/* * OMAP DMAengine support * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include "virt-dma.h" #include struct omap_dmadev { struct dma_device ddev; spinlock_t lock; struct tasklet_struct task; struct list_head pending; }; struct omap_chan { struct virt_dma_chan vc; struct list_head node; struct dma_slave_config cfg; unsigned dma_sig; bool cyclic; bool paused; int dma_ch; struct omap_desc *desc; unsigned sgidx; }; struct omap_sg { dma_addr_t addr; uint32_t en; /* number of elements (24-bit) */ uint32_t fn; /* number of frames (16-bit) */ }; struct omap_desc { struct virt_dma_desc vd; enum dma_transfer_direction dir; dma_addr_t dev_addr; int16_t fi; /* for OMAP_DMA_SYNC_PACKET */ uint8_t es; /* OMAP_DMA_DATA_TYPE_xxx */ uint8_t sync_mode; /* OMAP_DMA_SYNC_xxx */ uint8_t sync_type; /* OMAP_DMA_xxx_SYNC* */ uint8_t periph_port; /* Peripheral port */ unsigned sglen; struct omap_sg sg[0]; }; static const unsigned es_bytes[] = { [OMAP_DMA_DATA_TYPE_S8] = 1, [OMAP_DMA_DATA_TYPE_S16] = 2, [OMAP_DMA_DATA_TYPE_S32] = 4, }; static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d) { return container_of(d, struct omap_dmadev, ddev); } static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c) { return container_of(c, struct omap_chan, vc.chan); } static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t) { return container_of(t, struct omap_desc, vd.tx); } static void omap_dma_desc_free(struct virt_dma_desc *vd) { kfree(container_of(vd, struct omap_desc, vd)); } static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d, unsigned idx) { struct omap_sg *sg = d->sg + idx; if (d->dir == DMA_DEV_TO_MEM) omap_set_dma_dest_params(c->dma_ch, OMAP_DMA_PORT_EMIFF, OMAP_DMA_AMODE_POST_INC, sg->addr, 0, 0); else omap_set_dma_src_params(c->dma_ch, OMAP_DMA_PORT_EMIFF, OMAP_DMA_AMODE_POST_INC, sg->addr, 0, 0); omap_set_dma_transfer_params(c->dma_ch, d->es, sg->en, sg->fn, d->sync_mode, c->dma_sig, d->sync_type); omap_start_dma(c->dma_ch); } static void omap_dma_start_desc(struct omap_chan *c) { struct virt_dma_desc *vd = vchan_next_desc(&c->vc); struct omap_desc *d; if (!vd) { c->desc = NULL; return; } list_del(&vd->node); c->desc = d = to_omap_dma_desc(&vd->tx); c->sgidx = 0; if (d->dir == DMA_DEV_TO_MEM) omap_set_dma_src_params(c->dma_ch, d->periph_port, OMAP_DMA_AMODE_CONSTANT, d->dev_addr, 0, d->fi); else omap_set_dma_dest_params(c->dma_ch, d->periph_port, OMAP_DMA_AMODE_CONSTANT, d->dev_addr, 0, d->fi); omap_dma_start_sg(c, d, 0); } static void omap_dma_callback(int ch, u16 status, void *data) { struct omap_chan *c = data; struct omap_desc *d; unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); d = c->desc; if (d) { if (!c->cyclic) { if (++c->sgidx < d->sglen) { omap_dma_start_sg(c, d, c->sgidx); } else { omap_dma_start_desc(c); vchan_cookie_complete(&d->vd); } } else { vchan_cyclic_callback(&d->vd); } } spin_unlock_irqrestore(&c->vc.lock, flags); } /* * This callback schedules all pending channels. We could be more * clever here by postponing allocation of the real DMA channels to * this point, and freeing them when our virtual channel becomes idle. * * We would then need to deal with 'all channels in-use' */ static void omap_dma_sched(unsigned long data) { struct omap_dmadev *d = (struct omap_dmadev *)data; LIST_HEAD(head); spin_lock_irq(&d->lock); list_splice_tail_init(&d->pending, &head); spin_unlock_irq(&d->lock); while (!list_empty(&head)) { struct omap_chan *c = list_first_entry(&head, struct omap_chan, node); spin_lock_irq(&c->vc.lock); list_del_init(&c->node); omap_dma_start_desc(c); spin_unlock_irq(&c->vc.lock); } } static int omap_dma_alloc_chan_resources(struct dma_chan *chan) { struct omap_chan *c = to_omap_dma_chan(chan); dev_info(c->vc.chan.device->dev, "allocating