/* * Freescale FSL CAAM support for crypto API over QI backend * * Copyright 2008-2011, 2013 Freescale Semiconductor, Inc. * */ #include "compat.h" #include "regs.h" #include "intern.h" #include "desc_constr.h" #include "error.h" #include "sg_sw_sec4.h" #include "sg_sw_qm.h" #include "key_gen.h" #include "qi.h" #include "jr.h" #include "ctrl.h" /* * crypto alg */ #define CAAM_CRA_PRIORITY 4000 /* max key is sum of AES_MAX_KEY_SIZE, max split key size */ #define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \ SHA512_DIGEST_SIZE * 2) /* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */ #define CAAM_MAX_IV_LENGTH 16 /* length of descriptors text */ #define DESC_AEAD_BASE (4 * CAAM_CMD_SZ) #define DESC_AEAD_ENC_LEN (DESC_AEAD_BASE + 16 * CAAM_CMD_SZ) #define DESC_AEAD_DEC_LEN (DESC_AEAD_BASE + 21 * CAAM_CMD_SZ) #define DESC_AEAD_GIVENC_LEN (DESC_AEAD_ENC_LEN + 7 * CAAM_CMD_SZ) #define DESC_TLS_BASE (4 * CAAM_CMD_SZ) #define DESC_TLS10_ENC_LEN (DESC_TLS_BASE + 29 * CAAM_CMD_SZ) #define DESC_MAX_USED_BYTES (DESC_AEAD_GIVENC_LEN + \ CAAM_MAX_KEY_SIZE) #define DESC_MAX_USED_LEN (DESC_MAX_USED_BYTES / CAAM_CMD_SZ) /* Set DK bit in class 1 operation if shared */ static inline void append_dec_op1(u32 *desc, u32 type) { u32 *jump_cmd, *uncond_jump_cmd; jump_cmd = append_jump(desc, JUMP_TEST_ALL | JUMP_COND_SHRD); append_operation(desc, type | OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT); uncond_jump_cmd = append_jump(desc, JUMP_TEST_ALL); set_jump_tgt_here(desc, jump_cmd); append_operation(desc, type | OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_AAI_DK); set_jump_tgt_here(desc, uncond_jump_cmd); } /* * Wait for completion of class 1 key loading before allowing * error propagation */ static inline void append_dec_shr_done(u32 *desc) { u32 *jump_cmd; jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1 | JUMP_TEST_ALL); set_jump_tgt_here(desc, jump_cmd); append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD); } /* * For aead functions, read payload and write payload, * both of which are specified in req->src and req->dst */ static inline void aead_append_src_dst(u32 *desc, u32 msg_type) { append_seq_fifo_load(desc, 0, FIFOLD_CLASS_BOTH | KEY_VLF | msg_type | FIFOLD_TYPE_LASTBOTH); append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF); } /* * For aead encrypt and decrypt, read iv for both classes */ static inline void aead_append_ld_iv(u32 *desc, int ivsize) { append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT | LDST_CLASS_1_CCB | ivsize); append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize); } /* * If all data, including src (with assoc and iv) or dst (with iv only) are * contiguous */ #define GIV_SRC_CONTIG 1 #define GIV_DST_CONTIG (1 << 1) enum optype { ENCRYPT, DECRYPT, GIVENCRYPT, NUM_OP }; /* * per-session context */ struct caam_ctx { struct device *jrdev; u32 sh_desc_enc[DESC_MAX_USED_LEN]; u32 sh_desc_dec[DESC_MAX_USED_LEN]; u32 sh_desc_givenc[DESC_MAX_USED_LEN]; u32 class1_alg_type; u32 class2_alg_type; u32 alg_op; u8 key[CAAM_MAX_KEY_SIZE]; dma_addr_t key_dma; unsigned int enckeylen; unsigned int split_key_len; unsigned int split_key_pad_len; unsigned int authsize; struct device *qidev; spinlock_t lock; /* Protects multiple init of driver context */ struct caam_drv_ctx *drv_ctx[NUM_OP]; }; static void append_key_aead(u32 *desc, struct caam_ctx *ctx, int keys_fit_inline) { if (keys_fit_inline) { append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len, ctx->split_key_len, CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC); append_key_as_imm(desc, (void *)ctx->key + ctx->split_key_pad_len, ctx->enckeylen, ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); } else { append_key(desc, ctx->key_dma, ctx->split_key_len, CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC); append_key(desc, ctx->key_dma + ctx->split_key_pad_len, ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); } } static void init_sh_desc_key_aead(u32 *desc, struct caam_ctx *ctx, int keys_fit_inline) { u32 *key_jump_cmd; init_sh_desc(desc, HDR_SHARE_SERIAL); /* Skip if already shared */ key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_SHRD); append_key_aead(desc, ctx, keys_fit_inline); set_jump_tgt_here(desc, key_jump_cmd); /* Propagate errors from shared to job descriptor */ append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD); } static int aead_set_sh_desc(struct crypto_aead *aead) { struct aead_tfm *tfm = &aead->base.crt_aead; struct caam_ctx *ctx = crypto_aead_ctx(aead); bool keys_fit_inline; u32 *key_jump_cmd, *jump_cmd; u32 geniv, moveiv; u32 *desc; if (!ctx->enckeylen || !ctx->authsize) return 0; /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (DESC_AEAD_ENC_LEN + DESC_JOB_IO_LEN + ctx->split_key_pad_len + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) keys_fit_inline = true; else keys_fit_inline = false; /* aead_encrypt shared descriptor */ desc = ctx->sh_desc_enc; init_sh_desc_key_aead(desc, ctx, keys_fit_inline); /* Class 2 operation */ append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); /* cryptlen = seqoutlen - authsize */ append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize); /* assoclen + cryptlen = seqinlen - ivsize */ append_math_sub_imm_u32(desc, REG2, SEQINLEN, IMM, tfm->ivsize); /* assoclen + cryptlen = (assoclen + cryptlen) - cryptlen */ append_math_sub(desc, VARSEQINLEN, REG2, REG3, CAAM_CMD_SZ); /* read assoc before reading payload */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG | KEY_VLF); aead_append_ld_iv(desc, tfm->ivsize); /* Class 1 operation */ append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); /* Read and write cryptlen bytes */ append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ); append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ); aead_append_src_dst(desc, FIFOLD_TYPE_MSG1OUT2); /* Write ICV */ append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT); #ifdef DEBUG print_hex_dump(KERN_ERR, "aead enc shdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); #endif /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (DESC_AEAD_DEC_LEN + DESC_JOB_IO_LEN + ctx->split_key_pad_len + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) keys_fit_inline = true; else keys_fit_inline = false; desc = ctx->sh_desc_dec; /* aead_decrypt shared descriptor */ init_sh_desc(desc, HDR_SHARE_SERIAL); /* Skip if already shared */ key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_SHRD); append_key_aead(desc, ctx, keys_fit_inline); /* Only propagate error immediately if shared */ jump_cmd = append_jump(desc, JUMP_TEST_ALL); set_jump_tgt_here(desc, key_jump_cmd); append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD); set_jump_tgt_here(desc, jump_cmd); /* Class 