/* * Copyright (C) 2011-2012 Red Hat UK. * * This file is released under the GPL. */ #include "dm-thin-metadata.h" #include "dm-bio-prison.h" #include "dm.h" #include #include #include #include #include #include #include #define DM_MSG_PREFIX "thin" /* * Tunable constants */ #define ENDIO_HOOK_POOL_SIZE 1024 #define MAPPING_POOL_SIZE 1024 #define PRISON_CELLS 1024 #define COMMIT_PERIOD HZ /* * The block size of the device holding pool data must be * between 64KB and 1GB. */ #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) /* * Device id is restricted to 24 bits. */ #define MAX_DEV_ID ((1 << 24) - 1) /* * How do we handle breaking sharing of data blocks? * ================================================= * * We use a standard copy-on-write btree to store the mappings for the * devices (note I'm talking about copy-on-write of the metadata here, not * the data). When you take an internal snapshot you clone the root node * of the origin btree. After this there is no concept of an origin or a * snapshot. They are just two device trees that happen to point to the * same data blocks. * * When we get a write in we decide if it's to a shared data block using * some timestamp magic. If it is, we have to break sharing. * * Let's say we write to a shared block in what was the origin. The * steps are: * * i) plug io further to this physical block. (see bio_prison code). * * ii) quiesce any read io to that shared data block. Obviously * including all devices that share this block. (see dm_deferred_set code) * * iii) copy the data block to a newly allocate block. This step can be * missed out if the io covers the block. (schedule_copy). * * iv) insert the new mapping into the origin's btree * (process_prepared_mapping). This act of inserting breaks some * sharing of btree nodes between the two devices. Breaking sharing only * effects the btree of that specific device. Btrees for the other * devices that share the block never change. The btree for the origin * device as it was after the last commit is untouched, ie. we're using * persistent data structures in the functional programming sense. * * v) unplug io to this physical block, including the io that triggered * the breaking of sharing. * * Steps (ii) and (iii) occur in parallel. * * The metadata _doesn't_ need to be committed before the io continues. We * get away with this because the io is always written to a _new_ block. * If there's a crash, then: * * - The origin mapping will point to the old origin block (the shared * one). This will contain the data as it was before the io that triggered * the breaking of sharing came in. * * - The snap mapping still points to the old block. As it would after * the commit. * * The downside of this scheme is the timestamp magic isn't perfect, and * will continue to think that data block in the snapshot device is shared * even after the write to the origin has broken sharing. I suspect data * blocks will typically be shared by many different devices, so we're * breaking sharing n + 1 times, rather than n, where n is the number of * devices that reference this data block. At the moment I think the * benefits far, far outweigh the disadvantages. */ /*----------------------------------------------------------------*/ /* * Key building. */ static void build_data_key(struct dm_thin_device *td, dm_block_t b, struct dm_cell_key *key) { key->virtual = 0; key->dev = dm_thin_dev_id(td); key->block = b; } static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, struct dm_cell_key *key) { key->virtual = 1; key->dev = dm_thin_dev_id(td); key->block = b; } /*----------------------------------------------------------------*/ /* * A pool device ties together a metadata device and a data device. It * also provides the interface for creating and destroying internal * devices. */ struct dm_thin_new_mapping; /* * The pool runs in 3 modes. Ordered in degraded order for comparisons. */ enum pool_mode { PM_WRITE, /* metadata may be changed */ PM_READ_ONLY, /* metadata may not be changed */ PM_FAIL, /* all I/O fails */ }; struct pool_features { enum pool_mode mode; bool zero_new_blocks:1; bool discard_enabled:1; bool discard_passdown:1; }; struct thin_c; typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); struct pool { struct list_head list; struct dm_target *ti; /* Only set if a pool target is bound */ struct mapped_device *pool_md; struct block_device *md_dev; struct dm_pool_metadata *pmd; dm_block_t low_water_blocks; uint32_t sectors_per_block; int sectors_per_block_shift; struct pool_features pf; unsigned low_water_triggered:1; /* A dm event has been sent */ unsigned no_free_space:1; /* A -ENOSPC warning has been issued */ struct dm_bio_prison *prison; struct dm_kcopyd_client *copier; struct workqueue_struct *wq; struct work_struct worker; struct delayed_work waker; unsigned long last_commit_jiffies; unsigned ref_count; spinlock_t lock; struct bio_list deferred_bios; struct bio_list deferred_flush_bios; struct list_head prepared_mappings; struct list_head prepared_discards; struct bio_list retry_on_resume_list; struct dm_deferred_set *shared_read_ds; struct dm_deferred_set *all_io_ds; struct dm_thin_new_mapping *next_mapping; mempool_t *mapping_pool; process_bio_fn process_bio; process_bio_fn process_discard; process_mapping_fn process_prepared_mapping; process_mapping_fn process_prepared_discard; }; static enum pool_mode get_pool_mode(struct pool *pool); static void set_pool_mode(struct pool *pool, enum pool_mode mode); /* * Target context for a pool. */ struct pool_c { struct dm_target *ti; struct pool *pool; struct dm_dev *data_dev; struct dm_dev *metadata_dev; struct dm_target_callbacks callbacks; dm_block_t low_water_blocks; struct pool_features requested_pf; /* Features requested during table load */ struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ }; /* * Target context for a thin. */ struct thin_c { struct dm_dev *pool_dev; struct dm_dev *origin_dev; dm_thin_id dev_id; struct pool *pool; struct dm_thin_device *td; }; /*----------------------------------------------------------------*/ /* * A global list of pools that uses a struct mapped_device as a key. */ static struct dm_thin_pool_table { struct mutex mutex; struct list_head pools; } dm_thin_pool_table; static void pool_table_init(void) { mutex_init(&dm_thin_pool_table.mutex); INIT_LIST_HEAD(&dm_thin_pool_table.pools); } static void __pool_table_insert(struct pool *pool) { BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); list_add(&pool->list, &dm_thin_pool_table.pools); } static void __pool_table_remove(struct pool *pool) { BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); list_del(&pool->list); } static struct pool *__pool_table_lookup(struct mapped_device *md) { struct pool *pool = NULL, *tmp; BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { if (tmp->pool_md == md) { pool = tmp; break; } } return pool; } static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) { struct pool *pool = NULL, *tmp; BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { if (tmp->md_dev == md_dev) { pool = tmp; break; } } return pool; } /*----------------------------------------------------------------*/ struct dm_thin_endio_hook { struct thin_c *tc; struct dm_deferred_entry *shared_read_entry; struct dm_deferred_entry *all_io_entry; struct dm_thin_new_mapping *overwrite_mapping; }; static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master) { struct bio *bio; struct bio_list bios; bio_list_init(&bios); bio_list_merge(&bios, master); bio_list_init(master); while ((bio = bio_list_pop(&bios))) { struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); if (h->tc == tc) bio_endio(bio, DM_ENDIO_REQUEUE); else bio_list_add(master, bio); } } static void requeue_io(struct thin_c *tc) { struct pool *pool = tc->pool; unsigned long