channel for %u\n", c->dma_sig); return omap_request_dma(c->dma_sig, "DMA engine", omap_dma_callback, c, &c->dma_ch); } static void omap_dma_free_chan_resources(struct dma_chan *chan) { struct omap_chan *c = to_omap_dma_chan(chan); vchan_free_chan_resources(&c->vc); omap_free_dma(c->dma_ch); dev_info(c->vc.chan.device->dev, "freeing channel for %u\n", c->dma_sig); } static size_t omap_dma_sg_size(struct omap_sg *sg) { return sg->en * sg->fn; } static size_t omap_dma_desc_size(struct omap_desc *d) { unsigned i; size_t size; for (size = i = 0; i < d->sglen; i++) size += omap_dma_sg_size(&d->sg[i]); return size * es_bytes[d->es]; } static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr) { unsigned i; size_t size, es_size = es_bytes[d->es]; for (size = i = 0; i < d->sglen; i++) { size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size; if (size) size += this_size; else if (addr >= d->sg[i].addr && addr < d->sg[i].addr + this_size) size += d->sg[i].addr + this_size - addr; } return size; } static enum dma_status omap_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct omap_chan *c = to_omap_dma_chan(chan); struct virt_dma_desc *vd; enum dma_status ret; unsigned long flags; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_SUCCESS || !txstate) return ret; spin_lock_irqsave(&c->vc.lock, flags); vd = vchan_find_desc(&c->vc, cookie); if (vd) { txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx)); } else if (c->desc && c->desc->vd.tx.cookie == cookie) { struct omap_desc *d = c->desc; dma_addr_t pos; if (d->dir == DMA_MEM_TO_DEV) pos = omap_get_dma_src_pos(c->dma_ch); else if (d->dir == DMA_DEV_TO_MEM) pos = omap_get_dma_dst_pos(c->dma_ch); else pos = 0; txstate->residue = omap_dma_desc_size_pos(d, pos); } else { txstate->residue = 0; } spin_unlock_irqrestore(&c->vc.lock, flags); return ret; } static void omap_dma_issue_pending(struct dma_chan *chan) { struct omap_chan *c = to_omap_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&c->vc.lock, flags); if (vchan_issue_pending(&c->vc) && !c->desc) { struct omap_dmadev *d = to_omap_dma_dev(chan->device); spin_lock(&d->lock); if (list_empty(&c->node)) list_add_tail(&c->node, &d->pending); spin_unlock(&d->lock); tasklet_schedule(&d->task); } spin_unlock_irqrestore(&c->vc.lock, flags); } static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen, enum dma_transfer_direction dir, unsigned long tx_flags, void *context) { struct omap_chan *c = to_omap_dma_chan(chan); enum dma_slave_buswidth dev_width; struct scatterlist *sgent; struct omap_desc *d; dma_addr_t dev_addr; unsigned i, j = 0, es, en, frame_bytes, sync_type; u32 burst; if (dir == DMA_DEV_TO_MEM) { dev_addr = c->cfg.src_addr; dev_width = c->cfg.src_addr_width; burst = c->cfg.src_maxburst; sync_type = OMAP_DMA_SRC_SYNC; } else if (dir == DMA_MEM_TO_DEV) { dev_addr = c->cfg.dst_addr; dev_width = c->cfg.dst_addr_width; burst = c->cfg.dst_maxburst; sync_type = OMAP_DMA_DST_SYNC; } else { dev_err(chan->device->dev, "%s: bad direction?\n", __func__); return NULL; } /* Bus width translates to the element size (ES) */ switch (dev_width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: es = OMAP_DMA_DATA_TYPE_S8; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: es = OMAP_DMA_DATA_TYPE_S16; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: es = OMAP_DMA_DATA_TYPE_S32; break; default: /* not reached */ return NULL; } /* Now allocate and setup the descriptor. */ d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC); if (!d) return NULL; d->dir = dir; d->dev_addr = dev_addr; d->es = es; d->sync_mode = OMAP_DMA_SYNC_FRAME; d->sync_type = sync_type; d->periph_port = OMAP_DMA_PORT_TIPB; /* * Build