/* * Copyright 2002 Andi Kleen, SuSE Labs. * Thanks to Ben LaHaise for precious feedback. */ #include #include #include #include #include #include #include #include #include #include #include #include /* * The current flushing context - we pass it instead of 5 arguments: */ struct cpa_data { unsigned long vaddr; pgprot_t mask_set; pgprot_t mask_clr; int numpages; int flushtlb; }; static inline int within(unsigned long addr, unsigned long start, unsigned long end) { return addr >= start && addr < end; } /* * Flushing functions */ /** * clflush_cache_range - flush a cache range with clflush * @addr: virtual start address * @size: number of bytes to flush * * clflush is an unordered instruction which needs fencing with mfence * to avoid ordering issues. */ void clflush_cache_range(void *vaddr, unsigned int size) { void *vend = vaddr + size - 1; mb(); for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size) clflush(vaddr); /* * Flush any possible final partial cacheline: */ clflush(vend); mb(); } static void __cpa_flush_all(void *arg) { unsigned long cache = (unsigned long)arg; /* * Flush all to work around Errata in early athlons regarding * large page flushing. */ __flush_tlb_all(); if (cache && boot_cpu_data.x86_model >= 4) wbinvd(); } static void cpa_flush_all(unsigned long cache) { BUG_ON(irqs_disabled()); on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1); } static void __cpa_flush_range(void *arg) { /* * We could optimize that further and do individual per page * tlb invalidates for a low number of pages. Caveat: we must * flush the high aliases on 64bit as well. */ __flush_tlb_all(); } static void cpa_flush_range(unsigned long start, int numpages, int cache) { unsigned int i, level; unsigned long addr; BUG_ON(irqs_disabled()); WARN_ON(PAGE_ALIGN(start) != start); on_each_cpu(__cpa_flush_range, NULL, 1, 1); if (!cache) return; /* * We only need to flush on one CPU, * clflush is a MESI-coherent instruction that * will cause all other CPUs to flush the same * cachelines: */ for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) { pte_t *pte = lookup_address(addr, &level); /* * Only flush present addresses: */ if (pte && (pte_val(*pte) & _PAGE_PRESENT)) clflush_cache_range((void *) addr, PAGE_SIZE); } } #define HIGH_MAP_START __START_KERNEL_map #define HIGH_MAP_END (__START_KERNEL_map + KERNEL_TEXT_SIZE) /* * Converts a virtual address to a X86-64 highmap address */ static unsigned long virt_to_highmap(void *address) { #ifdef CONFIG_X86_64 return __pa((unsigned long)address) + HIGH_MAP_START - phys_base; #else return (unsigned long)address; #endif } /* * Certain areas of memory on x86 require very specific protection flags, * for example the BIOS area or kernel text. Callers don't always get this * right (again, ioremap() on BIOS memory is not uncommon) so this function * checks and fixes these known static required protection bits. */ static inline pgprot_t static_protections(pgprot_t prot, unsigned long address) { pgprot_t forbidden = __pgprot(0); /* * The BIOS area between 640k and 1Mb needs to be executable for * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support. */ if (within(__pa(address), BIOS_BEGIN, BIOS_END)) pgprot_val(forbidden) |= _PAGE_NX; /* * The kernel text needs to be executable for obvious reasons * Does not cover __inittext since that is gone later on */ if (within(address, (unsigned long)_text, (unsigned long)_etext)) pgprot_val(forbidden) |= _PAGE_NX; /* * Do the same for the x86-64 high kernel mapping */ if (within(address, virt_to_highmap(_text), virt_to_highmap(_etext))) pgprot_val(forbidden) |= _PAGE_NX; /* The .rodata section needs to be read-only */ if (within(address, (unsigned long)__start_rodata, (unsigned long)__end_rodata)) pgprot_val(forbidden) |= _PAGE_RW; /* * Do the same for the x86-64 high kernel mapping */ if (within(address, virt_to_highmap(__start_rodata), virt_to_highmap(__end_rodata))) pgprot_val(forbidden) |= _PAGE_RW; prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden)); return prot; } /* * Lookup the page table entry for a virtual address. Return a pointer * to the entry and the level of the mapping. * * Note: We return pud and pmd either when the entry is marked large * or when the present bit is not set. Otherwise we would return a * pointer