flags; spin_lock_irqsave(&pool->lock, flags); __requeue_bio_list(tc, &pool->deferred_bios); __requeue_bio_list(tc, &pool->retry_on_resume_list); spin_unlock_irqrestore(&pool->lock, flags); } /* * This section of code contains the logic for processing a thin device's IO. * Much of the code depends on pool object resources (lists, workqueues, etc) * but most is exclusively called from the thin target rather than the thin-pool * target. */ static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) { sector_t block_nr = bio->bi_sector; if (tc->pool->sectors_per_block_shift < 0) (void) sector_div(block_nr, tc->pool->sectors_per_block); else block_nr >>= tc->pool->sectors_per_block_shift; return block_nr; } static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) { struct pool *pool = tc->pool; sector_t bi_sector = bio->bi_sector; bio->bi_bdev = tc->pool_dev->bdev; if (tc->pool->sectors_per_block_shift < 0) bio->bi_sector = (block * pool->sectors_per_block) + sector_div(bi_sector, pool->sectors_per_block); else bio->bi_sector = (block << pool->sectors_per_block_shift) | (bi_sector & (pool->sectors_per_block - 1)); } static void remap_to_origin(struct thin_c *tc, struct bio *bio) { bio->bi_bdev = tc->origin_dev->bdev; } static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) { return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && dm_thin_changed_this_transaction(tc->td); } static void inc_all_io_entry(struct pool *pool, struct bio *bio) { struct dm_thin_endio_hook *h; if (bio->bi_rw & REQ_DISCARD) return; h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); } static void issue(struct thin_c *tc, struct bio *bio) { struct pool *pool = tc->pool; unsigned long flags; if (!bio_triggers_commit(tc, bio)) { generic_make_request(bio); return; } /* * Complete bio with an error if earlier I/O caused changes to * the metadata that can't be committed e.g, due to I/O errors * on the metadata device. */ if (dm_thin_aborted_changes(tc->td)) { bio_io_error(bio); return; } /* * Batch together any bios that trigger commits and then issue a * single commit for them in process_deferred_bios(). */ spin_lock_irqsave(&pool->lock, flags); bio_list_add(&pool->deferred_flush_bios, bio); spin_unlock_irqrestore(&pool->lock, flags); } static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) { remap_to_origin(tc, bio); issue(tc, bio); } static void remap_and_issue(struct thin_c *tc, struct bio *bio, dm_block_t block) { remap(tc, bio, block); issue(tc, bio); } /* * wake_worker() is used when new work is queued and when pool_resume is * ready to continue deferred IO processing. */ static void wake_worker(struct pool *pool) { queue_work(pool->wq, &pool->worker); } /*----------------------------------------------------------------*/ /* * Bio endio functions. */ struct dm_thin_new_mapping { struct list_head list; unsigned quiesced:1; unsigned prepared:1; unsigned pass_discard:1; struct thin_c *tc; dm_block_t virt_block; dm_block_t data_block; struct dm_bio_prison_cell *cell, *cell2; int err; /* * If the bio covers the whole area of a block then we can avoid * zeroing or copying. Instead this bio is hooked. The bio will * still be in the cell, so care has to be taken to avoid issuing * the bio twice. */ struct bio *bio; bio_end_io_t *saved_bi_end_io; }; static void __maybe_add_mapping(struct dm_thin_new_mapping *m) { struct pool *pool = m->tc->pool; if (m->quiesced && m->prepared) { list_add(&m->list, &pool->prepared_mappings); wake_worker(pool); } } static void copy_complete(int read_err, unsigned long write_err, void *context) { unsigned long flags; struct dm_thin_new_mapping *m = context; struct pool *pool = m->tc->pool; m->err = read_err || write_err ? -EIO : 0; spin_lock_irqsave(&pool->lock, flags); m->prepared = 1; __maybe_add_mapping(m); spin_unlock_irqrestore(&pool->lock, flags); } static void overwrite_endio(struct bio *bio, int err) { unsigned long flags; struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); struct dm_thin_new_mapping *m = h->overwrite_mapping; struct pool *pool = m->tc->pool; m->err = err; spin_lock_irqsave(&pool->lock, flags); m->prepared = 1; __maybe_add_mapping(m); spin_unlock_irqrestore(&pool->lock, flags); } /*----------------------------------------------------------------*/ /* * Workqueue. */ /* * Prepared mapping jobs. */ /* * This sends the bios in the cell back to the deferred_bios list. */ static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) { struct pool *pool = tc->pool; unsigned long flags; spin_lock_irqsave(&pool->lock, flags); dm_cell_release(cell, &pool->deferred_bios); spin_unlock_irqrestore(&tc->pool->lock, flags); wake_worker(pool); } /* * Same as cell_defer except it omits the original holder of the cell. */ static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) { struct pool *pool = tc->pool; unsigned long flags; spin_lock_irqsave(&pool->lock, flags); dm_cell_release_no_holder(cell, &pool->deferred_bios); spin_unlock_irqrestore(&pool->lock, flags); wake_worker(pool); } static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) { if (m->bio) m->bio->bi_end_io = m->saved_bi_end_io; dm_cell_error(m->cell); list_del(&m->list); mempool_free(m, m->tc->pool->mapping_pool); } static void process_prepared_mapping(struct dm_thin_new_mapping *m) { struct thin_c *tc = m->tc; struct bio *bio; int r; bio = m->bio; if (bio) bio->bi_end_io = m->saved_bi_end_io; if (m->err) { dm_cell_error(m->cell); goto out; } /* * Commit the prepared block into the mapping btree. * Any I/O for this block arriving after this point will get * remapped to it directly. */ r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); if (r) { DMERR_LIMIT("dm_thin_insert_block() failed"); dm_cell_error(m->cell); goto out; } /* * Release any bios held while the block was being provisioned. * If we are processing a write bio that completely covers the block, * we already processed it so can ignore it now when processing * the bios in the cell. */ if (bio) { cell_defer_no_holder(tc, m->cell); bio_endio(bio, 0); } else cell_defer(tc, m->cell); out: list_del(&m->list); mempool_free(m, tc->pool->mapping_pool); } static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) { struct thin_c *tc = m->tc; bio_io_error(m->bio); cell_defer_no_holder(tc, m->cell); cell_defer_no_holder(tc, m->cell2); mempool_free(m, tc->pool->mapping_pool); } static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) { struct thin_c *tc = m->tc; inc_all_io_entry(tc->pool, m->bio); cell_defer_no_holder(tc, m->cell); cell_defer_no_holder(tc, m->cell2); if (m->pass_discard) remap_and_issue(tc, m->bio, m->data_block); else bio_endio(m->bio, 0); mempool_free(m, tc->pool->mapping_pool); } static void process_prepared_discard(struct dm_thin_new_mapping *m) { int r; struct thin_c *tc = m->tc; r = dm_thin_remove_block(tc->td, m->virt_block); if (r) DMERR_LIMIT("dm_thin_remove_block() failed"); process_prepared_discard_passdown(m); } static void process_prepared(struct pool *pool, struct list_head *head, process_mapping_fn *fn) { unsigned long flags; struct list_head maps; struct dm_thin_new_mapping *m, *tmp; INIT_LIST_HEAD(&maps); spin_lock_irqsave(&pool->lock, flags); list_splice_init(head, &maps); spin_unlock_irqrestore(&pool->lock, flags); list_for_each_entry_safe(m, tmp, &maps, list) (*fn)(m); } /* * Deferred bio jobs. */ static int io_overlaps_block(struct pool *pool, struct bio *bio) { return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT); } static int io_overwrites_block(struct pool *pool, struct bio *bio) { return (bio_data_dir(bio) == WRITE) && io_overlaps_block(pool, bio); } static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, bio_end_io_t *fn) { *save = bio->bi_end_io; bio->bi_end_io = fn; } static int ensure_next_mapping(struct pool *pool) { if (pool->next_mapping) return 0; pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); return pool->next_mapping ? 