2 operation */ append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON); /* assoclen + cryptlen = seqinlen - ivsize */ append_math_sub_imm_u32(desc, REG3, SEQINLEN, IMM, ctx->authsize + tfm->ivsize); /* assoclen = (assoclen + cryptlen) - cryptlen */ append_math_sub(desc, REG2, SEQOUTLEN, REG0, CAAM_CMD_SZ); append_math_sub(desc, VARSEQINLEN, REG3, REG2, CAAM_CMD_SZ); /* read assoc before reading payload */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG | KEY_VLF); aead_append_ld_iv(desc, tfm->ivsize); append_dec_op1(desc, ctx->class1_alg_type); /* Read and write cryptlen bytes */ append_math_add(desc, VARSEQINLEN, ZERO, REG2, CAAM_CMD_SZ); append_math_add(desc, VARSEQOUTLEN, ZERO, REG2, CAAM_CMD_SZ); aead_append_src_dst(desc, FIFOLD_TYPE_MSG); /* Load ICV */ append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV); append_dec_shr_done(desc); #ifdef DEBUG print_hex_dump(KERN_ERR, "aead dec shdesc@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); #endif /* * Job Descriptor and Shared Descriptors * must all fit into the 64-word Descriptor h/w Buffer */ if (DESC_AEAD_GIVENC_LEN + DESC_JOB_IO_LEN + ctx->split_key_pad_len + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) keys_fit_inline = true; else keys_fit_inline = false; /* aead_givencrypt shared descriptor */ desc = ctx->sh_desc_givenc; init_sh_desc_key_aead(desc, ctx, keys_fit_inline); /* Generate IV */ geniv = NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DEST_DECO | NFIFOENTRY_DTYPE_MSG | NFIFOENTRY_LC1 | NFIFOENTRY_PTYPE_RND | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT); append_load_imm_u32(desc, geniv, LDST_CLASS_IND_CCB | LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM); append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO); append_move(desc, MOVE_SRC_INFIFO | MOVE_DEST_CLASS1CTX | (tfm->ivsize << MOVE_LEN_SHIFT)); append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO); /* Copy IV to class 1 context */ append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_OUTFIFO | (tfm->ivsize << MOVE_LEN_SHIFT)); /* Return to encryption */ append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); /* ivsize + cryptlen = seqoutlen - authsize */ append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize); /* assoclen = seqinlen - (ivsize + cryptlen) */ append_math_sub(desc, VARSEQINLEN, SEQINLEN, REG3, CAAM_CMD_SZ); /* read assoc before reading payload */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG | KEY_VLF); /* Copy iv from class 1 ctx to class 2 fifo*/ moveiv = NFIFOENTRY_STYPE_OFIFO | NFIFOENTRY_DEST_CLASS2 | NFIFOENTRY_DTYPE_MSG | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT); append_load_imm_u32(desc, moveiv, LDST_CLASS_IND_CCB | LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM); append_load_imm_u32(desc, tfm->ivsize, LDST_CLASS_2_CCB | LDST_SRCDST_WORD_DATASZ_REG | LDST_IMM); /* Class 1 operation */ append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); /* Will write ivsize + cryptlen */ append_math_add(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ); /* Not need to reload iv */ append_seq_fifo_load(desc, tfm->ivsize, FIFOLD_CLASS_SKIP); /* Will read cryptlen */ append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ); aead_append_src_dst(desc, FIFOLD_TYPE_MSG1OUT2); /* Write ICV */ append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT); #ifdef DEBUG print_hex_dump(KERN_ERR, "aead givenc shdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); #endif return 0; } static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx(authenc); ctx->authsize = authsize; aead_set_sh_desc(authenc); return 0; } static int tls_set_sh_desc(struct crypto_aead *aead) { struct aead_tfm *tfm = &aead->base.crt_aead; struct caam_ctx *ctx = crypto_aead_ctx(aead); bool keys_fit_inline; u32 *key_jump_cmd, *zero_payload_jump_cmd, *skip_zero_jump_cmd; u32 genpad, idx_ld_datasz, idx_ld_pad, jumpback, stidx; u32 *desc; unsigned int blocksize = crypto_aead_blocksize(aead); /* Associated data length is always = 13 for TLS */ unsigned int assoclen = 13; if (!ctx->enckeylen || !ctx->authsize) return 0; /* * TLS 1.0 encrypt shared descriptor * Job Descriptor and Shared Descriptor * must fit into the 64-word Descriptor h/w Buffer */ /* * Compute the index (in bytes) for the LOAD with destination of * Class 1 Data Size Register and for the LOAD that generates padding */ if (DESC_TLS10_ENC_LEN + DESC_JOB_IO_LEN + ctx->split_key_pad_len + ctx->enckeylen <= CAAM_DESC_BYTES_MAX) { keys_fit_inline = true; idx_ld_datasz = DESC_TLS10_ENC_LEN + ctx->split_key_pad_len + ctx->enckeylen - 4 * CAAM_CMD_SZ; idx_ld_pad = DESC_TLS10_ENC_LEN + ctx->split_key_pad_len + ctx->enckeylen - 2 * CAAM_CMD_SZ; } else { keys_fit_inline = false; idx_ld_datasz = DESC_TLS10_ENC_LEN + 2 * CAAM_PTR_SZ - 4 * CAAM_CMD_SZ; idx_ld_pad = DESC_TLS10_ENC_LEN + 2 * CAAM_PTR_SZ - 2 * CAAM_CMD_SZ; } desc = ctx->sh_desc_enc; stidx = 1 << HDR_START_IDX_SHIFT; init_sh_desc(desc, HDR_SHARE_SERIAL | stidx); /* skip key loading if they are loaded due to sharing */ key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_SHRD); if (keys_fit_inline) { append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len, ctx->split_key_len, CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC); append_key_as_imm(desc, (void *)ctx->key + ctx->split_key_pad_len, ctx->enckeylen, ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); } else { append_key(desc, ctx->key_dma, ctx->split_key_len, CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC); append_key(desc, ctx->key_dma + ctx->split_key_pad_len, ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); } set_jump_tgt_here(desc, key_jump_cmd); /* class 2 operation */ append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); /* class 1 operation */ append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT); /* payloadlen = input data length - (assoclen + ivlen) */ append_math_sub_imm_u32(desc, REG0, SEQINLEN, IMM, assoclen + tfm->ivsize); /* math1 = payloadlen + icvlen */ append_math_add_imm_u32(desc, REG1, REG0, IMM, ctx->authsize); /* padlen = block_size - math1 % block_size */ append_math_and_imm_u32(desc, REG3, REG1, IMM, blocksize - 1); append_math_sub_imm_u32(desc, REG2, IMM, REG3, blocksize); /* cryptlen = payloadlen + icvlen + padlen */ append_math_add(desc, VARSEQOUTLEN, REG1, REG2, 4); /* * update immediate data with the padding length value * for the LOAD in the class 1 data size register. */ append_move(desc, MOVE_SRC_DESCBUF | MOVE_DEST_MATH2 | (idx_ld_datasz << MOVE_OFFSET_SHIFT) | 