/* * Copyright 2008-2012 Freescale Semiconductor Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /****************************************************************************** @File fm_rtc.c @Description FM RTC driver implementation. @Cautions None *//***************************************************************************/ #include "error_ext.h" #include "debug_ext.h" #include "string_ext.h" #include "part_ext.h" #include "xx_ext.h" #include "ncsw_ext.h" #include "fm_rtc.h" #include "fm_common.h" /*****************************************************************************/ static t_Error CheckInitParameters(t_FmRtc *p_Rtc) { struct rtc_cfg *p_RtcDriverParam = p_Rtc->p_RtcDriverParam; int i; if ((p_RtcDriverParam->src_clk != E_FMAN_RTC_SOURCE_CLOCK_EXTERNAL) && (p_RtcDriverParam->src_clk != E_FMAN_RTC_SOURCE_CLOCK_SYSTEM) && (p_RtcDriverParam->src_clk != E_FMAN_RTC_SOURCE_CLOCK_OSCILATOR)) RETURN_ERROR(MAJOR, E_INVALID_CLOCK, ("Source clock undefined")); if (p_Rtc->outputClockDivisor == 0) { RETURN_ERROR(MAJOR, E_INVALID_VALUE, ("Divisor for output clock (should be positive)")); } for (i=0; i < FM_RTC_NUM_OF_ALARMS; i++) { if ((p_RtcDriverParam->alarm_polarity[i] != E_FMAN_RTC_ALARM_POLARITY_ACTIVE_LOW) && (p_RtcDriverParam->alarm_polarity[i] != E_FMAN_RTC_ALARM_POLARITY_ACTIVE_HIGH)) { RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Alarm %d signal polarity", i)); } } for (i=0; i < FM_RTC_NUM_OF_EXT_TRIGGERS; i++) { if ((p_RtcDriverParam->trigger_polarity[i] != E_FMAN_RTC_TRIGGER_ON_FALLING_EDGE) && (p_RtcDriverParam->trigger_polarity[i] != E_FMAN_RTC_TRIGGER_ON_RISING_EDGE)) { RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Trigger %d signal polarity", i)); } } return E_OK; } /*****************************************************************************/ static void RtcExceptions(t_Handle h_FmRtc) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; struct rtc_regs *p_MemMap; register uint32_t events; ASSERT_COND(p_Rtc); p_MemMap = p_Rtc->p_MemMap; events = fman_rtc_check_and_clear_event(p_MemMap); if (events & FMAN_RTC_TMR_TEVENT_ALM1) { if (p_Rtc->alarmParams[0].clearOnExpiration) { fman_rtc_set_timer_alarm_l(p_MemMap, 0, 0); fman_rtc_disable_interupt(p_MemMap, FMAN_RTC_TMR_TEVENT_ALM1); } ASSERT_COND(p_Rtc->alarmParams[0].f_AlarmCallback); p_Rtc->alarmParams[0].f_AlarmCallback(p_Rtc->h_App, 0); } if (events & FMAN_RTC_TMR_TEVENT_ALM2) { if (p_Rtc->alarmParams[1].clearOnExpiration) { fman_rtc_set_timer_alarm_l(p_MemMap, 1, 0); fman_rtc_disable_interupt(p_MemMap, FMAN_RTC_TMR_TEVENT_ALM2); } ASSERT_COND(p_Rtc->alarmParams[1].f_AlarmCallback); p_Rtc->alarmParams[1].f_AlarmCallback(p_Rtc->h_App, 1); } if (events & FMAN_RTC_TMR_TEVENT_PP1) { ASSERT_COND(p_Rtc->periodicPulseParams[0].f_PeriodicPulseCallback); p_Rtc->periodicPulseParams[0].f_PeriodicPulseCallback(p_Rtc->h_App, 0); } if (events & FMAN_RTC_TMR_TEVENT_PP2) { ASSERT_COND(p_Rtc->periodicPulseParams[1].f_PeriodicPulseCallback); p_Rtc->periodicPulseParams[1].f_PeriodicPulseCallback(p_Rtc->h_App, 1); } if (events & FMAN_RTC_TMR_TEVENT_ETS1) { ASSERT_COND(p_Rtc->externalTriggerParams[0].f_ExternalTriggerCallback); p_Rtc->externalTriggerParams[0].f_ExternalTriggerCallback(p_Rtc->h_App, 0); } if (events & FMAN_RTC_TMR_TEVENT_ETS2) { ASSERT_COND(p_Rtc->externalTriggerParams[1].f_ExternalTriggerCallback); p_Rtc->externalTriggerParams[1].f_ExternalTriggerCallback(p_Rtc->h_App, 1); } } /*****************************************************************************/ t_Handle FM_RTC_Config(t_FmRtcParams *p_FmRtcParam) { t_FmRtc *p_Rtc; SANITY_CHECK_RETURN_VALUE(p_FmRtcParam, E_NULL_POINTER, NULL); /* Allocate memory for the FM RTC driver parameters */ p_Rtc = (t_FmRtc *)XX_Malloc(sizeof(t_FmRtc)); if (!p_Rtc) { REPORT_ERROR(MAJOR, E_NO_MEMORY, ("FM RTC driver structure")); return NULL; } memset(p_Rtc, 0, sizeof(t_FmRtc)); /* Allocate memory for the FM RTC driver parameters */ p_Rtc->p_RtcDriverParam = (struct rtc_cfg *)XX_Malloc(sizeof(struct rtc_cfg)); if (!p_Rtc->p_RtcDriverParam) { REPORT_ERROR(MAJOR, E_NO_MEMORY, ("FM RTC driver parameters")); XX_Free(p_Rtc); return NULL; } memset(p_Rtc->p_RtcDriverParam, 0, sizeof(struct rtc_cfg)); /* Store RTC configuration parameters */ p_Rtc->h_Fm = p_FmRtcParam->h_Fm; /* Set default RTC configuration parameters */ fman_rtc_defconfig(p_Rtc->p_RtcDriverParam); p_Rtc->outputClockDivisor = DEFAULT_OUTPUT_CLOCK_DIVISOR; p_Rtc->p_RtcDriverParam->bypass = DEFAULT_BYPASS; p_Rtc->clockPeriodNanoSec = DEFAULT_CLOCK_PERIOD; /* 1 usec */ /* Store RTC parameters in the RTC control structure */ p_Rtc->p_MemMap = (struct rtc_regs *)UINT_TO_PTR(p_FmRtcParam->baseAddress); p_Rtc->h_App = p_FmRtcParam->h_App; return p_Rtc; } /*****************************************************************************/ t_Error FM_RTC_Init(t_Handle h_FmRtc) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; struct rtc_cfg *p_RtcDriverParam; struct rtc_regs *p_MemMap; uint32_t freqCompensation = 0; uint64_t tmpDouble; bool init_freq_comp = FALSE; p_RtcDriverParam = p_Rtc->p_RtcDriverParam; p_MemMap = p_Rtc->p_MemMap; if (CheckInitParameters(p_Rtc)!=E_OK) RETURN_ERROR(MAJOR, E_CONFLICT, ("Init Parameters are not Valid")); /* TODO check that no timestamping MACs are working in this stage. */ /* find source clock frequency in Mhz */ if (p_Rtc->p_RtcDriverParam->src_clk != E_FMAN_RTC_SOURCE_CLOCK_SYSTEM) p_Rtc->srcClkFreqMhz = p_Rtc->p_RtcDriverParam->ext_src_clk_freq; else p_Rtc->srcClkFreqMhz = (uint32_t)(FmGetMacClockFreq(p_Rtc->h_Fm)); /* if timer in Master mode Initialize TMR_CTRL */ /* We want the counter (TMR_CNT) to count in nano-seconds */ if (!p_RtcDriverParam->timer_slave_mode && p_Rtc->p_RtcDriverParam->bypass) p_Rtc->clockPeriodNanoSec = (1000 / p_Rtc->srcClkFreqMhz); else { /* Initialize TMR_ADD with the initial frequency compensation value: freqCompensation = (2^32 / frequency ratio) */ /* frequency ratio = sorce clock/rtc clock = * (p_Rtc->srcClkFreqMhz*1000000))/ 1/(p_Rtc->clockPeriodNanoSec * 1000000000) */ init_freq_comp = TRUE; freqCompensation = (uint32_t)DIV_CEIL(ACCUMULATOR_OVERFLOW * 1000, p_Rtc->clockPeriodNanoSec * p_Rtc->srcClkFreqMhz); } /* check the legality of the relation between source and destination clocks */ /* should be larger than 1.0001 */ tmpDouble = 10000 * (uint64_t)p_Rtc->clockPeriodNanoSec * (uint64_t)p_Rtc->srcClkFreqMhz; if ((tmpDouble) <= 10001) RETURN_ERROR(MAJOR, E_CONFLICT, ("Invalid relation between source and destination clocks. Should be larger than 1.0001")); fman_rtc_init(p_RtcDriverParam, p_MemMap, FM_RTC_NUM_OF_ALARMS, FM_RTC_NUM_OF_PERIODIC_PULSES, FM_RTC_NUM_OF_EXT_TRIGGERS, init_freq_comp, freqCompensation, p_Rtc->outputClockDivisor); /* Register the FM RTC interrupt */ FmRegisterIntr(p_Rtc->h_Fm, e_FM_MOD_TMR, 0, e_FM_INTR_TYPE_NORMAL, RtcExceptions , p_Rtc); /* Free parameters structures */ XX_Free(p_Rtc->p_RtcDriverParam); p_Rtc->p_RtcDriverParam = NULL; return E_OK; } /*****************************************************************************/ t_Error FM_RTC_Free(t_Handle h_FmRtc) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); if (p_Rtc->p_RtcDriverParam) { XX_Free(p_Rtc->p_RtcDriverParam); } else { FM_RTC_Disable(h_FmRtc); } /* Unregister FM RTC interrupt */ FmUnregisterIntr(p_Rtc->h_Fm, e_FM_MOD_TMR, 0, e_FM_INTR_TYPE_NORMAL); XX_Free(p_Rtc); return E_OK; } /*****************************************************************************/ t_Error FM_RTC_ConfigSourceClock(t_Handle