0 : -ENOMEM; } static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) { struct dm_thin_new_mapping *r = pool->next_mapping; BUG_ON(!pool->next_mapping); pool->next_mapping = NULL; return r; } static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, struct dm_dev *origin, dm_block_t data_origin, dm_block_t data_dest, struct dm_bio_prison_cell *cell, struct bio *bio) { int r; struct pool *pool = tc->pool; struct dm_thin_new_mapping *m = get_next_mapping(pool); INIT_LIST_HEAD(&m->list); m->quiesced = 0; m->prepared = 0; m->tc = tc; m->virt_block = virt_block; m->data_block = data_dest; m->cell = cell; m->err = 0; m->bio = NULL; if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) m->quiesced = 1; /* * IO to pool_dev remaps to the pool target's data_dev. * * If the whole block of data is being overwritten, we can issue the * bio immediately. Otherwise we use kcopyd to clone the data first. */ if (io_overwrites_block(pool, bio)) { struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); h->overwrite_mapping = m; m->bio = bio; save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); inc_all_io_entry(pool, bio); remap_and_issue(tc, bio, data_dest); } else { struct dm_io_region from, to; from.bdev = origin->bdev; from.sector = data_origin * pool->sectors_per_block; from.count = pool->sectors_per_block; to.bdev = tc->pool_dev->bdev; to.sector = data_dest * pool->sectors_per_block; to.count = pool->sectors_per_block; r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 0, copy_complete, m); if (r < 0) { mempool_free(m, pool->mapping_pool); DMERR_LIMIT("dm_kcopyd_copy() failed"); dm_cell_error(cell); } } } static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, dm_block_t data_origin, dm_block_t data_dest, struct dm_bio_prison_cell *cell, struct bio *bio) { schedule_copy(tc, virt_block, tc->pool_dev, data_origin, data_dest, cell, bio); } static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, dm_block_t data_dest, struct dm_bio_prison_cell *cell, struct bio *bio) { schedule_copy(tc, virt_block, tc->origin_dev, virt_block, data_dest, cell, bio); } static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, dm_block_t data_block, struct dm_bio_prison_cell *cell, struct bio *bio) { struct pool *pool = tc->pool; struct dm_thin_new_mapping *m = get_next_mapping(pool); INIT_LIST_HEAD(&m->list); m->quiesced = 1; m->prepared = 0; m->tc = tc; m->virt_block = virt_block; m->data_block = data_block; m->cell = cell; m->err = 0; m->bio = NULL; /* * If the whole block of data is being overwritten or we are not * zeroing pre-existing data, we can issue the bio immediately. * Otherwise we use kcopyd to zero the data first. */ if (!pool->pf.zero_new_blocks) process_prepared_mapping(m); else if (io_overwrites_block(pool, bio)) { struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); h->overwrite_mapping = m; m->bio = bio; save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); inc_all_io_entry(pool, bio); remap_and_issue(tc, bio, data_block); } else { int r; struct dm_io_region to; to.bdev = tc->pool_dev->bdev; to.sector = data_block * pool->sectors_per_block; to.count = pool->sectors_per_block; r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); if (r < 0) { mempool_free(m, pool->mapping_pool); DMERR_LIMIT("dm_kcopyd_zero() failed"); dm_cell_error(cell); } } } static int commit(struct pool *pool) { int r; r = dm_pool_commit_metadata(pool->pmd); if (r) DMERR_LIMIT("commit failed: error = %d", r); return r; } /* * A non-zero return indicates read_only or fail_io mode. * Many callers don't care about the return value. */ static int commit_or_fallback(struct pool *pool) { int r; if (get_pool_mode(pool) != PM_WRITE) return -EINVAL; r = commit(pool); if (r) set_pool_mode(pool, PM_READ_ONLY); return r; } static int alloc_data_block(struct thin_c *tc, dm_block_t *result) { int r; dm_block_t free_blocks; unsigned long flags; struct pool *pool = tc->pool; r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); if (r) return r; if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { DMWARN("%s: reached low water mark, sending event.", dm_device_name(pool->pool_md)); spin_lock_irqsave(&pool->lock, flags); pool->low_water_triggered = 1; spin_unlock_irqrestore(&pool->lock, flags); dm_table_event(pool->ti->table); } if (!free_blocks) { if (pool->no_free_space) return -ENOSPC; else { /* * Try to commit to see if that will free up some * more space. */ (void) commit_or_fallback(pool); r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); if (r) return r; /* * If we still have no space we set a flag to avoid * doing all this checking and return -ENOSPC. */ if (!free_blocks) { DMWARN("%s: no free space available.", dm_device_name(pool->pool_md)); spin_lock_irqsave(&pool->lock, flags); pool->no_free_space = 1; spin_unlock_irqrestore(&pool->lock, flags); return -ENOSPC; } } } r = dm_pool_alloc_data_block(pool->pmd, result); if (r) return r; return 0; } /* * If we have run out of space, queue bios until the device is * resumed, presumably after having been reloaded with more space. */ static void retry_on_resume(struct bio *bio) { struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); struct thin_c *tc = h->tc; struct pool *pool = tc->pool; unsigned long flags; spin_lock_irqsave(&pool->lock, flags); bio_list_add(&pool->retry_on_resume_list, bio); spin_unlock_irqrestore(&pool->lock, flags); } static void no_space(struct dm_bio_prison_cell *cell) { struct bio *bio; struct bio_list bios; bio_list_init(&bios); dm_cell_release(cell, &bios); while ((bio = bio_list_pop(&bios))) retry_on_resume(bio); } static void process_discard(struct thin_c *tc, struct bio *bio) { int r; unsigned long flags; struct pool *pool = tc->pool; struct dm_bio_prison_cell *cell, *cell2; struct dm_cell_key key, key2; dm_block_t block = get_bio_block(tc, bio); struct dm_thin_lookup_result lookup_result; struct dm_thin_new_mapping *m; build_virtual_key(tc->td, block, &key); if (dm_bio_detain(tc->pool->prison, &key, bio, &cell)) return; r = dm_thin_find_block(tc->td, block, 1, &lookup_result); switch (r) { case 0: /* * Check nobody is fiddling with this pool block. This can * happen if someone's in the process of breaking sharing * on this block. */ build_data_key(tc->td, lookup_result.block, &key2); if (dm_bio_detain(tc->pool->prison, &key2, bio, &cell2)) { cell_defer_no_holder(tc, cell); break; } if (io_overlaps_block(pool, bio)) { /* * IO may still be going to the destination block. We must * quiesce before we can do the removal. */ m = get_next_mapping(pool); m->tc = tc; m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown; m->virt_block = block; m->data_block = lookup_result.block; m->cell = cell; m->cell2 = cell2; m->err = 0; m->bio = bio; if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { spin_lock_irqsave(&pool->lock, flags); list_add(&m->list, &pool->prepared_discards); spin_unlock_irqrestore(&pool->lock, flags); wake_worker(pool); } } else { inc_all_io_entry(pool, bio); cell_defer_no_holder(tc, cell); cell_defer_no_holder(tc, cell2); /* * The DM core makes sure that the discard doesn't span * a block boundary. So we submit the discard of a * partial block appropriately. */ if ((!lookup_result.shared) && pool->pf.discard_passdown) remap_and_issue(tc, bio, lookup_result.block); else bio_endio(bio, 0); } break; case -ENODATA: /* * It isn't provisioned, just forget it. */ cell_defer_no_holder(tc, cell); bio_endio(bio, 0); break; default: DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", __func__, r); cell_defer_no_holder(tc, cell); bio_io_error(bio); break; } } static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, struct dm_cell_key *key, struct dm_thin_lookup_result *lookup_result, struct dm_bio_prison_cell *cell) { int r; dm_block_t data_block; r = alloc_data_block(tc, &data_block); switch (r) { case 0: schedule_internal_copy(tc, block, lookup_result->block, data_block, cell, bio); break; case -ENOSPC: no_space(cell); break; default: DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", __func__, r); dm_cell_error(cell); break; } } static void process_shared_bio(struct thin_c *tc, struct bio *bio, dm_block_t block, struct dm_thin_lookup_result *lookup_result) { struct dm_bio_prison_cell *cell; struct pool *pool = tc->pool; struct dm_cell_key key; /* * If cell is already occupied, then sharing is already in the process * of being broken so we have nothing further to do here. */ build_data_key(tc->td, lookup_result->block, &key); if (dm_bio_detain(pool->prison, &key, bio, &cell)) return; if (bio_data_dir(bio) == WRITE && bio->bi_size) break_sharing(tc, bio, block, &key, lookup_result, cell); else { struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); inc_all_io_entry(pool, bio); cell_defer_no_holder(tc, cell); remap_and_issue(tc, bio, lookup_result->block); } } static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, struct dm_bio_prison_cell *cell) { int r; dm_block_t data_block; /* * Remap empty bios (flushes) immediately, without provisioning. */ if (!bio->bi_size) { inc_all_io_entry(tc->pool, bio); cell_defer_no_holder(tc, cell); remap_and_issue(tc, bio, 0); return; } /* * Fill read bios with zeroes and complete them immediately. */ if (bio_data_dir(bio) == READ) { zero_fill_bio(bio); cell_defer_no_holder(tc, cell); bio_endio(bio, 0); return; } r = alloc_data_block(tc, &data_block); switch (r) { case 0: if (tc->origin_dev) schedule_external_copy(tc, block, data_block, cell, bio); else schedule_zero(tc, block, data_block, cell, bio); break; case -ENOSPC: no_space(cell); break; default: DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", __func__, r); set_pool_mode(tc->pool, PM_READ_ONLY); dm_cell_error(cell); break; } } static void process_bio(struct thin_c *tc, struct bio *bio) { int r; dm_block_t block = get_bio_block(tc, bio); struct dm_bio_prison_cell *cell; struct dm_cell_key key; struct dm_thin_lookup_result lookup_result; /* * If cell is already occupied, then the block is already * being provisioned so we have nothing further to do here. */ build_virtual_key(tc->td, block, &key); if (dm_bio_detain(tc->pool->prison, &key, bio, &cell)) return; r = dm_thin_find_block(tc->td, block, 1, &lookup_result); switch (r) { case 0: if (lookup_result.shared) { process_shared_bio(tc, bio, block, &lookup_result); cell_defer_no_holder(tc, cell); } else { inc_all_io_entry(tc->pool, bio); cell_defer_no_holder(tc, cell); remap_and_issue(tc, bio, lookup_result.block); } break; case -ENODATA: if (bio_data_dir(bio) == READ && tc->origin_dev) { inc_all_io_entry(tc->pool, bio); cell_defer_no_holder(tc, cell); remap_to_origin_and_issue(tc, bio); } else provision_block(tc, bio, block, cell); break; default: DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", __func__, r); cell_defer_no_holder(tc, cell); bio_io_error(bio); break; } } static void process_bio_read_only(struct thin_c *tc, struct bio *bio) { int r; int rw = bio_data_dir(bio); dm_block_t block = get_bio_block(tc, bio); struct dm_thin_lookup_result lookup_result; r = dm_thin_find_block(tc->td, block, 1, &lookup_result); switch (r) { case 0: if (lookup_result.shared && (rw == WRITE) && bio->bi_size) bio_io_error(bio); else { inc_all_io_entry(tc->pool, bio); remap_and_issue(tc, bio, lookup_result.block); } break; case -ENODATA: if (rw != READ) { bio_io_error(bio); break; } if (tc->origin_dev) { inc_all_io_entry(tc->pool, bio); remap_to_origin_and_issue(tc, bio); break; } zero_fill_bio(bio); bio_endio(bio, 0); break; default: DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", __func__, r); bio_io_error(bio); break; } } static void process_bio_fail(struct thin_c *tc, struct bio *bio) { bio_io_error(bio); } static int need_commit_due_to_time(struct pool *pool) { return jiffies < pool->last_commit_jiffies || jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; } static void process_deferred_bios(struct pool *pool) { unsigned long flags; struct bio *bio; struct bio_list bios; bio_list_init(&bios); spin_lock_irqsave(&pool->lock, flags); bio_list_merge(&bios, &pool->deferred_bios); bio_list_init(&pool->deferred_bios); spin_unlock_irqrestore(&pool->lock, flags); while ((bio = bio_list_pop(&bios))) { struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); struct thin_c *tc = h->tc; /* * If we've got no free new_mapping structs, and processing * this bio might require one, we pause until there are some * prepared mappings to process. */ if (ensure_next_mapping(pool)) { spin_lock_irqsave(&pool->lock, flags); bio_list_merge(&pool->deferred_bios, &bios); spin_unlock_irqrestore(&pool->lock, flags); break; } if (bio->bi_rw & REQ_DISCARD) pool->process_discard(tc, bio); else pool->process_bio(tc, bio); } /* * If there are any deferred flush bios, we must commit * the metadata before issuing them. */ bio_list_init(&bios); spin_lock_irqsave(&pool->lock, flags); bio_list_merge(&bios, &pool->deferred_flush_bios); bio_list_init(&pool->deferred_flush_bios); spin_unlock_irqrestore(&pool->lock, flags); if (bio_list_empty(&bios) && !need_commit_due_to_time(pool)) return; if (commit_or_fallback(pool)) { while ((bio = bio_list_pop(&bios))) bio_io_error(bio); return; } pool->last_commit_jiffies = jiffies; while ((bio = bio_list_pop(&bios))) generic_make_request(bio); } static void do_worker(struct work_struct *ws) { struct pool *pool = container_of(ws, struct pool, worker); process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); process_deferred_bios(pool); } /* * We want to commit periodically so that not too much * unwritten data builds up. */ static void do_waker(struct work_struct *ws) { struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); wake_worker(pool); queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); } /*----------------------------------------------------------------*/ static enum pool_mode get_pool_mode(struct pool *pool) { return pool->pf.mode; } static void set_pool_mode(struct pool *pool, enum pool_mode mode) { int r; pool->pf.mode = mode; switch (mode) { case PM_FAIL: DMERR("switching pool to failure mode"); pool->process_bio = process_bio_fail; pool->process_discard = process_bio_fail; pool->process_prepared_mapping = process_prepared_mapping_fail; pool->process_prepared_discard = process_prepared_discard_fail; break; case PM_READ_ONLY: DMERR("switching pool to read-only mode"); r = dm_pool_abort_metadata(pool->pmd); if (r) { DMERR("aborting transaction failed"); set_pool_mode(pool, PM_FAIL); } else { dm_pool_metadata_read_only(pool->pmd); pool->process_bio = process_bio_read_only; pool->process_discard = process_discard; pool->process_prepared_mapping = process_prepared_mapping_fail; pool->process_prepared_discard = process_prepared_discard_passdown; } break; case PM_WRITE: pool->process_bio = process_bio; pool->process_discard = process_discard; pool->process_prepared_mapping = process_prepared_mapping; pool->process_prepared_discard = process_prepared_discard; break; } } /*----------------------------------------------------------------*/ /* * Mapping functions. */ /* * Called only while mapping a thin bio to hand it over to the workqueue. */ static void thin_defer_bio(struct thin_c *tc, struct bio *bio) { unsigned long flags; struct pool *pool = tc->pool; spin_lock_irqsave(&pool->lock, flags); bio_list_add(&pool->deferred_bios, bio); spin_unlock_irqrestore(&pool->lock, flags); wake_worker(pool); } static void thin_hook_bio(struct thin_c *tc, struct bio *bio) { struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); h->tc = tc; h->shared_read_entry = NULL; h->all_io_entry = NULL; h->overwrite_mapping = NULL; } /* * Non-blocking function called from the thin target's map function. */ static int thin_bio_map(struct dm_target *ti, struct bio *bio) { int r; struct thin_c *tc = ti->private; dm_block_t