to a nonexisting mapping. */ pte_t *lookup_address(unsigned long address, unsigned int *level) { pgd_t *pgd = pgd_offset_k(address); pud_t *pud; pmd_t *pmd; *level = PG_LEVEL_NONE; if (pgd_none(*pgd)) return NULL; pud = pud_offset(pgd, address); if (pud_none(*pud)) return NULL; *level = PG_LEVEL_1G; if (pud_large(*pud) || !pud_present(*pud)) return (pte_t *)pud; pmd = pmd_offset(pud, address); if (pmd_none(*pmd)) return NULL; *level = PG_LEVEL_2M; if (pmd_large(*pmd) || !pmd_present(*pmd)) return (pte_t *)pmd; *level = PG_LEVEL_4K; return pte_offset_kernel(pmd, address); } /* * Set the new pmd in all the pgds we know about: */ static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) { /* change init_mm */ set_pte_atomic(kpte, pte); #ifdef CONFIG_X86_32 if (!SHARED_KERNEL_PMD) { struct page *page; list_for_each_entry(page, &pgd_list, lru) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pgd = (pgd_t *)page_address(page) + pgd_index(address); pud = pud_offset(pgd, address); pmd = pmd_offset(pud, address); set_pte_atomic((pte_t *)pmd, pte); } } #endif } static int try_preserve_large_page(pte_t *kpte, unsigned long address, struct cpa_data *cpa) { unsigned long nextpage_addr, numpages, pmask, psize, flags; pte_t new_pte, old_pte, *tmp; pgprot_t old_prot, new_prot; int do_split = 1; unsigned int level; spin_lock_irqsave(&pgd_lock, flags); /* * Check for races, another CPU might have split this page * up already: */ tmp = lookup_address(address, &level); if (tmp != kpte) goto out_unlock; switch (level) { case PG_LEVEL_2M: psize = PMD_PAGE_SIZE; pmask = PMD_PAGE_MASK; break; #ifdef CONFIG_X86_64 case PG_LEVEL_1G: psize = PMD_PAGE_SIZE; pmask = PMD_PAGE_MASK; break; #endif default: do_split = -EINVAL; goto out_unlock; } /* * Calculate the number of pages, which fit into this large * page starting at address: */ nextpage_addr = (address + psize) & pmask; numpages = (nextpage_addr - address) >> PAGE_SHIFT; if (numpages < cpa->numpages) cpa->numpages = numpages; /* * We are safe now. Check whether the new pgprot is the same: */ old_pte = *kpte; old_prot = new_prot = pte_pgprot(old_pte); pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); new_prot = static_protections(new_prot, address); /* * If there are no changes, return. maxpages has been updated * above: */ if (pgprot_val(new_prot) == pgprot_val(old_prot)) { do_split = 0; goto out_unlock; } /* * We need to change the attributes. Check, whether we can * change the large page in one go. We request a split, when * the address is not aligned and the number of pages is * smaller than the number of pages in the large page. Note * that we limited the number of possible pages already to * the number of pages in the large page. */ if (address == (nextpage_addr - psize) && cpa->numpages == numpages) { /* * The address is aligned and the number of pages * covers the full page. */ new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot)); __set_pmd_pte(kpte, address, new_pte); cpa->flushtlb = 1; do_split = 0; } out_unlock: spin_unlock_irqrestore(&pgd_lock, flags); return do_split; } static int split_large_page(pte_t *kpte, unsigned long address) { unsigned long flags, pfn, pfninc = 1; gfp_t gfp_flags = GFP_KERNEL; unsigned int i, level; pte_t *pbase, *tmp; pgprot_t ref_prot; struct page *base; #ifdef CONFIG_DEBUG_PAGEALLOC gfp_flags = GFP_ATOMIC | __GFP_NOWARN; #endif base = alloc_pages(gfp_flags, 0); if (!base) return -ENOMEM; spin_lock_irqsave(&pgd_lock, flags); /* * Check for races, another CPU might have split this page * up for us already: */ tmp = lookup_address(address, &level); if (tmp != kpte) goto out_unlock; pbase = (pte_t *)page_address(base); #ifdef CONFIG_X86_32 paravirt_alloc_pt(&init_mm, page_to_pfn(base)); #endif ref_prot = pte_pgprot(pte_clrhuge(*kpte)); #ifdef CONFIG_X86_64 if (level == PG_LEVEL_1G) { pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT; pgprot_val(ref_prot) |= _PAGE_PSE; } #endif /* * Get the target pfn from the original entry: */ pfn = pte_pfn(*kpte); for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc) set_pte(&pbase[i], pfn_pte(pfn, ref_prot)); /* * Install the new, split up pagetable. Important details here: * * On Intel the NX bit of all levels must be cleared to make a * page executable. See section 4.13.2 of Intel 64 and