h_FmRtc, e_FmSrcClk srcClk, uint32_t freqInMhz) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE); p_Rtc->p_RtcDriverParam->src_clk = (enum fman_src_clock)srcClk; if (srcClk != e_FM_RTC_SOURCE_CLOCK_SYSTEM) p_Rtc->p_RtcDriverParam->ext_src_clk_freq = freqInMhz; return E_OK; } /*****************************************************************************/ t_Error FM_RTC_ConfigPeriod(t_Handle h_FmRtc, uint32_t period) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE); p_Rtc->clockPeriodNanoSec = period; return E_OK; } /*****************************************************************************/ t_Error FM_RTC_ConfigFrequencyBypass(t_Handle h_FmRtc, bool enabled) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE); p_Rtc->p_RtcDriverParam->bypass = enabled; return E_OK; } /*****************************************************************************/ t_Error FM_RTC_ConfigInvertedInputClockPhase(t_Handle h_FmRtc, bool inverted) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE); p_Rtc->p_RtcDriverParam->invert_input_clk_phase = inverted; return E_OK; } /*****************************************************************************/ t_Error FM_RTC_ConfigInvertedOutputClockPhase(t_Handle h_FmRtc, bool inverted) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE); p_Rtc->p_RtcDriverParam->invert_output_clk_phase = inverted; return E_OK; } /*****************************************************************************/ t_Error FM_RTC_ConfigOutputClockDivisor(t_Handle h_FmRtc, uint16_t divisor) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE); p_Rtc->outputClockDivisor = divisor; return E_OK; } /*****************************************************************************/ t_Error FM_RTC_ConfigPulseRealignment(t_Handle h_FmRtc, bool enable) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE); p_Rtc->p_RtcDriverParam->pulse_realign = enable; return E_OK; } /*****************************************************************************/ t_Error FM_RTC_ConfigAlarmPolarity(t_Handle h_FmRtc, uint8_t alarmId, e_FmRtcAlarmPolarity alarmPolarity) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE); if (alarmId >= FM_RTC_NUM_OF_ALARMS) RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Alarm ID")); p_Rtc->p_RtcDriverParam->alarm_polarity[alarmId] = (enum fman_rtc_alarm_polarity)alarmPolarity; return E_OK; } /*****************************************************************************/ t_Error FM_RTC_ConfigExternalTriggerPolarity(t_Handle h_FmRtc, uint8_t triggerId, e_FmRtcTriggerPolarity triggerPolarity) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(p_Rtc->p_RtcDriverParam, E_INVALID_STATE); if (triggerId >= FM_RTC_NUM_OF_EXT_TRIGGERS) { RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("External trigger ID")); } p_Rtc->p_RtcDriverParam->trigger_polarity[triggerId] = (enum fman_rtc_trigger_polarity)triggerPolarity; return E_OK; } /*****************************************************************************/ t_Error FM_RTC_Enable(t_Handle h_FmRtc, bool resetClock) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); fman_rtc_enable(p_Rtc->p_MemMap, resetClock); return E_OK; } /*****************************************************************************/ t_Error FM_RTC_Disable(t_Handle h_FmRtc) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); /* TODO A check must be added here, that no timestamping MAC's * are working in this stage. */ fman_rtc_disable(p_Rtc->p_MemMap); return E_OK; } /*****************************************************************************/ t_Error FM_RTC_SetClockOffset(t_Handle h_FmRtc, int64_t offset) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); fman_rtc_set_timer_offset(p_Rtc->p_MemMap, offset); return