block = get_bio_block(tc, bio); struct dm_thin_device *td = tc->td; struct dm_thin_lookup_result result; struct dm_bio_prison_cell *cell1, *cell2; struct dm_cell_key key; thin_hook_bio(tc, bio); if (get_pool_mode(tc->pool) == PM_FAIL) { bio_io_error(bio); return DM_MAPIO_SUBMITTED; } if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { thin_defer_bio(tc, bio); return DM_MAPIO_SUBMITTED; } r = dm_thin_find_block(td, block, 0, &result); /* * Note that we defer readahead too. */ switch (r) { case 0: if (unlikely(result.shared)) { /* * We have a race condition here between the * result.shared value returned by the lookup and * snapshot creation, which may cause new * sharing. * * To avoid this always quiesce the origin before * taking the snap. You want to do this anyway to * ensure a consistent application view * (i.e. lockfs). * * More distant ancestors are irrelevant. The * shared flag will be set in their case. */ thin_defer_bio(tc, bio); return DM_MAPIO_SUBMITTED; } build_virtual_key(tc->td, block, &key); if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1)) return DM_MAPIO_SUBMITTED; build_data_key(tc->td, result.block, &key); if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2)) { cell_defer_no_holder(tc, cell1); return DM_MAPIO_SUBMITTED; } inc_all_io_entry(tc->pool, bio); cell_defer_no_holder(tc, cell2); cell_defer_no_holder(tc, cell1); remap(tc, bio, result.block); return DM_MAPIO_REMAPPED; case -ENODATA: if (get_pool_mode(tc->pool) == PM_READ_ONLY) { /* * This block isn't provisioned, and we have no way * of doing so. Just error it. */ bio_io_error(bio); return DM_MAPIO_SUBMITTED; } /* fall through */ case -EWOULDBLOCK: /* * In future, the failed dm_thin_find_block above could * provide the hint to load the metadata into cache. */ thin_defer_bio(tc, bio); return DM_MAPIO_SUBMITTED; default: /* * Must always call bio_io_error on failure. * dm_thin_find_block can fail with -EINVAL if the * pool is switched to fail-io mode. */ bio_io_error(bio); return DM_MAPIO_SUBMITTED; } } static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) { int r; unsigned long flags; struct pool_c *pt = container_of(cb, struct pool_c, callbacks); spin_lock_irqsave(&pt->pool->lock, flags); r = !bio_list_empty(&pt->pool->retry_on_resume_list); spin_unlock_irqrestore(&pt->pool->lock, flags); if (!r) { struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); r = bdi_congested(&q->backing_dev_info, bdi_bits); } return r; } static void __requeue_bios(struct pool *pool) { bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list); bio_list_init(&pool->retry_on_resume_list); } /*---------------------------------------------------------------- * Binding of control targets to a pool object *--------------------------------------------------------------*/ static bool data_dev_supports_discard(struct pool_c *pt) { struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); return q && blk_queue_discard(q); } /* * If discard_passdown was enabled verify that the data device * supports discards. Disable discard_passdown if not. */ static void disable_passdown_if_not_supported(struct pool_c *pt) { struct pool *pool = pt->pool; struct block_device *data_bdev = pt->data_dev->bdev; struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; const char *reason = NULL; char buf[BDEVNAME_SIZE]; if (!pt->adjusted_pf.discard_passdown) return; if (!data_dev_supports_discard(pt)) reason = "discard unsupported"; else if (data_limits->max_discard_sectors < pool->sectors_per_block) reason = "max discard sectors smaller than a block"; else if (data_limits->discard_granularity > block_size) reason = "discard granularity larger than a block"; else if (block_size & (data_limits->discard_granularity - 1)) reason = "discard granularity not a factor of block size"; if (reason) { DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); pt->adjusted_pf.discard_passdown = false; } } static int bind_control_target(struct pool *pool, struct dm_target *ti) { struct pool_c *pt = ti->private; /* * We want to make sure that degraded pools are never upgraded. */ enum pool_mode old_mode = pool->pf.mode; enum pool_mode new_mode = pt->adjusted_pf.mode; if (old_mode > new_mode) new_mode = old_mode; pool->ti = ti; pool->low_water_blocks = pt->low_water_blocks; pool->pf = pt->adjusted_pf; set_pool_mode(pool, new_mode); return 0; } static void unbind_control_target(struct pool *pool, struct dm_target *ti) { if (pool->ti == ti) pool->ti = NULL; } /*---------------------------------------------------------------- * Pool creation *--------------------------------------------------------------*/ /* Initialize pool features. */ static void pool_features_init(struct pool_features *pf) { pf->mode = PM_WRITE; pf->zero_new_blocks = true; pf->discard_enabled = true; pf->discard_passdown = true; } static void __pool_destroy(struct pool *pool) { __pool_table_remove(pool); if (dm_pool_metadata_close(pool->pmd) < 0) DMWARN("%s: dm_pool_metadata_close() failed.", __func__); dm_bio_prison_destroy(pool->prison); dm_kcopyd_client_destroy(pool->copier); if (pool->wq) destroy_workqueue(pool->wq); if (pool->next_mapping) mempool_free(pool->next_mapping, pool->mapping_pool); mempool_destroy(pool->mapping_pool); dm_deferred_set_destroy(pool->shared_read_ds); dm_deferred_set_destroy(pool->all_io_ds); kfree(pool); } static struct kmem_cache *_new_mapping_cache; static struct pool *pool_create(struct mapped_device *pool_md, struct block_device *metadata_dev, unsigned long block_size, int read_only, char **error) { int r; void *err_p; struct pool *pool; struct dm_pool_metadata *pmd; bool format_device = read_only ? false : true; pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); if (IS_ERR(pmd)) { *error = "Error creating metadata object"; return (struct pool *)pmd; } pool = kmalloc(sizeof(*pool), GFP_KERNEL); if (!pool) { *error = "Error allocating memory for pool"; err_p = ERR_PTR(-ENOMEM); goto bad_pool; } pool->pmd = pmd; pool->sectors_per_block = block_size; if (block_size & (block_size - 1)) pool->sectors_per_block_shift = -1; else pool->sectors_per_block_shift = __ffs(block_size); pool->low_water_blocks = 0; pool_features_init(&pool->pf); pool->prison = dm_bio_prison_create(PRISON_CELLS); if (!pool->prison) { *error = "Error creating pool's bio prison"; err_p = ERR_PTR(-ENOMEM); goto bad_prison; } pool->copier = dm_kcopyd_client_create(); if (IS_ERR(pool->copier)) { r = PTR_ERR(pool->copier); *error = "Error creating pool's kcopyd client"; err_p = ERR_PTR(r); goto bad_kcopyd_client; } /* * Create singlethreaded workqueue that will service all devices * that use this metadata. */ pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); if (!pool->wq) { *error = "Error creating pool's workqueue"; err_p = ERR_PTR(-ENOMEM); goto bad_wq; } INIT_WORK(&pool->worker, do_worker); INIT_DELAYED_WORK(&pool->waker, do_waker); spin_lock_init(&pool->lock); bio_list_init(&pool->deferred_bios); bio_list_init(&pool->deferred_flush_bios); INIT_LIST_HEAD(&pool->prepared_mappings); INIT_LIST_HEAD(&pool->prepared_discards); pool->low_water_triggered = 0; pool->no_free_space = 0; bio_list_init(&pool->retry_on_resume_list); pool->shared_read_ds = dm_deferred_set_create(); if (!pool->shared_read_ds) { *error = "Error creating pool's shared read deferred set"; err_p = ERR_PTR(-ENOMEM); goto bad_shared_read_ds; } pool->all_io_ds = dm_deferred_set_create(); if (!pool->all_io_ds) { *error = "Error creating pool's all io deferred set"; err_p = ERR_PTR(-ENOMEM); goto bad_all_io_ds; } pool->next_mapping = NULL; pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, _new_mapping_cache); if (!pool->mapping_pool) { *error = "Error creating pool's mapping mempool"; err_p = ERR_PTR(-ENOMEM); goto bad_mapping_pool; } pool->ref_count = 1; pool->last_commit_jiffies = jiffies; pool->pool_md = pool_md; pool->md_dev = metadata_dev; __pool_table_insert(pool); return pool; bad_mapping_pool: dm_deferred_set_destroy(pool->all_io_ds); bad_all_io_ds: dm_deferred_set_destroy(pool->shared_read_ds); bad_shared_read_ds: destroy_workqueue(pool->wq); bad_wq: dm_kcopyd_client_destroy(pool->copier); bad_kcopyd_client: dm_bio_prison_destroy(pool->prison); bad_prison: kfree(pool); bad_pool: if (dm_pool_metadata_close(pmd)) DMWARN("%s: dm_pool_metadata_close() failed.", __func__); return err_p; } static void __pool_inc(struct pool *pool) { BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); pool->ref_count++; } static void __pool_dec(struct pool *pool) { BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); BUG_ON(!pool->ref_count); if (!