our scatterlist entries: each contains the address, * the number of elements (EN) in each frame, and the number of * frames (FN). Number of bytes for this entry = ES * EN * FN. * * Burst size translates to number of elements with frame sync. * Note: DMA engine defines burst to be the number of dev-width * transfers. */ en = burst; frame_bytes = es_bytes[es] * en; for_each_sg(sgl, sgent, sglen, i) { d->sg[j].addr = sg_dma_address(sgent); d->sg[j].en = en; d->sg[j].fn = sg_dma_len(sgent) / frame_bytes; j++; } d->sglen = j; return vchan_tx_prep(&c->vc, &d->vd, tx_flags); } static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction dir, void *context) { struct omap_chan *c = to_omap_dma_chan(chan); enum dma_slave_buswidth dev_width; struct omap_desc *d; dma_addr_t dev_addr; unsigned es, sync_type; u32 burst; if (dir == DMA_DEV_TO_MEM) { dev_addr = c->cfg.src_addr; dev_width = c->cfg.src_addr_width; burst = c->cfg.src_maxburst; sync_type = OMAP_DMA_SRC_SYNC; } else if (dir == DMA_MEM_TO_DEV) { dev_addr = c->cfg.dst_addr; dev_width = c->cfg.dst_addr_width; burst = c->cfg.dst_maxburst; sync_type = OMAP_DMA_DST_SYNC; } else { dev_err(chan->device->dev, "%s: bad direction?\n", __func__); return NULL; } /* Bus width translates to the element size (ES) */ switch (dev_width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: es = OMAP_DMA_DATA_TYPE_S8; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: es = OMAP_DMA_DATA_TYPE_S16; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: es = OMAP_DMA_DATA_TYPE_S32; break; default: /* not reached */ return NULL; } /* Now allocate and setup the descriptor. */ d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC); if (!d) return NULL; d->dir = dir; d->dev_addr = dev_addr; d->fi = burst; d->es = es; if (burst) d->sync_mode = OMAP_DMA_SYNC_PACKET; else d->sync_mode = OMAP_DMA_SYNC_ELEMENT; d->sync_type = sync_type; d->periph_port = OMAP_DMA_PORT_MPUI; d->sg[0].addr = buf_addr; d->sg[0].en = period_len / es_bytes[es]; d->sg[0].fn = buf_len / period_len; d->sglen = 1; if (!c->cyclic) { c->cyclic = true; omap_dma_link_lch(c->dma_ch, c->dma_ch); omap_enable_dma_irq(c->dma_ch, OMAP_DMA_FRAME_IRQ); omap_disable_dma_irq(c->dma_ch, OMAP_DMA_BLOCK_IRQ); } if (!cpu_class_is_omap1()) { omap_set_dma_src_burst_mode(c->dma_ch, OMAP_DMA_DATA_BURST_16); omap_set_dma_dest_burst_mode(c->dma_ch, OMAP_DMA_DATA_BURST_16); } return vchan_tx_prep(&c->vc, &d->vd, DMA_CTRL_ACK | DMA_PREP_INTERRUPT); } static int omap_dma_slave_config(struct omap_chan *c, struct dma_slave_config *cfg) { if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) return -EINVAL; memcpy(&c->cfg, cfg, sizeof(c->cfg)); return 0; } static int omap_dma_terminate_all(struct omap_chan *c) { struct omap_dmadev *d = to_omap_dma_dev(c->vc.chan.device); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&c->vc.lock, flags); /* Prevent this channel being scheduled */ spin_lock(&d->lock); list_del_init(&c->node); spin_unlock(&d->lock); /* * Stop DMA activity: we assume the callback will not be called * after omap_stop_dma() returns (even if it does, it will see * c->desc is NULL and exit.) */ if (c->desc) { c->desc = NULL; /* Avoid stopping the dma twice */ if (!c->paused) omap_stop_dma(c->dma_ch); } if (c->cyclic) { c->cyclic = false; c->paused = false; omap_dma_unlink_lch(c->dma_ch, c->dma_ch); } vchan_get_all_descriptors(&c->vc, &head); spin_unlock_irqrestore(&c->vc.lock, flags); vchan_dma_desc_free_list(&c->vc, &head); return 0; } static int omap_dma_pause(struct omap_chan *c) { /* Pause/Resume only allowed with cyclic mode */ if (!c->cyclic) return -EINVAL; if (!c->paused) { omap_stop_dma(c->dma_ch); c->paused = true; } return 0; } static int omap_dma_resume(struct