E_OK; } /*****************************************************************************/ t_Error FM_RTC_SetAlarm(t_Handle h_FmRtc, t_FmRtcAlarmParams *p_FmRtcAlarmParams) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; uint64_t tmpAlarm; bool enable = FALSE; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); if (p_FmRtcAlarmParams->alarmId >= FM_RTC_NUM_OF_ALARMS) { RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Alarm ID")); } if (p_FmRtcAlarmParams->alarmTime < p_Rtc->clockPeriodNanoSec) RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Alarm time must be equal or larger than RTC period - %d nanoseconds", p_Rtc->clockPeriodNanoSec)); if (p_FmRtcAlarmParams->alarmTime % (uint64_t)p_Rtc->clockPeriodNanoSec) RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Alarm time must be a multiple of RTC period - %d nanoseconds", p_Rtc->clockPeriodNanoSec)); tmpAlarm = p_FmRtcAlarmParams->alarmTime/(uint64_t)p_Rtc->clockPeriodNanoSec; if (p_FmRtcAlarmParams->f_AlarmCallback) { p_Rtc->alarmParams[p_FmRtcAlarmParams->alarmId].f_AlarmCallback = p_FmRtcAlarmParams->f_AlarmCallback; p_Rtc->alarmParams[p_FmRtcAlarmParams->alarmId].clearOnExpiration = p_FmRtcAlarmParams->clearOnExpiration; enable = TRUE; } fman_rtc_set_alarm(p_Rtc->p_MemMap, p_FmRtcAlarmParams->alarmId, (unsigned long)tmpAlarm, enable); return E_OK; } /*****************************************************************************/ t_Error FM_RTC_SetPeriodicPulse(t_Handle h_FmRtc, t_FmRtcPeriodicPulseParams *p_FmRtcPeriodicPulseParams) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; bool enable = FALSE; uint64_t tmpFiper; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); if (p_FmRtcPeriodicPulseParams->periodicPulseId >= FM_RTC_NUM_OF_PERIODIC_PULSES) { RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Periodic pulse ID")); } if (fman_rtc_is_enabled(p_Rtc->p_MemMap)) RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Can't set Periodic pulse when RTC is enabled.")); if (p_FmRtcPeriodicPulseParams->periodicPulsePeriod < p_Rtc->clockPeriodNanoSec) RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Periodic pulse must be equal or larger than RTC period - %d nanoseconds", p_Rtc->clockPeriodNanoSec)); if (p_FmRtcPeriodicPulseParams->periodicPulsePeriod % (uint64_t)p_Rtc->clockPeriodNanoSec) RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Periodic pulse must be a multiple of RTC period - %d nanoseconds", p_Rtc->clockPeriodNanoSec)); tmpFiper = p_FmRtcPeriodicPulseParams->periodicPulsePeriod/(uint64_t)p_Rtc->clockPeriodNanoSec; if (tmpFiper & 0xffffffff00000000LL) RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Periodic pulse/RTC Period must be smaller than 4294967296", p_Rtc->clockPeriodNanoSec)); if (p_FmRtcPeriodicPulseParams->f_PeriodicPulseCallback) { p_Rtc->periodicPulseParams[p_FmRtcPeriodicPulseParams->periodicPulseId].f_PeriodicPulseCallback = p_FmRtcPeriodicPulseParams->f_PeriodicPulseCallback; enable = TRUE; } fman_rtc_set_periodic_pulse(p_Rtc->p_MemMap, p_FmRtcPeriodicPulseParams->periodicPulseId, (uint32_t)tmpFiper, enable); return E_OK; } /*****************************************************************************/ t_Error FM_RTC_ClearPeriodicPulse(t_Handle h_FmRtc, uint8_t periodicPulseId) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); if (periodicPulseId >= FM_RTC_NUM_OF_PERIODIC_PULSES) { RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("Periodic pulse ID")); } p_Rtc->periodicPulseParams[periodicPulseId].f_PeriodicPulseCallback = NULL; fman_rtc_clear_periodic_pulse(p_Rtc->p_MemMap, periodicPulseId); return E_OK; } /*****************************************************************************/ t_Error