--pool->ref_count) __pool_destroy(pool); } static struct pool *__pool_find(struct mapped_device *pool_md, struct block_device *metadata_dev, unsigned long block_size, int read_only, char **error, int *created) { struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); if (pool) { if (pool->pool_md != pool_md) { *error = "metadata device already in use by a pool"; return ERR_PTR(-EBUSY); } __pool_inc(pool); } else { pool = __pool_table_lookup(pool_md); if (pool) { if (pool->md_dev != metadata_dev) { *error = "different pool cannot replace a pool"; return ERR_PTR(-EINVAL); } __pool_inc(pool); } else { pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); *created = 1; } } return pool; } /*---------------------------------------------------------------- * Pool target methods *--------------------------------------------------------------*/ static void pool_dtr(struct dm_target *ti) { struct pool_c *pt = ti->private; mutex_lock(&dm_thin_pool_table.mutex); unbind_control_target(pt->pool, ti); __pool_dec(pt->pool); dm_put_device(ti, pt->metadata_dev); dm_put_device(ti, pt->data_dev); kfree(pt); mutex_unlock(&dm_thin_pool_table.mutex); } static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, struct dm_target *ti) { int r; unsigned argc; const char *arg_name; static struct dm_arg _args[] = { {0, 3, "Invalid number of pool feature arguments"}, }; /* * No feature arguments supplied. */ if (!as->argc) return 0; r = dm_read_arg_group(_args, as, &argc, &ti->error); if (r) return -EINVAL; while (argc && !r) { arg_name = dm_shift_arg(as); argc--; if (!strcasecmp(arg_name, "skip_block_zeroing")) pf->zero_new_blocks = false; else if (!strcasecmp(arg_name, "ignore_discard")) pf->discard_enabled = false; else if (!strcasecmp(arg_name, "no_discard_passdown")) pf->discard_passdown = false; else if (!strcasecmp(arg_name, "read_only")) pf->mode = PM_READ_ONLY; else { ti->error = "Unrecognised pool feature requested"; r = -EINVAL; break; } } return r; } /* * thin-pool * * * [<#feature args> []*] * * Optional feature arguments are: * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. * ignore_discard: disable discard * no_discard_passdown: don't pass discards down to the data device */ static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) { int r, pool_created = 0; struct pool_c *pt; struct pool *pool; struct pool_features pf; struct dm_arg_set as; struct dm_dev *data_dev; unsigned long block_size; dm_block_t low_water_blocks; struct dm_dev *metadata_dev; sector_t metadata_dev_size; char b[BDEVNAME_SIZE]; /* * FIXME Remove validation from scope of lock. */ mutex_lock(&dm_thin_pool_table.mutex); if (argc < 4) { ti->error = "Invalid argument count"; r = -EINVAL; goto out_unlock; } as.argc = argc; as.argv = argv; r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev); if (r) { ti->error = "Error opening metadata block device"; goto out_unlock; } metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT; if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); if (r) { ti->error = "Error getting data device"; goto out_metadata; } if (kstrtoul(argv[2], 10, &block_size) || !block_size || block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { ti->error = "Invalid block size"; r = -EINVAL; goto out; } if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { ti->error = "Invalid low water mark"; r = -EINVAL; goto out; } /* * Set default pool features. */ pool_features_init(&pf); dm_consume_args(&as, 4); r = parse_pool_features(&as, &pf, ti); if (r) goto out; pt = kzalloc(sizeof(*pt), GFP_KERNEL); if (!pt) { r = -ENOMEM; goto out; } pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); if (IS_ERR(pool)) { r = PTR_ERR(pool); goto out_free_pt; } /* * 'pool_created' reflects whether this is the first table load. * Top level discard support is not allowed to be changed after * initial load. This would require a pool reload to trigger thin * device changes. */ if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { ti->error = "Discard support cannot be disabled once enabled"; r = -EINVAL; goto out_flags_changed; } pt->pool = pool; pt->ti = ti; pt->metadata_dev = metadata_dev; pt->data_dev = data_dev; pt->low_water_blocks = low_water_blocks; pt->adjusted_pf = pt->requested_pf = pf; ti->num_flush_requests = 1; /* * Only need to enable discards if the pool should pass * them down to the data device. The thin device's discard * processing will cause mappings to be removed from the btree. */ if (pf.discard_enabled && pf.discard_passdown) { ti->num_discard_requests = 1; /* * Setting 'discards_supported' circumvents the normal * stacking of discard limits (this keeps the pool and * thin devices' discard limits consistent). */ ti->discards_supported = true; ti->discard_zeroes_data_unsupported = true; } ti->private = pt; pt->callbacks.congested_fn = pool_is_congested; dm_table_add_target_callbacks(ti->table, &pt->callbacks); mutex_unlock(&dm_thin_pool_table.mutex); return 0; out_flags_changed: __pool_dec(pool); out_free_pt: kfree(pt); out: dm_put_device(ti, data_dev); out_metadata: dm_put_device(ti, metadata_dev); out_unlock: mutex_unlock(&dm_thin_pool_table.mutex); return r; } static int pool_map(struct dm_target *ti, struct bio *bio) { int r; struct pool_c *pt = ti->private; struct pool *pool = pt->pool; unsigned long flags; /* * As this is a singleton target, ti->begin is always zero. */ spin_lock_irqsave(&pool->lock, flags); bio->bi_bdev = pt->data_dev->bdev; r = DM_MAPIO_REMAPPED; spin_unlock_irqrestore(&pool->lock, flags); return r; } /* * Retrieves the number of blocks of the data device from * the superblock and compares it to the actual device size, * thus resizing the data device in case it has grown. * * This both copes with opening preallocated data devices in the ctr * being followed by a resume * -and- * calling the resume method individually after userspace has * grown the data device in reaction to a table event. */ static int pool_preresume(struct dm_target *ti) { int r; struct pool_c *pt = ti->private; struct pool *pool = pt->pool; sector_t data_size = ti->len; dm_block_t sb_data_size; /* * Take control of the pool object. */ r = bind_control_target(pool, ti); if (r) return r; (void) sector_div(data_size, pool->sectors_per_block); r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); if (r) { DMERR("failed to retrieve data device size"); return r; } if (data_size < sb_data_size) { DMERR("pool target too small, is %llu blocks (expected %llu)", (unsigned long long)data_size, sb_data_size); return -EINVAL; } else if (data_size > sb_data_size) { r = dm_pool_resize_data_dev(pool->pmd, data_size); if (r) { DMERR("failed to resize data device"); /* FIXME Stricter than necessary: Rollback transaction instead here */ set_pool_mode(pool, PM_READ_ONLY); return r; } (void) commit_or_fallback(pool); } return 0; } static void pool_resume(struct dm_target *ti) { struct pool_c *pt = ti->private; struct pool *pool = pt->pool; unsigned long flags; spin_lock_irqsave(&pool->lock, flags); pool->low_water_triggered = 0; pool->no_free_space = 0; __requeue_bios(pool); spin_unlock_irqrestore(&pool->lock, flags); do_waker(&pool->waker.work); } static void