IA-32 * Architectures Software Developer's Manual). * * Mark the entry present. The current mapping might be * set to not present, which we preserved above. */ ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte))); pgprot_val(ref_prot) |= _PAGE_PRESENT; __set_pmd_pte(kpte, address, mk_pte(base, ref_prot)); base = NULL; out_unlock: spin_unlock_irqrestore(&pgd_lock, flags); if (base) __free_pages(base, 0); return 0; } static int __change_page_attr(unsigned long address, struct cpa_data *cpa) { int do_split, err; unsigned int level; struct page *kpte_page; pte_t *kpte; repeat: kpte = lookup_address(address, &level); if (!kpte) return -EINVAL; kpte_page = virt_to_page(kpte); BUG_ON(PageLRU(kpte_page)); BUG_ON(PageCompound(kpte_page)); if (level == PG_LEVEL_4K) { pte_t new_pte, old_pte = *kpte; pgprot_t new_prot = pte_pgprot(old_pte); if(!pte_val(old_pte)) { printk(KERN_WARNING "CPA: called for zero pte. " "vaddr = %lx cpa->vaddr = %lx\n", address, cpa->vaddr); WARN_ON(1); return -EINVAL; } pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); new_prot = static_protections(new_prot, address); /* * We need to keep the pfn from the existing PTE, * after all we're only going to change it's attributes * not the memory it points to */ new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot)); /* * Do we really change anything ? */ if (pte_val(old_pte) != pte_val(new_pte)) { set_pte_atomic(kpte, new_pte); cpa->flushtlb = 1; } cpa->numpages = 1; return 0; } /* * Check, whether we can keep the large page intact * and just change the pte: */ do_split = try_preserve_large_page(kpte, address, cpa); /* * When the range fits into the existing large page, * return. cp->numpages and cpa->tlbflush have been updated in * try_large_page: */ if (do_split <= 0) return do_split; /* * We have to split the large page: */ err = split_large_page(kpte, address); if (!err) { cpa->flushtlb = 1; goto repeat; } return err; } /** * change_page_attr_addr - Change page table attributes in linear mapping * @address: Virtual address in linear mapping. * @prot: New page table attribute (PAGE_*) * * Change page attributes of a page in the direct mapping. This is a variant * of change_page_attr() that also works on memory holes that do not have * mem_map entry (pfn_valid() is false). * * See change_page_attr() documentation for more details. * * Modules and drivers should use the set_memory_* APIs instead. */ static int change_page_attr_addr(struct cpa_data *cpa) { int err; unsigned long address = cpa->vaddr; #ifdef CONFIG_X86_64 unsigned long phys_addr = __pa(address); /* * If we are inside the high mapped kernel range, then we * fixup the low mapping first. __va() returns the virtual * address in the linear mapping: */ if (within(address, HIGH_MAP_START, HIGH_MAP_END)) address = (unsigned long) __va(phys_addr); #endif err = __change_page_attr(address, cpa); if (err) return err; #ifdef CONFIG_X86_64 /* * If the physical address is inside the kernel map, we need * to touch the high mapped kernel as well: */ if (within(phys_addr, 0, KERNEL_TEXT_SIZE)) { /* * Calc the high mapping address. See __phys_addr() * for the non obvious details. * * Note that NX and other required permissions are * checked in static_protections(). */ address = phys_addr + HIGH_MAP_START - phys_base; /* * Our high aliases are imprecise, because we check * everything between 0 and KERNEL_TEXT_SIZE, so do * not propagate lookup failures back to users: */ __change_page_attr(address, cpa); } #endif return err; } static int __change_page_attr_set_clr(struct cpa_data *cpa) { int ret, numpages = cpa->numpages; while (numpages) { /* * Store the remaining nr of pages for the large page * preservation check. */ cpa->numpages = numpages; ret = change_page_attr_addr(cpa); if (ret) return ret; /* * Adjust the number of pages with the result of the * CPA operation. Either a large page has been * preserved or a single page update happened. */ BUG_ON(cpa->numpages > numpages); numpages -= cpa->numpages; cpa->vaddr += cpa->numpages * PAGE_SIZE; } return 0; } static inline int cache_attr(pgprot_t attr) { return pgprot_val(attr) & (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD); } static int change_page_attr_set_clr(unsigned long addr, int numpages, pgprot_t mask_set, pgprot_t mask_clr) { struct