7); append_move(desc, MOVE_WAITCOMP | MOVE_SRC_MATH2 | MOVE_DEST_DESCBUF | (idx_ld_datasz << MOVE_OFFSET_SHIFT) | 8); /* overwrite PL field for the padding iNFO FIFO entry */ append_move(desc, MOVE_SRC_DESCBUF | MOVE_DEST_MATH2 | (idx_ld_pad << MOVE_OFFSET_SHIFT) | 7); append_move(desc, MOVE_WAITCOMP | MOVE_SRC_MATH2 | MOVE_DEST_DESCBUF | (idx_ld_pad << MOVE_OFFSET_SHIFT) | 8); /* store encrypted payload, icv and padding */ append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | LDST_VLF); /* if payload length is zero, jump to zero-payload commands */ append_math_add(desc, VARSEQINLEN, ZERO, REG0, 4); zero_payload_jump_cmd = append_jump(desc, JUMP_TEST_ALL | JUMP_COND_MATH_Z); /* read assoc for authentication */ append_seq_fifo_load(desc, assoclen, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG); /* load iv in context1 */ append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_WORD_CLASS_CTX | LDST_CLASS_1_CCB | tfm->ivsize); /* insnoop payload */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_BOTH | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2 | FIFOLDST_VLF); /* jump the zero-payload commands */ append_jump(desc, JUMP_TEST_ALL | 3); /* zero-payload commands */ set_jump_tgt_here(desc, zero_payload_jump_cmd); /* assoc data is the only data for authentication */ append_seq_fifo_load(desc, assoclen, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2); /* load iv in context1 */ append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_WORD_CLASS_CTX | LDST_CLASS_1_CCB | tfm->ivsize); /* send icv to encryption */ append_move(desc, MOVE_SRC_CLASS2CTX | MOVE_DEST_CLASS1INFIFO | ctx->authsize); /* update class 1 data size register with padding length */ append_load_imm_u32(desc, 0, LDST_CLASS_1_CCB | LDST_SRCDST_WORD_DATASZ_REG | LDST_IMM); /* generate padding and send it to encryption */ genpad = NFIFOENTRY_DEST_CLASS1 | NFIFOENTRY_LC1 | NFIFOENTRY_FC1 | NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DTYPE_MSG | NFIFOENTRY_PTYPE_N; append_load_imm_u32(desc, genpad, LDST_CLASS_IND_CCB | LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM); #ifdef DEBUG print_hex_dump(KERN_ERR, "tls enc shdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); #endif /* * TLS 1.0 decrypt shared descriptor * Keys do not fit inline, regardless of algorithms used */ desc = ctx->sh_desc_dec; stidx = 1 << HDR_START_IDX_SHIFT; init_sh_desc(desc, HDR_SHARE_SERIAL | stidx); /* skip key loading if they are loaded due to sharing */ key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL | JUMP_COND_SHRD); append_key(desc, ctx->key_dma, ctx->split_key_len, CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC); append_key(desc, ctx->key_dma + ctx->split_key_pad_len, ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG); set_jump_tgt_here(desc, key_jump_cmd); /* class 2 operation */ append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON); /* class 1 operation */ append_operation(desc, ctx->class1_alg_type | OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT); /* VSIL = input data length - 2 * block_size */ append_math_sub_imm_u32(desc, VARSEQINLEN, SEQINLEN, IMM, 2 * blocksize); /* * payloadlen + icvlen + padlen = input data length - (assoclen + * ivsize) */ append_math_sub_imm_u32(desc, REG3, SEQINLEN, IMM, assoclen + tfm->ivsize); /* skip data to the last but one cipher block */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_SKIP | LDST_VLF); /* load iv for the last cipher block */ append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_WORD_CLASS_CTX | LDST_CLASS_1_CCB | tfm->ivsize); /* read last cipher block */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST1 | blocksize); /* move decrypted block into math0 and math1 */ append_move(desc, MOVE_WAITCOMP | MOVE_SRC_OUTFIFO | MOVE_DEST_MATH0 | blocksize); /* reset AES CHA */ append_load_imm_u32(desc, CCTRL_RESET_CHA_AESA, LDST_CLASS_IND_CCB | LDST_SRCDST_WORD_CHACTRL | LDST_IMM); /* rewind input sequence */ append_seq_in_ptr_intlen(desc, 0, 65535, SQIN_RTO); /* key1 is in decryption form */ append_operation(desc, ctx->class1_alg_type | OP_ALG_AAI_DK | OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT); /* read sequence number */ append_seq_fifo_load(desc, 8, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG); /* load Type, Version and Len fields in math0 */ append_cmd(desc, CMD_SEQ_LOAD | LDST_CLASS_DECO | LDST_SRCDST_WORD_DECO_MATH0 | (3 << LDST_OFFSET_SHIFT) | 5); /* load iv in context1 */ append_cmd(desc, CMD_SEQ_LOAD | LDST_CLASS_1_CCB | LDST_SRCDST_WORD_CLASS_CTX | tfm->ivsize); /* compute (padlen - 1) */ append_math_and_imm_u64(desc, REG1, REG1, IMM, 255); /* math2 = icvlen + (padlen - 1) + 1 */ append_math_add_imm_u32(desc, REG2, REG1, IMM, ctx->authsize + 1); append_jump(desc, JUMP_TEST_ALL | JUMP_COND_CALM | 1); /* VSOL = payloadlen + icvlen + padlen */ append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, 4); /* update Len field */ append_math_sub(desc, REG0, REG0, REG2, 8); /* store decrypted payload, icv and padding */ append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | LDST_VLF); /* VSIL = (payloadlen + icvlen + padlen) - (icvlen + padlen)*/ append_math_sub(desc, VARSEQINLEN, REG3, REG2, 4); zero_payload_jump_cmd = append_jump(desc, JUMP_TEST_ALL | JUMP_COND_MATH_Z); /* send Type, Version and Len(pre ICV) fields to authentication */ append_move(desc, MOVE_WAITCOMP | MOVE_SRC_MATH0 | MOVE_DEST_CLASS2INFIFO | (3 << MOVE_OFFSET_SHIFT) | 5); /* outsnooping payload */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_BOTH | FIFOLD_TYPE_MSG1OUT2 | FIFOLD_TYPE_LAST2 | FIFOLDST_VLF); skip_zero_jump_cmd = append_jump(desc, JUMP_TEST_ALL | 2); set_jump_tgt_here(desc, zero_payload_jump_cmd); /* send Type, Version and Len(pre ICV) fields to authentication */ append_move(desc, MOVE_WAITCOMP | MOVE_AUX_LS | MOVE_SRC_MATH0 | MOVE_DEST_CLASS2INFIFO | (3 << MOVE_OFFSET_SHIFT) | 5); set_jump_tgt_here(desc, skip_zero_jump_cmd); append_math_add(desc, VARSEQINLEN, ZERO, REG2, 4); /* load icvlen and padlen */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST1 | FIFOLDST_VLF); /* VSIL = (payloadlen + icvlen + padlen) - icvlen + padlen */ append_math_sub(desc, VARSEQINLEN, REG3, REG2, 4); /* move seqoutptr fields into math registers */ append_move(desc, MOVE_WAITCOMP | MOVE_SRC_DESCBUF | MOVE_DEST_MATH0 | (54 * 4 << MOVE_OFFSET_SHIFT) | 20); /* seqinptr will point to seqoutptr */ append_math_and_imm_u32(desc, REG0, REG0, IMM, ~(CMD_SEQ_IN_PTR ^ CMD_SEQ_OUT_PTR)); /* Load jump command */ jumpback = CMD_JUMP | (char)-9; append_load_imm_u32(desc, jumpback, LDST_CLASS_DECO | LDST_IMM | LDST_SRCDST_WORD_DECO_MATH2 | (4 << LDST_OFFSET_SHIFT)); append_jump(desc, JUMP_TEST_ALL | JUMP_COND_CALM | 1); /* move updated seqinptr fields to JD */ append_move(desc, MOVE_WAITCOMP | MOVE_SRC_MATH0 | MOVE_DEST_DESCBUF | (54 * 4 << MOVE_OFFSET_SHIFT) | 24); /* read updated seqinptr */ append_jump(desc, JUMP_TEST_ALL | JUMP_COND_CALM | 6); /* skip payload */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_SKIP | FIFOLDST_VLF); /* check icv */ append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_ICV | FIFOLD_TYPE_LAST2 | ctx->authsize); #ifdef DEBUG print_hex_dump(KERN_ERR, "tls dec shdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); #endif return 0; } static int tls_setauthsize(struct crypto_aead *tls, unsigned int authsize) { struct caam_ctx *ctx = crypto_aead_ctx(tls); ctx->authsize = authsize; return 0; } static u32 gen_split_aead_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen) { return gen_split_key(ctx->jrdev, ctx->key, ctx->split_key_len, ctx->split_key_pad_len, key_in, authkeylen, ctx->alg_op); } static int aead_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */ static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 }; struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; struct rtattr *rta = (void *)key; struct crypto_authenc_key_param *param; unsigned int authkeylen; unsigned int enckeylen; int ret = 0; param = RTA_DATA(rta); enckeylen = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (keylen < enckeylen) goto badkey; authkeylen = keylen - enckeylen; if (keylen > CAAM_MAX_KEY_SIZE) goto badkey; /* Pick class 2 key length from algorithm submask */ ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >> OP_ALG_ALGSEL_SHIFT] * 2; ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16); #ifdef DEBUG printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n", keylen, enckeylen, authkeylen); printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n", ctx->split_key_len, ctx->split_key_pad_len); print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); #endif ret = gen_split_aead_key(ctx, key, authkeylen); if (ret) goto badkey; /* postpend encryption key to auth split key */ memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen); ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len + enckeylen, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, ctx->key_dma)) { dev_err(jrdev, "unable to map key i/o memory\n"); return -ENOMEM; } #ifdef DEBUG print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, ctx->split_key_pad_len + enckeylen, 1); #endif ctx->enckeylen = enckeylen; ret = aead_set_sh_desc(aead); if (ret) { dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len + enckeylen, DMA_TO_DEVICE); goto badkey; } /* Now update the driver contexts with the new shared descriptor */ if (ctx->drv_ctx[ENCRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT], ctx->sh_desc_enc); if (ret) { dev_err(jrdev, "driver enc context update failed\n"); goto badkey; } } if (ctx->drv_ctx[DECRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT], ctx->sh_desc_dec); if (ret) { dev_err(jrdev, "driver dec context update failed\n"); goto badkey; } } if (ctx->drv_ctx[GIVENCRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[GIVENCRYPT], ctx->sh_desc_givenc); if (ret) { dev_err(jrdev, "driver givenc context update failed\n"); goto badkey; } } return ret; badkey: crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } static int tls_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */ static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 }; struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *jrdev = ctx->jrdev; struct rtattr *rta = (void *)key; struct crypto_authenc_key_param *param; unsigned int authkeylen; unsigned int enckeylen; int ret = 0; param = RTA_DATA(rta); enckeylen = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (keylen < enckeylen) goto badkey; authkeylen = keylen - enckeylen; if (keylen > CAAM_MAX_KEY_SIZE) goto badkey; /* Pick class 2 key length from algorithm submask */ ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >> OP_ALG_ALGSEL_SHIFT] * 2; ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16); #ifdef DEBUG dev_err(jrdev, "keylen %d enckeylen %d authkeylen %d\n", keylen, enckeylen, authkeylen); dev_err(jrdev, "split_key_len %d split_key_pad_len %d\n", ctx->split_key_len, ctx->split_key_pad_len); print_hex_dump(KERN_ERR, "key in @"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); #endif ret = gen_split_aead_key(ctx, key, authkeylen); if (ret) goto badkey; /* postpend encryption key to auth split key */ memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen); ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len + enckeylen, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, ctx->key_dma)) { dev_err(jrdev, "unable to map key i/o memory\n"); return -ENOMEM; } #ifdef DEBUG print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, ctx->split_key_pad_len + enckeylen, 1); #endif ctx->enckeylen = enckeylen; ret = tls_set_sh_desc(aead); if (ret) { dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len + enckeylen, DMA_TO_DEVICE); } /* Now update the driver contexts with the new shared descriptor */ if (ctx->drv_ctx[ENCRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[ENCRYPT], ctx->sh_desc_enc); if (ret) { dev_err(jrdev, "driver enc context update failed\n"); goto badkey; } } if (ctx->drv_ctx[DECRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[DECRYPT], ctx->sh_desc_dec); if (ret) { dev_err(jrdev, "driver dec context update failed\n"); goto badkey; } } if (ctx->drv_ctx[GIVENCRYPT]) { ret = caam_drv_ctx_update(ctx->drv_ctx[GIVENCRYPT], ctx->sh_desc_givenc); if (ret) { dev_err(jrdev, "driver givenc context update failed\n"); goto badkey; } } return ret; badkey: crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } /* * aead_edesc - s/w-extended aead descriptor * @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist * @assoc_chained: if source is chained * @src_nents: number of segments in input scatterlist * @src_chained: if source is chained * @dst_nents: number of segments in output scatterlist * @dst_chained: if destination is chained * @iv_dma: dma address of iv for checking continuity and link table * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE) * @qm_sg_bytes: length of dma mapped sec4_sg space * @qm_sg_dma: bus physical mapped address of h/w link table * @hw_desc: the h/w job descriptor followed by any referenced link tables */ struct aead_edesc { int assoc_nents; bool assoc_chained; int src_nents; bool src_chained; int dst_nents; bool dst_chained; dma_addr_t iv_dma; int qm_sg_bytes; dma_addr_t qm_sg_dma; struct caam_drv_req drv_req; struct