/* * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "ath9k.h" void ath9k_hw_write_regs(struct ath_hw *ah, u32 modesIndex, u32 freqIndex, int regWrites) { REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites); } bool ath9k_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) { u32 channelSel = 0; u32 bModeSynth = 0; u32 aModeRefSel = 0; u32 reg32 = 0; u16 freq; struct chan_centers centers; ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = centers.synth_center; if (freq < 4800) { u32 txctl; if (((freq - 2192) % 5) == 0) { channelSel = ((freq - 672) * 2 - 3040) / 10; bModeSynth = 0; } else if (((freq - 2224) % 5) == 0) { channelSel = ((freq - 704) * 2 - 3040) / 10; bModeSynth = 1; } else { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Invalid channel %u MHz\n", freq); return false; } channelSel = (channelSel << 2) & 0xff; channelSel = ath9k_hw_reverse_bits(channelSel, 8); txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL); if (freq == 2484) { REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl | AR_PHY_CCK_TX_CTRL_JAPAN); } else { REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN); } } else if ((freq % 20) == 0 && freq >= 5120) { channelSel = ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8); aModeRefSel = ath9k_hw_reverse_bits(1, 2); } else if ((freq % 10) == 0) { channelSel = ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8); if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) aModeRefSel = ath9k_hw_reverse_bits(2, 2); else aModeRefSel = ath9k_hw_reverse_bits(1, 2); } else if ((freq % 5) == 0) { channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8); aModeRefSel = ath9k_hw_reverse_bits(1, 2); } else { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Invalid channel %u MHz\n", freq); return false; } reg32 = (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) | (1 << 5) | 0x1; REG_WRITE(ah, AR_PHY(0x37), reg32); ah->curchan = chan; ah->curchan_rad_index = -1; return true; } void ath9k_hw_ar9280_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) { u16 bMode, fracMode, aModeRefSel = 0; u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0; struct chan_centers centers; u32 refDivA = 24; ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = centers.synth_center; reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL); reg32 &= 0xc0000000; if (freq < 4800) { u32 txctl; bMode = 1; fracMode = 1; aModeRefSel = 0; channelSel = (freq * 0x10000) / 15; txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL); if (freq == 2484) { REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl | AR_PHY_CCK_TX_CTRL_JAPAN); } else { REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN); } } else { bMode = 0; fracMode = 0; switch(ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) { case 0: if ((freq % 20) == 0) { aModeRefSel = 3; } else if ((freq % 10) == 0) { aModeRefSel = 2; } if (aModeRefSel) break; case 1: default: aModeRefSel = 0; fracMode = 1; refDivA = 1; channelSel = (freq * 0x8000) / 15; REG_RMW_FIELD(ah, AR_AN_SYNTH9, AR_AN_SYNTH9_REFDIVA, refDivA); } if (!fracMode) { ndiv = (freq * (refDivA >> aModeRefSel)) / 60; channelSel = ndiv & 0x1ff; channelFrac = (ndiv & 0xfffffe00) * 2; channelSel = (channelSel << 17) | channelFrac; } } reg32 = reg32 | (bMode << 29) | (fracMode << 28) | (aModeRefSel << 26) | (channelSel); REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32); ah->curchan = chan; ah->curchan_rad_index = -1; } static void ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32, u32 numBits, u32 firstBit, u32 column) { u32 tmp32, mask, arrayEntry, lastBit; int32_t bitPosition, bitsLeft; tmp32 = ath9k_hw_reverse_bits(reg32, numBits); arrayEntry = (firstBit - 1) / 8; bitPosition = (firstBit - 1) % 8; bitsLeft = numBits; while (bitsLeft > 0) { lastBit = (bitPosition + bitsLeft > 8) ? 8 : bitPosition + bitsLeft; mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) << (column * 8); rfBuf[arrayEntry] &= ~mask; rfBuf[arrayEntry] |= ((tmp32 << bitPosition) << (column * 8)) & mask; bitsLeft -= 8 - bitPosition; tmp32 = tmp32 >> (8 - bitPosition); bitPosition = 0; arrayEntry++; } } bool ath9k_hw_set_rf_regs(struct ath_hw *ah, struct ath9k_channel *chan, u16 modesIndex) { u32 eepMinorRev; u32 ob5GHz = 0, db5GHz = 0; u32 ob2GHz = 0, db2GHz = 0; int regWrites = 0; if (AR_SREV_9280_10_OR_LATER(ah)) return true; eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV); RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1); RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1); RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1); RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3, modesIndex); { int