cpa_data cpa; int ret, cache; /* * Check, if we are requested to change a not supported * feature: */ mask_set = canon_pgprot(mask_set); mask_clr = canon_pgprot(mask_clr); if (!pgprot_val(mask_set) && !pgprot_val(mask_clr)) return 0; cpa.vaddr = addr; cpa.numpages = numpages; cpa.mask_set = mask_set; cpa.mask_clr = mask_clr; cpa.flushtlb = 0; ret = __change_page_attr_set_clr(&cpa); /* * Check whether we really changed something: */ if (!cpa.flushtlb) return ret; /* * No need to flush, when we did not set any of the caching * attributes: */ cache = cache_attr(mask_set); /* * On success we use clflush, when the CPU supports it to * avoid the wbindv. If the CPU does not support it and in the * error case we fall back to cpa_flush_all (which uses * wbindv): */ if (!ret && cpu_has_clflush) cpa_flush_range(addr, numpages, cache); else cpa_flush_all(cache); return ret; } static inline int change_page_attr_set(unsigned long addr, int numpages, pgprot_t mask) { return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0)); } static inline int change_page_attr_clear(unsigned long addr, int numpages, pgprot_t mask) { return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask); } int set_memory_uc(unsigned long addr, int numpages) { return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PCD | _PAGE_PWT)); } EXPORT_SYMBOL(set_memory_uc); int set_memory_wb(unsigned long addr, int numpages) { return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PCD | _PAGE_PWT)); } EXPORT_SYMBOL(set_memory_wb); int set_memory_x(unsigned long addr, int numpages) { return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX)); } EXPORT_SYMBOL(set_memory_x); int set_memory_nx(unsigned long addr, int numpages) { return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX)); } EXPORT_SYMBOL(set_memory_nx); int set_memory_ro(unsigned long addr, int numpages) { return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW)); } int set_memory_rw(unsigned long addr, int numpages) { return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW)); } int set_memory_np(unsigned long addr, int numpages) { return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT)); } int set_pages_uc(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_uc(addr, numpages); } EXPORT_SYMBOL(set_pages_uc); int set_pages_wb(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_wb(addr, numpages); } EXPORT_SYMBOL(set_pages_wb); int set_pages_x(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_x(addr, numpages); } EXPORT_SYMBOL(set_pages_x); int set_pages_nx(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_nx(addr, numpages); } EXPORT_SYMBOL(set_pages_nx); int set_pages_ro(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_ro(addr, numpages); } int set_pages_rw(struct page *page, int numpages) { unsigned long addr = (unsigned long)page_address(page); return set_memory_rw(addr, numpages); } #ifdef CONFIG_DEBUG_PAGEALLOC static int __set_pages_p(struct page *page, int numpages) { struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page), .numpages = numpages, .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), .mask_clr = __pgprot(0)}; return __change_page_attr_set_clr(&cpa); } static int __set_pages_np(struct page *page, int numpages) { struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page), .numpages = numpages, .mask_set = __pgprot(0), .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)}; return __change_page_attr_set_clr(&cpa); } void kernel_map_pages(struct page *page, int numpages, int enable) { if (PageHighMem(page)) return; if (!enable) { debug_check_no_locks_freed(page_address(page), numpages * PAGE_SIZE); } /* * If page allocator is not up yet then do not call c_p_a(): */ if (!debug_pagealloc_enabled) return; /* * The return value is ignored - the calls cannot fail, * large pages are disabled at boot time: */ if (enable) __set_pages_p(page, numpages); else __set_pages_np(page, numpages); /* * We should perform an IPI and flush all tlbs, * but that can deadlock->flush only current cpu: */ __flush_tlb_all(); } #endif /* * The testcases use internal knowledge of the implementation that shouldn't * be exposed to the rest of the kernel. Include these directly here. */ #ifdef CONFIG_CPA_DEBUG #include "pageattr-test.c" #endif