart0, uart1, m; u32 fwdv, fbdv, cbdv, opdv, epdv, udiv; fwdv = (8 - ((pllmr & 0xe0000000) >> 29)); fbdv = (pllmr & 0x1e000000) >> 25; cbdv = ((pllmr & 0x00060000) >> 17) + 1; opdv = ((pllmr & 0x00018000) >> 15) + 1; epdv = ((pllmr & 0x00001800) >> 13) + 2; udiv = ((cpc0_cr0 & 0x3e) >> 1) + 1; m = fwdv * fbdv * cbdv; cpu = sysclk * m / fwdv; plb = cpu / cbdv; opb = plb / opdv; ebc = plb / epdv; if (cpc0_cr0 & 0x80) { /* uart0 uses the external clock */ uart0 = ser_clk; } else { uart0 = cpu / udiv; } if (cpc0_cr0 & 0x40) { /* uart1 uses the external clock */ uart1 = ser_clk; } else { uart1 = cpu / udiv; } /* setup the timebase clock to tick at the cpu frequency */ cpc0_cr1 = cpc0_cr1 & ~0x00800000; mtdcr(DCRN_405_CPC0_CR1, cpc0_cr1); tb = cpu; dt_fixup_cpu_clocks(cpu, tb, 0); dt_fixup_clock("/plb", plb); dt_fixup_clock("/plb/opb", opb); dt_fixup_clock("/plb/ebc", ebc); dt_fixup_clock("/plb/opb/serial@ef600300", uart0); dt_fixup_clock("/plb/opb/serial@ef600400", uart1); }