pool_postsuspend(struct dm_target *ti) { struct pool_c *pt = ti->private; struct pool *pool = pt->pool; cancel_delayed_work(&pool->waker); flush_workqueue(pool->wq); (void) commit_or_fallback(pool); } static int check_arg_count(unsigned argc, unsigned args_required) { if (argc != args_required) { DMWARN("Message received with %u arguments instead of %u.", argc, args_required); return -EINVAL; } return 0; } static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) { if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && *dev_id <= MAX_DEV_ID) return 0; if (warning) DMWARN("Message received with invalid device id: %s", arg); return -EINVAL; } static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) { dm_thin_id dev_id; int r; r = check_arg_count(argc, 2); if (r) return r; r = read_dev_id(argv[1], &dev_id, 1); if (r) return r; r = dm_pool_create_thin(pool->pmd, dev_id); if (r) { DMWARN("Creation of new thinly-provisioned device with id %s failed.", argv[1]); return r; } return 0; } static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) { dm_thin_id dev_id; dm_thin_id origin_dev_id; int r; r = check_arg_count(argc, 3); if (r) return r; r = read_dev_id(argv[1], &dev_id, 1); if (r) return r; r = read_dev_id(argv[2], &origin_dev_id, 1); if (r) return r; r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); if (r) { DMWARN("Creation of new snapshot %s of device %s failed.", argv[1], argv[2]); return r; } return 0; } static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) { dm_thin_id dev_id; int r; r = check_arg_count(argc, 2); if (r) return r; r = read_dev_id(argv[1], &dev_id, 1); if (r) return r; r = dm_pool_delete_thin_device(pool->pmd, dev_id); if (r) DMWARN("Deletion of thin device %s failed.", argv[1]); return r; } static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) { dm_thin_id old_id, new_id; int r; r = check_arg_count(argc, 3); if (r) return r; if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); return -EINVAL; } if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); return -EINVAL; } r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); if (r) { DMWARN("Failed to change transaction id from %s to %s.", argv[1], argv[2]); return r; } return 0; } static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) { int r; r = check_arg_count(argc, 1); if (r) return r; (void) commit_or_fallback(pool); r = dm_pool_reserve_metadata_snap(pool->pmd); if (r) DMWARN("reserve_metadata_snap message failed."); return r; } static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) { int r; r = check_arg_count(argc, 1); if (r) return r; r = dm_pool_release_metadata_snap(pool->pmd); if (r) DMWARN("release_metadata_snap message failed."); return r; } /* * Messages supported: * create_thin * create_snap * delete * trim * set_transaction_id * reserve_metadata_snap * release_metadata_snap */ static int pool_message(struct dm_target *ti, unsigned argc, char **argv) { int r = -EINVAL; struct pool_c *pt = ti->private; struct pool *pool = pt->pool; if (!strcasecmp(argv[0], "create_thin")) r = process_create_thin_mesg(argc, argv, pool); else if (!strcasecmp(argv[0], "create_snap")) r = process_create_snap_mesg(argc, argv, pool); else if (!strcasecmp(argv[0], "delete")) r = process_delete_mesg(argc, argv, pool); else if (!strcasecmp(argv[0], "set_transaction_id")) r = process_set_transaction_id_mesg(argc, argv, pool); else if (!strcasecmp(argv[0], "reserve_metadata_snap")) r = process_reserve_metadata_snap_mesg(argc, argv, pool); else if (!strcasecmp(argv[0], "release_metadata_snap")) r = process_release_metadata_snap_mesg(argc, argv, pool); else DMWARN("Unrecognised thin pool target message received: %s", argv[0]); if (!r) (void) commit_or_fallback(pool); return r; } static void emit_flags(struct pool_features *pf, char *result, unsigned sz, unsigned maxlen) { unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + !pf->discard_passdown + (pf->mode == PM_READ_ONLY); DMEMIT("%u ", count); if (!pf->zero_new_blocks) DMEMIT("skip_block_zeroing "); if (!pf->discard_enabled) DMEMIT("ignore_discard "); if (!pf->discard_passdown) DMEMIT("no_discard_passdown "); if (pf->mode == PM_READ_ONLY) DMEMIT("read_only "); } /* * Status line is: * / * / */ static void pool_status(struct dm_target *ti, status_type_t type, unsigned status_flags, char *result, unsigned maxlen) { int r; unsigned sz = 0; uint64_t transaction_id; dm_block_t nr_free_blocks_data; dm_block_t nr_free_blocks_metadata; dm_block_t nr_blocks_data; dm_block_t nr_blocks_metadata; dm_block_t held_root; char buf[BDEVNAME_SIZE]; char buf2[BDEVNAME_SIZE]; struct pool_c *pt = ti->private; struct pool *pool = pt->pool; switch (type) { case STATUSTYPE_INFO: if (get_pool_mode(pool) == PM_FAIL) { DMEMIT("Fail"); break; } /* Commit to ensure statistics aren't out-of-date */ if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) (void) commit_or_fallback(pool); r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); if (r) { DMERR("dm_pool_get_metadata_transaction_id returned %d", r); goto err; } r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); if (r) { DMERR("dm_pool_get_free_metadata_block_count returned %d", r); goto err; } r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); if (r) { DMERR("dm_pool_get_metadata_dev_size returned %d", r); goto err; } r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); if (r) { DMERR("dm_pool_get_free_block_count returned %d", r); goto err; } r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); if (r) { DMERR("dm_pool_get_data_dev_size returned %d", r); goto err; } r = dm_pool_get_metadata_snap(pool->pmd, &held_root); if (r) { DMERR("dm_pool_get_metadata_snap returned %d", r); goto err; } DMEMIT("%llu %llu/%llu %llu/%llu ", (unsigned long long)transaction_id, (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), (unsigned long long)nr_blocks_metadata, (unsigned long long)(nr_blocks_data - nr_free_blocks_data), (unsigned long long)nr_blocks_data); if (held_root) DMEMIT("%llu ", held_root); else DMEMIT("- "); if (pool->pf.mode == PM_READ_ONLY) DMEMIT("ro "); else DMEMIT("rw "); if (!pool->pf.discard_enabled) DMEMIT("ignore_discard"); else if (pool->pf.discard_passdown) DMEMIT("discard_passdown"); else DMEMIT("no_discard_passdown"); break; case STATUSTYPE_TABLE: DMEMIT("%s %s %lu %llu ", format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), format_dev_t(buf2, pt->data_dev->bdev->bd_dev), (unsigned long)pool->sectors_per_block, (unsigned long long)pt->low_water_blocks); emit_flags(&pt->requested_pf, result, sz, maxlen); break; } return; err: DMEMIT("Error"); } static int pool_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { struct pool_c *pt = ti->private; return fn(ti, pt->data_dev, 0, ti->len, data); } static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, struct bio_vec *biovec, int max_size) { struct pool_c *pt = ti->private; struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); if (!q->merge_bvec_fn) return max_size; bvm->bi_bdev = pt->data_dev->bdev; return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); } static bool block_size_is_power_of_two(struct pool *pool) { return pool->sectors_per_block_shift >= 0; } static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) { struct pool *pool = pt->pool; struct queue_limits *data_limits; limits->max_discard_sectors = pool->sectors_per_block; /* * discard_granularity is just a hint, and not enforced. */ if (pt->adjusted_pf.discard_passdown) { data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; limits->discard_granularity = data_limits->discard_granularity; } else if (block_size_is_power_of_two(pool)) limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; else /* * Use largest power of 2 that is a factor of sectors_per_block * but at least DATA_DEV_BLOCK_SIZE_MIN_SECTORS. */ limits->discard_granularity = max(1 << (ffs(pool->sectors_per_block) - 1), DATA_DEV_BLOCK_SIZE_MIN_SECTORS) << SECTOR_SHIFT; } static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) { struct pool_c *pt = ti->private; struct pool *pool = pt->pool; blk_limits_io_min(limits, 0); blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); /* * pt->adjusted_pf is a staging area for the actual features to use. * They get transferred to the live pool in bind_control_target() * called from pool_preresume(). */ if (!pt->adjusted_pf.discard_enabled) return; disable_passdown_if_not_supported(pt); set_discard_limits(pt, limits); } static struct target_type pool_target = { .name = "thin-pool", .