i; for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) { ah->analogBank6Data[i] = INI_RA(&ah->iniBank6TPC, i, modesIndex); } } if (eepMinorRev >= 2) { if (IS_CHAN_2GHZ(chan)) { ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2); db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2); ath9k_phy_modify_rx_buffer(ah->analogBank6Data, ob2GHz, 3, 197, 0); ath9k_phy_modify_rx_buffer(ah->analogBank6Data, db2GHz, 3, 194, 0); } else { ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5); db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5); ath9k_phy_modify_rx_buffer(ah->analogBank6Data, ob5GHz, 3, 203, 0); ath9k_phy_modify_rx_buffer(ah->analogBank6Data, db5GHz, 3, 200, 0); } } RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1); REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data, regWrites); REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data, regWrites); REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data, regWrites); REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data, regWrites); REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data, regWrites); REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data, regWrites); return true; } void ath9k_hw_rfdetach(struct ath_hw *ah) { #define ATH_FREE_BANK(bank) do { \ kfree(bank); \ bank = NULL; \ } while (0); ATH_FREE_BANK(ah->analogBank0Data); ATH_FREE_BANK(ah->analogBank1Data); ATH_FREE_BANK(ah->analogBank2Data); ATH_FREE_BANK(ah->analogBank3Data); ATH_FREE_BANK(ah->analogBank6Data); ATH_FREE_BANK(ah->analogBank6TPCData); ATH_FREE_BANK(ah->analogBank7Data); ATH_FREE_BANK(ah->addac5416_21); ATH_FREE_BANK(ah->bank6Temp); #undef ATH_FREE_BANK } bool ath9k_hw_init_rf(struct ath_hw *ah, int *status) { if (!AR_SREV_9280_10_OR_LATER(ah)) { ah->analogBank0Data = kzalloc((sizeof(u32) * ah->iniBank0.ia_rows), GFP_KERNEL); ah->analogBank1Data = kzalloc((sizeof(u32) * ah->iniBank1.ia_rows), GFP_KERNEL); ah->analogBank2Data = kzalloc((sizeof(u32) * ah->iniBank2.ia_rows), GFP_KERNEL); ah->analogBank3Data = kzalloc((sizeof(u32) * ah->iniBank3.ia_rows), GFP_KERNEL); ah->analogBank6Data = kzalloc((sizeof(u32) * ah->iniBank6.ia_rows), GFP_KERNEL); ah->analogBank6TPCData = kzalloc((sizeof(u32) * ah->iniBank6TPC.ia_rows), GFP_KERNEL); ah->analogBank7Data = kzalloc((sizeof(u32) * ah->iniBank7.ia_rows), GFP_KERNEL); if (ah->analogBank0Data == NULL || ah->analogBank1Data == NULL || ah->analogBank2Data == NULL || ah->analogBank3Data == NULL || ah->analogBank6Data == NULL || ah->analogBank6TPCData == NULL || ah->analogBank7Data == NULL) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Cannot allocate RF banks\n"); *status = -ENOMEM; return false; } ah->addac5416_21 = kzalloc((sizeof(u32) * ah->iniAddac.ia_rows * ah->iniAddac.ia_columns), GFP_KERNEL); if (ah->addac5416_21 == NULL) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Cannot allocate addac5416_21\n"); *status = -ENOMEM; return false; } ah->bank6Temp = kzalloc((sizeof(u32) * ah->iniBank6.ia_rows), GFP_KERNEL); if (ah->bank6Temp == NULL) { DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Cannot allocate bank6Temp\n"); *status = -ENOMEM; return false; } } return true; } void ath9k_hw_decrease_chain_power(struct ath_hw *ah, struct ath9k_channel *chan) { int i, regWrites = 0; u32 bank6SelMask; u32 *bank6Temp = ah->bank6Temp; switch (ah->diversity_control) { case ATH9K_ANT_FIXED_A: bank6SelMask = (ah-> antenna_switch_swap & ANTSWAP_AB) ? REDUCE_CHAIN_0 : REDUCE_CHAIN_1; break; case ATH9K_ANT_FIXED_B: bank6SelMask = (ah-> antenna_switch_swap & ANTSWAP_AB) ? REDUCE_CHAIN_1 : REDUCE_CHAIN_0; break; case ATH9K_ANT_VARIABLE: return; break; default: return; break; } for (i = 0; i < ah->iniBank6.ia_rows; i++) bank6Temp[i] = ah->analogBank6Data[i]; REG_WRITE(ah, AR_PHY_BASE + 0xD8, bank6SelMask); ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 189, 0); ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 190, 0); ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 191, 0); ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 192, 0); ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 193, 0); ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 222, 0); ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 245, 0); ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 246, 0); ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 247, 0); REG_WRITE_RF_ARRAY(&ah->iniBank6, bank6Temp, regWrites); REG_WRITE(ah, AR_PHY_BASE + 0xD8, 0x00000053); #ifdef ALTER_SWITCH REG_WRITE(ah, PHY_SWITCH_CHAIN_0, (REG_READ(ah, PHY_SWITCH_CHAIN_0) & ~0x38) | ((REG_READ(ah, PHY_SWITCH_CHAIN_0) >> 3) & 0x38)); #endif }