omap_chan *c) { /* Pause/Resume only allowed with cyclic mode */ if (!c->cyclic) return -EINVAL; if (c->paused) { omap_start_dma(c->dma_ch); c->paused = false; } return 0; } static int omap_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) { struct omap_chan *c = to_omap_dma_chan(chan); int ret; switch (cmd) { case DMA_SLAVE_CONFIG: ret = omap_dma_slave_config(c, (struct dma_slave_config *)arg); break; case DMA_TERMINATE_ALL: ret = omap_dma_terminate_all(c); break; case DMA_PAUSE: ret = omap_dma_pause(c); break; case DMA_RESUME: ret = omap_dma_resume(c); break; default: ret = -ENXIO; break; } return ret; } static int omap_dma_chan_init(struct omap_dmadev *od, int dma_sig) { struct omap_chan *c; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return -ENOMEM; c->dma_sig = dma_sig; c->vc.desc_free = omap_dma_desc_free; vchan_init(&c->vc, &od->ddev); INIT_LIST_HEAD(&c->node); od->ddev.chancnt++; return 0; } static void omap_dma_free(struct omap_dmadev *od) { tasklet_kill(&od->task); while (!list_empty(&od->ddev.channels)) { struct omap_chan *c = list_first_entry(&od->ddev.channels, struct omap_chan, vc.chan.device_node); list_del(&c->vc.chan.device_node); tasklet_kill(&c->vc.task); kfree(c); } kfree(od); } static int omap_dma_probe(struct platform_device *pdev) { struct omap_dmadev *od; int rc, i; od = kzalloc(sizeof(*od), GFP_KERNEL); if (!od) return -ENOMEM; dma_cap_set(DMA_SLAVE, od->ddev.cap_mask); dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask); od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources; od->ddev.device_free_chan_resources = omap_dma_free_chan_resources; od->ddev.device_tx_status = omap_dma_tx_status; od->ddev.device_issue_pending = omap_dma_issue_pending; od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg; od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic; od->ddev.device_control = omap_dma_control; od->ddev.dev = &pdev->dev; INIT_LIST_HEAD(&od->ddev.channels); INIT_LIST_HEAD(&od->pending); spin_lock_init(&od->lock); tasklet_init(&od->task, omap_dma_sched, (unsigned long)od); for (i = 0; i < 127; i++) { rc = omap_dma_chan_init(od, i); if (rc) { omap_dma_free(od); return rc; } } rc = dma_async_device_register(&od->ddev); if (rc) { pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n", rc); omap_dma_free(od); } else { platform_set_drvdata(pdev, od); } dev_info(&pdev->dev, "OMAP DMA engine driver\n"); return rc; } static int omap_dma_remove(struct platform_device *pdev) { struct omap_dmadev *od = platform_get_drvdata(pdev); dma_async_device_unregister(&od->ddev); omap_dma_free(od); return 0; } static struct platform_driver omap_dma_driver = { .probe = omap_dma_probe, .remove = omap_dma_remove, .driver = { .name = "omap-dma-engine", .owner = THIS_MODULE, }, }; bool omap_dma_filter_fn(struct dma_chan *chan, void *param) { if (chan->device->dev->driver == &omap_dma_driver.driver) { struct omap_chan *c = to_omap_dma_chan(chan); unsigned req = *(unsigned *)param; return req == c->dma_sig; } return false; } EXPORT_SYMBOL_GPL(omap_dma_filter_fn); static struct platform_device *pdev; static const struct platform_device_info omap_dma_dev_info = { .name = "omap-dma-engine", .id = -1, .dma_mask = DMA_BIT_MASK(32), }; static int omap_dma_init(void) { int rc = platform_driver_register(&omap_dma_driver); if (rc == 0) { pdev = platform_device_register_full(&omap_dma_dev_info); if (IS_ERR(pdev)) { platform_driver_unregister(&omap_dma_driver); rc = PTR_ERR(pdev); } } return rc; } subsys_initcall(omap_dma_init); static void __exit omap_dma_exit(void) { platform_device_unregister(pdev); platform_driver_unregister(&omap_dma_driver); } module_exit(omap_dma_exit); MODULE_AUTHOR("Russell King"); MODULE_LICENSE("GPL");