qm_sg_entry sgt[0]; }; static void caam_unmap(struct device *dev, struct scatterlist *src, struct scatterlist *dst, int src_nents, bool src_chained, int dst_nents, bool dst_chained, dma_addr_t iv_dma, int ivsize, dma_addr_t qm_sg_dma, int qm_sg_bytes) { if (dst != src) { dma_unmap_sg_chained(dev, src, src_nents ? : 1, DMA_TO_DEVICE, src_chained); dma_unmap_sg_chained(dev, dst, dst_nents ? : 1, DMA_FROM_DEVICE, dst_chained); } else { dma_unmap_sg_chained(dev, src, src_nents ? : 1, DMA_BIDIRECTIONAL, src_chained); } if (iv_dma) dma_unmap_single(dev, iv_dma, ivsize, DMA_TO_DEVICE); if (qm_sg_bytes) dma_unmap_single(dev, qm_sg_dma, qm_sg_bytes, DMA_BIDIRECTIONAL); } static void aead_unmap(struct device *dev, struct aead_edesc *edesc, struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); int ivsize = crypto_aead_ivsize(aead); dma_unmap_sg_chained(dev, req->assoc, edesc->assoc_nents, DMA_BIDIRECTIONAL, edesc->assoc_chained); caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->src_chained, edesc->dst_nents, edesc->dst_chained, edesc->iv_dma, ivsize, edesc->qm_sg_dma, edesc->qm_sg_bytes); } static inline void aead_done(struct caam_drv_req *drv_req, u32 status) { struct device *qidev; struct aead_edesc *edesc; struct aead_request *aead_req = drv_req->app_ctx; struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); struct caam_ctx *caam_ctx = crypto_aead_ctx(aead); int ecode = 0; qidev = caam_ctx->qidev; if (status) { char tmp[CAAM_ERROR_STR_MAX]; dev_err(qidev, "Rsp status: %#x: %s\n", status, caam_jr_strstatus(tmp, status)); ecode = -EIO; } edesc = container_of(drv_req, struct aead_edesc, drv_req); aead_unmap(qidev, edesc, aead_req); aead_request_complete(aead_req, ecode); kfree(edesc); } /* For now, identical to aead_done */ static inline void tls_encrypt_done(struct caam_drv_req *drv_req, u32 status) { struct device *qidev; struct aead_edesc *edesc; struct aead_request *aead_req = drv_req->app_ctx; struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); struct caam_ctx *caam_ctx = crypto_aead_ctx(aead); int ecode = 0; qidev = caam_ctx->qidev; if (status) { char tmp[CAAM_ERROR_STR_MAX]; dev_err(qidev, "Rsp status: %#x: %s\n", status, caam_jr_strstatus(tmp, status)); ecode = -EIO; } edesc = container_of(drv_req, struct aead_edesc, drv_req); aead_unmap(qidev, edesc, aead_req); aead_request_complete(aead_req, ecode); kfree(edesc); } static inline void tls_decrypt_done(struct caam_drv_req *drv_req, u32 status) { struct device *qidev; struct aead_edesc *edesc; struct aead_request *aead_req = drv_req->app_ctx; struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); struct caam_ctx *caam_ctx = crypto_aead_ctx(aead); int ecode = 0; int cryptlen = aead_req->cryptlen; u8 padsize; u8 padding[255]; /* padding can be 0-255 bytes */ int i; qidev = caam_ctx->qidev; if (status) { char tmp[CAAM_ERROR_STR_MAX]; dev_err(qidev, "Rsp status: %#x: %s\n", status, caam_jr_strstatus(tmp, status)); ecode = -EIO; } edesc = container_of(drv_req, struct aead_edesc, drv_req); aead_unmap(qidev, edesc, aead_req); /* * verify hw auth check passed else return -EBADMSG */ if ((status & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK) { ecode = -EBADMSG; goto out; } /* Padding checking */ cryptlen -= 1; scatterwalk_map_and_copy(&padsize, aead_req->dst, cryptlen, 1, 0); if (padsize > cryptlen) { ecode = -EBADMSG; goto out; } cryptlen -= padsize; scatterwalk_map_and_copy(padding, aead_req->dst, cryptlen, padsize, 0); /* the padding content must be equal with padsize */ for (i = 0; i < padsize; i++) if (padding[i] != padsize) { ecode = -EBADMSG; break; } out: aead_request_complete(aead_req, ecode); kfree(edesc); } /* * allocate and map the aead extended descriptor */ static struct aead_edesc *aead_edesc_alloc(struct aead_request *req, bool *all_contig_ptr, bool encrypt, bool strip_icv) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *qidev = ctx->qidev; gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; int assoc_nents, src_nents, dst_nents = 0; struct aead_edesc *edesc; dma_addr_t iv_dma = 0, qm_sg_dma; int sgc; bool all_contig = true; bool assoc_chained = false, src_chained = false, dst_chained = false; int ivsize = crypto_aead_ivsize(aead); unsigned int authsize = ctx->authsize; int qm_sg_index, qm_sg_ents = 0, qm_sg_bytes; struct qm_sg_entry *sg_table, *fd_sgt; struct caam_drv_req *drv_req; assoc_nents = sg_count(req->assoc, req->assoclen, &assoc_chained); if (unlikely(req->dst != req->src)) { int extralen; src_nents = sg_count(req->src, req->cryptlen, &src_chained); if (encrypt) extralen = authsize; else extralen = strip_icv ? (-authsize) : 0; dst_nents = sg_count(req->dst, req->cryptlen + extralen, &dst_chained); } else { src_nents = sg_count(req->src, req->cryptlen + (encrypt ? authsize : 0), &src_chained); } sgc = dma_map_sg_chained(qidev, req->assoc, assoc_nents ? : 1, DMA_TO_DEVICE, assoc_chained); if (likely(req->src == req->dst)) { sgc = dma_map_sg_chained(qidev, req->src, src_nents ? : 1, DMA_BIDIRECTIONAL, src_chained); } else { sgc = dma_map_sg_chained(qidev, req->src, src_nents ? : 1, DMA_TO_DEVICE, src_chained); sgc = dma_map_sg_chained(qidev, req->dst, dst_nents ? : 1, DMA_FROM_DEVICE, dst_chained); } /* Check if data are contiguous */ iv_dma = dma_map_single(qidev, req->iv, ivsize, DMA_TO_DEVICE); if (assoc_nents || sg_dma_address(req->assoc) + req->assoclen != iv_dma || src_nents || iv_dma + ivsize != sg_dma_address(req->src)) { all_contig = false; assoc_nents = assoc_nents ? : 1; src_nents = src_nents ? : 1; qm_sg_ents = assoc_nents + 1 + src_nents; } qm_sg_ents += dst_nents; qm_sg_bytes = qm_sg_ents * sizeof(struct qm_sg_entry); /* allocate space for base edesc and hw desc commands, link tables */ edesc = kmalloc(sizeof(struct aead_edesc) + qm_sg_bytes, GFP_DMA | flags); if (!edesc) { dev_err(qidev, "could not allocate extended descriptor\n"); return ERR_PTR(-ENOMEM); } qm_sg_index = 0; drv_req = &edesc->drv_req; sg_table = &edesc->sgt[0]; fd_sgt = &drv_req->fd_sgt[0]; qm_sg_dma = dma_map_single(qidev, sg_table, qm_sg_bytes, DMA_BIDIRECTIONAL); edesc->assoc_nents = assoc_nents; edesc->assoc_chained = assoc_chained; edesc->src_nents = src_nents; edesc->src_chained = src_chained; edesc->dst_nents = dst_nents; edesc->dst_chained = dst_chained; edesc->iv_dma = iv_dma; edesc->qm_sg_dma = qm_sg_dma; edesc->qm_sg_bytes = qm_sg_bytes; *all_contig_ptr = all_contig; fd_sgt[0].final = 0; fd_sgt[0].__reserved2 = 0; fd_sgt[0].bpid = 0; fd_sgt[0].__reserved3 = 0; fd_sgt[0].offset = 0; fd_sgt[1].final = 1; fd_sgt[1].__reserved2 = 0; fd_sgt[1].bpid = 0; fd_sgt[1].