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | DM_TARGET_IMMUTABLE, .version = {1, 6, 1}, .module = THIS_MODULE, .ctr = pool_ctr, .dtr = pool_dtr, .map = pool_map, .postsuspend = pool_postsuspend, .preresume = pool_preresume, .resume = pool_resume, .message = pool_message, .status = pool_status, .merge = pool_merge, .iterate_devices = pool_iterate_devices, .io_hints = pool_io_hints, }; /*---------------------------------------------------------------- * Thin target methods *--------------------------------------------------------------*/ static void thin_dtr(struct dm_target *ti) { struct thin_c *tc = ti->private; mutex_lock(&dm_thin_pool_table.mutex); __pool_dec(tc->pool); dm_pool_close_thin_device(tc->td); dm_put_device(ti, tc->pool_dev); if (tc->origin_dev) dm_put_device(ti, tc->origin_dev); kfree(tc); mutex_unlock(&dm_thin_pool_table.mutex); } /* * Thin target parameters: * * [origin_dev] * * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) * dev_id: the internal device identifier * origin_dev: a device external to the pool that should act as the origin * * If the pool device has discards disabled, they get disabled for the thin * device as well. */ static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) { int r; struct thin_c *tc; struct dm_dev *pool_dev, *origin_dev; struct mapped_device *pool_md; mutex_lock(&dm_thin_pool_table.mutex); if (argc != 2 && argc != 3) { ti->error = "Invalid argument count"; r = -EINVAL; goto out_unlock; } tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); if (!tc) { ti->error = "Out of memory"; r = -ENOMEM; goto out_unlock; } if (argc == 3) { r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); if (r) { ti->error = "Error opening origin device"; goto bad_origin_dev; } tc->origin_dev = origin_dev; } r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); if (r) { ti->error = "Error opening pool device"; goto bad_pool_dev; } tc->pool_dev = pool_dev; if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { ti->error = "Invalid device id"; r = -EINVAL; goto bad_common; } pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); if (!pool_md) { ti->error = "Couldn't get pool mapped device"; r = -EINVAL; goto bad_common; } tc->pool = __pool_table_lookup(pool_md); if (!tc->pool) { ti->error = "Couldn't find pool object"; r = -EINVAL; goto bad_pool_lookup; } __pool_inc(tc->pool); if (get_pool_mode(tc->pool) == PM_FAIL) { ti->error = "Couldn't open thin device, Pool is in fail mode"; goto bad_thin_open; } r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); if (r) { ti->error = "Couldn't open thin internal device"; goto bad_thin_open; } r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); if (r) goto bad_thin_open; ti->num_flush_requests = 1; ti->flush_supported = true; ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); /* In case the pool supports discards, pass them on. */ if (tc->pool->pf.discard_enabled) { ti->discards_supported = true; ti->num_discard_requests = 1; ti->discard_zeroes_data_unsupported = true; /* Discard requests must be split on a block boundary */ ti->split_discard_requests = true; } dm_put(pool_md); mutex_unlock(&dm_thin_pool_table.mutex); return 0; bad_thin_open: __pool_dec(tc->pool); bad_pool_lookup: dm_put(pool_md); bad_common: dm_put_device(ti, tc->pool_dev); bad_pool_dev: if (tc->origin_dev) dm_put_device(ti, tc->origin_dev); bad_origin_dev: kfree(tc); out_unlock: mutex_unlock(&dm_thin_pool_table.mutex); return r; } static int thin_map(struct dm_target *ti, struct bio *bio) { bio->bi_sector = dm_target_offset(ti, bio->bi_sector); return thin_bio_map(ti, bio); } static int thin_endio(struct dm_target *ti, struct bio *bio, int err) { unsigned long flags; struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); struct list_head work; struct dm_thin_new_mapping *m, *tmp; struct pool *pool = h->tc->pool; if (h->shared_read_entry) { INIT_LIST_HEAD(&work); dm_deferred_entry_dec(h->shared_read_entry, &work); spin_lock_irqsave(&pool->lock, flags); list_for_each_entry_safe(m, tmp, &work, list) { list_del(&m->list); m->quiesced = 1; __maybe_add_mapping(m); } spin_unlock_irqrestore(&pool->lock, flags); } if (h->all_io_entry) { INIT_LIST_HEAD(&work); dm_deferred_entry_dec(h->all_io_entry, &work); if (!list_empty(&work)) { spin_lock_irqsave(&pool->lock, flags); list_for_each_entry_safe(m, tmp, &work, list) list_add(&m->list, &pool->prepared_discards); spin_unlock_irqrestore(&pool->lock, flags); wake_worker(pool); } } return 0; } static void thin_postsuspend(struct dm_target *ti) { if (dm_noflush_suspending(ti)) requeue_io((struct thin_c *)ti->private); } /* * */ static void thin_status(struct dm_target *ti, status_type_t type, unsigned status_flags, char *result, unsigned maxlen) { int r; ssize_t sz = 0; dm_block_t mapped, highest; char buf[BDEVNAME_SIZE]; struct thin_c *tc = ti->private; if (get_pool_mode(tc->pool) == PM_FAIL) { DMEMIT("Fail"); return; } if (!tc->td) DMEMIT("-"); else { switch (type) { case STATUSTYPE_INFO: r = dm_thin_get_mapped_count(tc->td, &mapped); if (r) { DMERR("dm_thin_get_mapped_count returned %d", r); goto err; } r = dm_thin_get_highest_mapped_block(tc->td, &highest); if (r < 0) { DMERR("dm_thin_get_highest_mapped_block returned %d", r); goto err; } DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); if (r) DMEMIT("%llu", ((highest + 1) * tc->pool->sectors_per_block) - 1); else DMEMIT("-"); break; case STATUSTYPE_TABLE: DMEMIT("%s %lu", format_dev_t(buf, tc->pool_dev->bdev->bd_dev), (unsigned long) tc->dev_id); if (tc->origin_dev) DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); break; } } return; err: DMEMIT("Error"); } static int thin_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { sector_t blocks; struct thin_c *tc = ti->private; struct pool *pool = tc->pool; /* * We can't call dm_pool_get_data_dev_size() since that blocks. So * we follow a more convoluted path through to the pool's target. */ if (!pool->ti) return 0; /* nothing is bound */ blocks = pool->ti->len; (void) sector_div(blocks, pool->sectors_per_block); if (blocks) return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); return 0; } static struct target_type thin_target = { .name = "thin", .version = {1, 7, 1}, .module = THIS_MODULE, .ctr = thin_ctr, .dtr = thin_dtr, .map = thin_map, .end_io = thin_endio, .postsuspend = thin_postsuspend, .status = thin_status, .iterate_devices = thin_iterate_devices, }; /*----------------------------------------------------------------*/ static int __init dm_thin_init(void) { int r; pool_table_init(); r = dm_register_target(&thin_target); if (r) return r; r = dm_register_target(&pool_target); if (r) goto bad_pool_target; r = -ENOMEM; _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); if (!_new_mapping_cache) goto bad_new_mapping_cache; return 0; bad_new_mapping_cache: dm_unregister_target(&pool_target); bad_pool_target: dm_unregister_target(&thin_target); return r; } static void dm_thin_exit(void) { dm_unregister_target(&thin_target); dm_unregister_target(&pool_target); kmem_cache_destroy(_new_mapping_cache); } module_init(dm_thin_init); module_exit(dm_thin_exit); MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); MODULE_AUTHOR("Joe Thornber "); MODULE_LICENSE("GPL");