FM_RTC_SetExternalTrigger(t_Handle h_FmRtc, t_FmRtcExternalTriggerParams *p_FmRtcExternalTriggerParams) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; bool enable = FALSE; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); if (p_FmRtcExternalTriggerParams->externalTriggerId >= FM_RTC_NUM_OF_EXT_TRIGGERS) { RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("External Trigger ID")); } if (p_FmRtcExternalTriggerParams->f_ExternalTriggerCallback) { p_Rtc->externalTriggerParams[p_FmRtcExternalTriggerParams->externalTriggerId].f_ExternalTriggerCallback = p_FmRtcExternalTriggerParams->f_ExternalTriggerCallback; enable = TRUE; } fman_rtc_set_ext_trigger(p_Rtc->p_MemMap, p_FmRtcExternalTriggerParams->externalTriggerId, enable, p_FmRtcExternalTriggerParams->usePulseAsInput); return E_OK; } /*****************************************************************************/ t_Error FM_RTC_ClearExternalTrigger(t_Handle h_FmRtc, uint8_t externalTriggerId) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); if (externalTriggerId >= FM_RTC_NUM_OF_EXT_TRIGGERS) RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("External Trigger ID")); p_Rtc->externalTriggerParams[externalTriggerId].f_ExternalTriggerCallback = NULL; fman_rtc_clear_external_trigger(p_Rtc->p_MemMap, externalTriggerId); return E_OK; } /*****************************************************************************/ t_Error FM_RTC_GetExternalTriggerTimeStamp(t_Handle h_FmRtc, uint8_t triggerId, uint64_t *p_TimeStamp) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); if (triggerId >= FM_RTC_NUM_OF_EXT_TRIGGERS) RETURN_ERROR(MAJOR, E_INVALID_SELECTION, ("External trigger ID")); *p_TimeStamp = fman_rtc_get_trigger_stamp(p_Rtc->p_MemMap, triggerId)*p_Rtc->clockPeriodNanoSec; return E_OK; } /*****************************************************************************/ t_Error FM_RTC_GetCurrentTime(t_Handle h_FmRtc, uint64_t *p_Ts) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); *p_Ts = fman_rtc_get_timer(p_Rtc->p_MemMap)*p_Rtc->clockPeriodNanoSec; return E_OK; } /*****************************************************************************/ t_Error FM_RTC_SetCurrentTime(t_Handle h_FmRtc, uint64_t ts) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); ts = ts/p_Rtc->clockPeriodNanoSec; fman_rtc_set_timer(p_Rtc->p_MemMap, (int64_t)ts); return E_OK; } /*****************************************************************************/ t_Error FM_RTC_GetFreqCompensation(t_Handle h_FmRtc, uint32_t *p_Compensation) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); *p_Compensation = fman_rtc_get_frequency_compensation(p_Rtc->p_MemMap); return E_OK; } /*****************************************************************************/ t_Error FM_RTC_SetFreqCompensation(t_Handle h_FmRtc, uint32_t freqCompensation) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); /* set the new freqCompensation */ fman_rtc_set_frequency_compensation(p_Rtc->p_MemMap, freqCompensation); return E_OK; } #ifdef CONFIG_PTP_1588_CLOCK_DPAA /*****************************************************************************/ t_Error FM_RTC_EnableInterrupt(t_Handle h_FmRtc, uint32_t events) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); /* enable interrupt */ fman_rtc_enable_interupt(p_Rtc->p_MemMap, events); return E_OK; } /*****************************************************************************/ t_Error FM_RTC_DisableInterrupt(t_Handle h_FmRtc, uint32_t events) { t_FmRtc *p_Rtc = (t_FmRtc *)h_FmRtc; SANITY_CHECK_RETURN_ERROR(p_Rtc, E_INVALID_HANDLE); SANITY_CHECK_RETURN_ERROR(!p_Rtc->p_RtcDriverParam, E_INVALID_STATE); /* disable interrupt */ fman_rtc_disable_interupt(p_Rtc->p_MemMap, events); return E_OK; } #endif