__reserved3 = 0; fd_sgt[1].offset = 0; if (!all_contig) { fd_sgt[1].extension = 1; fd_sgt[1].addr = qm_sg_dma; sg_to_qm_sg(req->assoc, (assoc_nents ? : 1), sg_table, 0); qm_sg_index += assoc_nents ? : 1; dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0); qm_sg_index += 1; sg_to_qm_sg_last(req->src, (src_nents ? : 1), sg_table + qm_sg_index, 0); qm_sg_index += src_nents ? : 1; } else { fd_sgt[1].extension = 0; fd_sgt[1].addr = sg_dma_address(req->assoc); } if (dst_nents) sg_to_qm_sg_last(req->dst, dst_nents, sg_table + qm_sg_index, 0); if (req->dst == req->src) { if (src_nents <= 1) { fd_sgt[0].addr = sg_dma_address(req->src); fd_sgt[0].extension = 0; } else { fd_sgt[0].extension = 1; fd_sgt[0].addr = fd_sgt[1].addr + sizeof(struct qm_sg_entry) * ((edesc->assoc_nents ? : 1) + 1); } } else { if (!dst_nents) { fd_sgt[0].addr = sg_dma_address(req->dst); fd_sgt[0].extension = 0; } else { fd_sgt[0].addr = qm_sg_dma + (sizeof(struct qm_sg_entry) * qm_sg_index); fd_sgt[0].extension = 1; } } return edesc; } static struct caam_drv_ctx *get_drv_ctx(struct caam_ctx *ctx, enum optype type) { struct caam_drv_ctx *drv_ctx = ctx->drv_ctx[type]; u32 *desc; if (unlikely(!drv_ctx)) { spin_lock(&ctx->lock); /* Read again to check if some other core init drv_ctx */ drv_ctx = ctx->drv_ctx[type]; if (!drv_ctx) { int cpu; if (ENCRYPT == type) desc = ctx->sh_desc_enc; else if (DECRYPT == type) desc = ctx->sh_desc_dec; else if (GIVENCRYPT == type) desc = ctx->sh_desc_givenc; else return ERR_PTR(-EINVAL); cpu = smp_processor_id(); drv_ctx = caam_drv_ctx_init(ctx->qidev, &cpu, desc); ctx->drv_ctx[type] = drv_ctx; } spin_unlock(&ctx->lock); } return drv_ctx; } static int aead_encrypt(struct aead_request *req) { struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); int ivsize = crypto_aead_ivsize(aead); struct device *qidev = ctx->qidev; struct caam_drv_ctx *drv_ctx; struct caam_drv_req *drv_req; bool all_contig; int ret; drv_ctx = get_drv_ctx(ctx, ENCRYPT); if (unlikely(IS_ERR_OR_NULL(drv_ctx))) return PTR_ERR(drv_ctx); if (unlikely(caam_drv_ctx_busy(drv_ctx))) return -EAGAIN; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, &all_contig, true, true); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Create and submit job descriptor */ drv_req = &edesc->drv_req; drv_req->app_ctx = req; drv_req->cbk = aead_done; drv_req->fd_sgt[0].length = req->cryptlen + ctx->authsize; drv_req->fd_sgt[1].length = req->assoclen + ivsize + req->cryptlen; drv_req->drv_ctx = drv_ctx; ret = caam_qi_enqueue(qidev, drv_req); if (!ret) { ret = -EINPROGRESS; } else { aead_unmap(qidev, edesc, req); kfree(edesc); } return ret; } static int aead_decrypt(struct aead_request *req) { struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); int ivsize = crypto_aead_ivsize(aead); struct device *qidev = ctx->qidev; struct caam_drv_ctx *drv_ctx; struct caam_drv_req *drv_req; bool all_contig; int ret = 0; drv_ctx = get_drv_ctx(ctx, DECRYPT); if (unlikely(IS_ERR_OR_NULL(drv_ctx))) return PTR_ERR(drv_ctx); if (unlikely(caam_drv_ctx_busy(drv_ctx))) return -EAGAIN; /* allocate extended descriptor */ edesc = aead_edesc_alloc(req, &all_contig, false, true); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Create and submit job descriptor */ drv_req = &edesc->drv_req; drv_req->app_ctx = req; drv_req->cbk = aead_done; drv_req->fd_sgt[0].length = req->cryptlen - ctx->authsize; drv_req->fd_sgt[1].length = req->assoclen + ivsize + req->cryptlen; drv_req->drv_ctx = drv_ctx; ret = caam_qi_enqueue(qidev, drv_req); if (!ret) { ret = -EINPROGRESS; } else { aead_unmap(qidev, edesc, req); kfree(edesc); } return ret; } static int tls_encrypt(struct aead_request *req) { struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); int ivsize = crypto_aead_ivsize(aead); struct device *qidev = ctx->qidev; struct caam_drv_ctx *drv_ctx; struct caam_drv_req *drv_req; bool all_contig; int ret; unsigned int blocksize = crypto_aead_blocksize(aead); unsigned int padsize; drv_ctx = get_drv_ctx(ctx, ENCRYPT); if (unlikely(IS_ERR_OR_NULL(drv_ctx))) return PTR_ERR(drv_ctx); if (unlikely(caam_drv_ctx_busy(drv_ctx))) return -EAGAIN; padsize = blocksize - ((req->cryptlen + ctx->authsize) % blocksize); /* * allocate extended tls descriptor * TLS 1.0 has no explicit IV in the packet, but it is needed as input * since it is used by CBC. * ctx->authsize is temporary set to include also padlen */ ctx->authsize += padsize; edesc = aead_edesc_alloc(req, &all_contig, true, true); if (IS_ERR(edesc)) return PTR_ERR(edesc); ctx->authsize -= padsize; /* Create and submit job descriptor */ drv_req = &edesc->drv_req; drv_req->app_ctx = req; drv_req->cbk = tls_encrypt_done; drv_req->fd_sgt[0].length = req->cryptlen + padsize + ctx->authsize; drv_req->fd_sgt[1].length = req->assoclen + ivsize + req->cryptlen; drv_req->drv_ctx = drv_ctx; ret = caam_qi_enqueue(qidev, drv_req); if (!ret) { ret = -EINPROGRESS; } else { aead_unmap(qidev, edesc, req); kfree(edesc); } return ret; } static int tls_decrypt(struct aead_request *req) { struct aead_edesc *edesc; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); int ivsize = crypto_aead_ivsize(aead); struct device *qidev = ctx->qidev; struct caam_drv_ctx *drv_ctx; struct caam_drv_req *drv_req; bool all_contig; int ret = 0; drv_ctx = get_drv_ctx(ctx, DECRYPT); if (unlikely(IS_ERR_OR_NULL(drv_ctx))) return PTR_ERR(drv_ctx); if (unlikely(caam_drv_ctx_busy(drv_ctx))) return -EAGAIN; /* * allocate extended descriptor * TLS 1.0 has no explicit IV in the packet, but it is needed as input * since it is used by CBC. * Assumption: since padding and ICV are not stripped (upper layer * checks padding), req->dst has to be big enough to hold payloadlen + * padlen + icvlen. */ edesc = aead_edesc_alloc(req, &all_contig, false, false); if (IS_ERR(edesc)) return PTR_ERR(edesc); /* Create and submit job descriptor */ drv_req = &edesc->drv_req; drv_req->app_ctx = req; drv_req->cbk = tls_decrypt_done; /* * For decrypt, do not strip ICV, Padding, Padding length since * upper layer(s) perform padding checking. */ drv_req->fd_sgt[0].length = req->cryptlen; drv_req->fd_sgt[1].length = req->assoclen + ivsize + req->cryptlen; drv_req->drv_ctx = drv_ctx; ret = caam_qi_enqueue(qidev, drv_req); if (!ret) { ret = -EINPROGRESS; } else { aead_unmap(qidev, edesc, req); kfree(edesc); } return ret; } /* * allocate and map the aead extended descriptor for aead givencrypt */ static struct aead_edesc *aead_giv_edesc_alloc(struct aead_givcrypt_request *greq, u32 *contig_ptr) { struct aead_request *req = &greq->areq; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *qidev = ctx->qidev; gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; int assoc_nents, src_nents, dst_nents = 0; struct aead_edesc *edesc; dma_addr_t iv_dma = 0, qm_sg_dma; int sgc; u32 contig = GIV_SRC_CONTIG | GIV_DST_CONTIG; int ivsize = crypto_aead_ivsize(aead); bool assoc_chained = false, src_chained = false, dst_chained = false; int qm_sg_index, qm_sg_ents = 0, qm_sg_bytes; struct qm_sg_entry *sg_table, *fd_sgt; struct caam_drv_req *drv_req; assoc_nents = sg_count(req->assoc, req->assoclen, &assoc_chained); src_nents = sg_count(req->src, req->cryptlen, &src_chained); if (unlikely(req->dst != req->src)) dst_nents = sg_count(req->dst, req->cryptlen + ctx->authsize, &dst_chained); sgc = dma_map_sg_chained(qidev, req->assoc, assoc_nents ? : 1, DMA_TO_DEVICE, assoc_chained); if (likely(req->src == req->dst)) { sgc = dma_map_sg_chained(qidev, req->src, src_nents ? : 1, DMA_BIDIRECTIONAL, src_chained); } else { sgc = dma_map_sg_chained(qidev, req->src, src_nents ? : 1, DMA_TO_DEVICE, src_chained); sgc = dma_map_sg_chained(qidev, req->dst, dst_nents ? : 1, DMA_FROM_DEVICE, dst_chained); } /* Check if data are contiguous */ iv_dma = dma_map_single(qidev, greq->giv, ivsize, DMA_TO_DEVICE); if (assoc_nents || sg_dma_address(req->assoc) + req->assoclen != iv_dma || src_nents || iv_dma + ivsize != sg_dma_address(req->src)) contig &= ~GIV_SRC_CONTIG; if (dst_nents || iv_dma + ivsize != sg_dma_address(req->dst)) contig &= ~GIV_DST_CONTIG; if (unlikely(req->src != req->dst)) { dst_nents = dst_nents ? : 1; qm_sg_ents += 1; } if (!(contig & GIV_SRC_CONTIG)) { assoc_nents = assoc_nents ? : 1; src_nents = src_nents ? : 1; qm_sg_ents += assoc_nents + 1 + src_nents; if (likely(req->src == req->dst)) contig &= ~GIV_DST_CONTIG; } qm_sg_ents += dst_nents; qm_sg_bytes = qm_sg_ents * sizeof(struct qm_sg_entry); /* allocate space for base edesc and hw desc commands, link tables */ edesc = kmalloc(sizeof(struct aead_edesc) + qm_sg_bytes, GFP_DMA | flags); if (!edesc) { dev_err(qidev, "could not allocate extended descriptor\n"); return ERR_PTR(-ENOMEM); } drv_req = &edesc->drv_req; sg_table = &edesc->sgt[0]; fd_sgt = &drv_req->fd_sgt[0]; qm_sg_dma = dma_map_single(qidev, sg_table, qm_sg_bytes, DMA_BIDIRECTIONAL); edesc->assoc_nents = assoc_nents; edesc->assoc_chained = assoc_chained; edesc->src_nents = src_nents; edesc->src_chained = src_chained; edesc->dst_nents = dst_nents; edesc->dst_chained = dst_chained; edesc->iv_dma = iv_dma; edesc->qm_sg_bytes = qm_sg_bytes; edesc->qm_sg_dma = qm_sg_dma; *contig_ptr = contig; memset(&fd_sgt[0], 0, 2 * sizeof(fd_sgt[0])); fd_sgt[1].final = 1; qm_sg_index = 0; if (unlikely(!(contig & GIV_SRC_CONTIG))) { fd_sgt[1].extension = 1; fd_sgt[1].addr = qm_sg_dma; sg_to_qm_sg(req->assoc, assoc_nents, sg_table + qm_sg_index, 0); qm_sg_index += assoc_nents; dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0); qm_sg_index += 1; sg_to_qm_sg_last(req->src, src_nents, sg_table + qm_sg_index, 0); qm_sg_index += src_nents; } else { fd_sgt[1].addr = sg_dma_address(req->assoc); } if (unlikely(req->src != req->dst && !(contig & GIV_DST_CONTIG))) { fd_sgt[0].addr = qm_sg_dma + (sizeof(struct qm_sg_entry) * qm_sg_index); fd_sgt[0].extension = 1; dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0); qm_sg_index += 1; sg_to_qm_sg_last(req->dst, dst_nents, sg_table + qm_sg_index, 0); } else { if (req->src == req->dst && !(contig & GIV_DST_CONTIG)) { fd_sgt[0].extension = 1; fd_sgt[0].addr = edesc->qm_sg_dma + sizeof(struct qm_sg_entry) * edesc->assoc_nents; } else { fd_sgt[0].addr = edesc->iv_dma; } } return edesc; } static int aead_givencrypt(struct aead_givcrypt_request *areq) { struct aead_request *req = &areq->areq; struct crypto_aead *aead = crypto_aead_reqtfm(req); struct caam_ctx *ctx = crypto_aead_ctx(aead); struct device *qidev = ctx->qidev; struct caam_drv_ctx *drv_ctx; struct caam_drv_req *drv_req; int ivsize = crypto_aead_ivsize(aead); struct aead_edesc *edesc; u32 contig; int ret; drv_ctx = get_drv_ctx(ctx, GIVENCRYPT); if (unlikely(IS_ERR_OR_NULL(drv_ctx))) return PTR_ERR(drv_ctx); if (unlikely(caam_drv_ctx_busy(drv_ctx))) return -EAGAIN; /* allocate extended descriptor */ edesc = aead_giv_edesc_alloc(areq, &contig); if (IS_ERR(edesc)) return PTR_ERR(edesc); drv_req = &edesc->drv_req; drv_req->app_ctx = req; drv_req->cbk = aead_done; drv_req->fd_sgt[0].length = ivsize + req->cryptlen + ctx->authsize; drv_req->fd_sgt[1].length = req->assoclen + ivsize + req->cryptlen; drv_req->drv_ctx = drv_ctx; ret = caam_qi_enqueue(qidev, drv_req); if (!ret) { ret = -EINPROGRESS; } else { aead_unmap(qidev, edesc, req); kfree(edesc); } return ret; } #define template_aead template_u.aead #define template_ablkcipher template_u.ablkcipher struct caam_alg_template { char name[CRYPTO_MAX_ALG_NAME]; char driver_name[CRYPTO_MAX_ALG_NAME]; unsigned int blocksize; u32 type; union { struct ablkcipher_alg ablkcipher; struct aead_alg aead; struct blkcipher_alg blkcipher; struct cipher_alg cipher; struct compress_alg compress; struct rng_alg rng; } template_u; u32 class1_alg_type; u32 class2_alg_type; u32 alg_op; int min_era; }; static struct caam_alg_template driver_algs[] = { /* single-pass ipsec_esp descriptor */ { .name = "authenc(hmac(md5),cbc(aes))", .driver_name = "authenc-hmac-md5-cbc-aes-caam-qi", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha1),cbc(aes))", .driver_name = "authenc-hmac-sha1-cbc-aes-caam-qi", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha224),cbc(aes))", .driver_name = "authenc-hmac-sha224-cbc-aes-caam-qi", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha256),cbc(aes))", .driver_name = "authenc-hmac-sha256-cbc-aes-caam-qi", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha384),cbc(aes))", .driver_name = "authenc-hmac-sha384-cbc-aes-caam-qi", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha512),cbc(aes))", .driver_name = "authenc-hmac-sha512-cbc-aes-caam-qi", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(md5),cbc(des3_ede))", .driver_name = "authenc-hmac-md5-cbc-des3_ede-caam-qi", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha1),cbc(des3_ede))", .driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam-qi", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha224),cbc(des3_ede))", .driver_name = "authenc-hmac-sha224-cbc-des3_ede-caam-qi", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha256),cbc(des3_ede))", .driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam-qi", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha384),cbc(des3_ede))", .driver_name = "authenc-hmac-sha384-cbc-des3_ede-caam-qi", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha512),cbc(des3_ede))", .driver_name = "authenc-hmac-sha512-cbc-des3_ede-caam-qi", .blocksize = DES3_EDE_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(md5),cbc(des))", .driver_name = "authenc-hmac-md5-cbc-des-caam-qi", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha1),cbc(des))", .driver_name = "authenc-hmac-sha1-cbc-des-caam-qi", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha224),cbc(des))", .driver_name = "authenc-hmac-sha224-cbc-des-caam-qi", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha256),cbc(des))", .driver_name = "authenc-hmac-sha256-cbc-des-caam-qi", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha384),cbc(des))", .driver_name = "authenc-hmac-sha384-cbc-des-caam-qi", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC, .min_era = 2, }, { .name = "authenc(hmac(sha512),cbc(des))", .driver_name = "authenc-hmac-sha512-cbc-des-caam-qi", .blocksize = DES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = aead_setkey, .setauthsize = aead_setauthsize, .encrypt = aead_encrypt, .decrypt = aead_decrypt, .givencrypt = aead_givencrypt, .geniv = "", .ivsize = DES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC, .min_era = 2, }, /* TLS record descriptors */ { .name = "tls10(hmac(sha1),cbc(aes))", .driver_name = "tls10-hmac-sha1-cbc-aes-caam-qi", .blocksize = AES_BLOCK_SIZE, .type = CRYPTO_ALG_TYPE_AEAD, .template_aead = { .setkey = tls_setkey, .setauthsize = tls_setauthsize, .encrypt = tls_encrypt, .decrypt = tls_decrypt, .givencrypt = NULL, .geniv = "", .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC, .class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP, .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC, .min_era = 2, } }; struct caam_crypto_alg { struct list_head entry; struct device *ctrldev; int class1_alg_type; int class2_alg_type; int alg_op; struct crypto_alg crypto_alg; }; static int caam_cra_init(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; struct caam_crypto_alg *caam_alg = container_of(alg, struct caam_crypto_alg, crypto_alg); struct caam_ctx *ctx = crypto_tfm_ctx(tfm); struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev); /* Digest sizes for MD5, SHA1, SHA-224, SHA-256, SHA-384, SHA-512 */ static const u8 digest_size[] = { MD5_DIGEST_SIZE, SHA1_DIGEST_SIZE, SHA224_DIGEST_SIZE, SHA256_DIGEST_SIZE, SHA384_DIGEST_SIZE, SHA512_DIGEST_SIZE }; /* * distribute tfms across job rings to ensure in-order * crypto request processing per tfm */ ctx->jrdev = caam_jr_alloc(); if (IS_ERR(ctx->jrdev)) { pr_err("Job Ring Device allocation for transform failed\n"); return PTR_ERR(ctx->jrdev); } /* copy descriptor header template value */ ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type; ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type; ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op; /* * Need authsize, in case setauthsize callback not called * by upper layer (e.g. TLS). */ if (caam_alg->alg_op) ctx->authsize = digest_size[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >> OP_ALG_ALGSEL_SHIFT]; else ctx->authsize = 0; ctx->qidev = priv->qidev; spin_lock_init(&ctx->lock); ctx->drv_ctx[ENCRYPT] = NULL; ctx->drv_ctx[DECRYPT] = NULL; ctx->drv_ctx[GIVENCRYPT] = NULL; return 0; } static void caam_cra_exit(struct crypto_tfm *tfm) { struct caam_ctx *ctx = crypto_tfm_ctx(tfm); caam_drv_ctx_rel(ctx->drv_ctx[ENCRYPT]); caam_drv_ctx_rel(ctx->drv_ctx[DECRYPT]); caam_drv_ctx_rel(ctx->drv_ctx[GIVENCRYPT]); caam_jr_free(ctx->jrdev); } static struct list_head alg_list; static void __exit caam_qi_algapi_exit(void) { struct caam_crypto_alg *t_alg, *n; if (!alg_list.next) return; list_for_each_entry_safe(t_alg, n, &alg_list, entry) { crypto_unregister_alg(&t_alg->crypto_alg); list_del(&t_alg->entry); kfree(t_alg); } } static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev, struct caam_alg_template *template) { struct caam_crypto_alg *t_alg; struct crypto_alg *alg; t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL); if (!t_alg) { dev_err(ctrldev, "failed to allocate t_alg\n"); return ERR_PTR(-ENOMEM); } alg = &t_alg->crypto_alg; snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", template->driver_name); alg->cra_module = THIS_MODULE; alg->cra_init = caam_cra_init; alg->cra_exit = caam_cra_exit; alg->cra_priority = CAAM_CRA_PRIORITY; alg->cra_blocksize = template->blocksize; alg->cra_alignmask = 0; alg->cra_ctxsize = sizeof(struct caam_ctx); alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY | template->type; switch (template->type) { case CRYPTO_ALG_TYPE_ABLKCIPHER: alg->cra_type = &crypto_ablkcipher_type; alg->cra_ablkcipher = template->template_ablkcipher; break; case CRYPTO_ALG_TYPE_AEAD: alg->cra_type = &crypto_aead_type; alg->cra_aead = template->template_aead; break; } t_alg->class1_alg_type = template->class1_alg_type; t_alg->class2_alg_type = template->class2_alg_type; t_alg->alg_op = template->alg_op; t_alg->ctrldev = ctrldev; return t_alg; } static int __init caam_qi_algapi_init(void) { struct device_node *dev_node; struct platform_device *pdev; struct device *ctrldev; struct caam_drv_private *priv; int i = 0, err = 0; dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); if (!dev_node) { dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); if (!dev_node) return -ENODEV; } pdev = of_find_device_by_node(dev_node); if (!pdev) return -ENODEV; ctrldev = &pdev->dev; priv = dev_get_drvdata(ctrldev); /* * If priv is NULL, it's probably because the caam driver wasn't * properly initialized (e.g. RNG4 init failed). Thus, bail out here. */ if (!priv) return -ENODEV; of_node_put(dev_node); INIT_LIST_HEAD(&alg_list); /* register crypto algorithms the device supports */ for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { struct caam_crypto_alg *t_alg; /* check if h/w supports alg */ if (priv->era > 0 && priv->era < driver_algs[i].min_era) { dev_warn(priv->qidev, "%s needs Era %d or higher but SEC is Era %d, skipping it\n", driver_algs[i].driver_name, driver_algs[i].min_era, priv->era); continue; } t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]); if (IS_ERR(t_alg)) { err = PTR_ERR(t_alg); dev_warn(priv->qidev, "%s alg allocation failed\n", driver_algs[i].driver_name); continue; } err = crypto_register_alg(&t_alg->crypto_alg); if (err) { dev_warn(priv->qidev, "%s alg registration failed\n", t_alg->crypto_alg.cra_driver_name); kfree(t_alg); } else { list_add_tail(&t_alg->entry, &alg_list); } } if (!list_empty(&alg_list)) dev_info(priv->qidev, "%s algorithms registered in /proc/crypto\n", (char *)of_get_property(dev_node, "compatible", NULL)); return err; } module_init(caam_qi_algapi_init); module_exit(caam_qi_algapi_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Support for crypto API using CAAM-QI backend"); MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");