/****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * ******************************************************************************/ #include "odm_precomp.h" /*---------------------------Define Local Constant---------------------------*/ /* 2010/04/25 MH Define the max tx power tracking tx agc power. */ #define ODM_TXPWRTRACK_MAX_IDX_88E 6 /*---------------------------Define Local Constant---------------------------*/ /* 3============================================================ */ /* 3 Tx Power Tracking */ /* 3============================================================ */ /*----------------------------------------------------------------------------- * Function: ODM_TxPwrTrackAdjust88E() * * Overview: 88E we can not write 0xc80/c94/c4c/ 0xa2x. Instead of write TX agc. * No matter OFDM & CCK use the same method. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 04/23/2012 MHC Create Version 0. * 04/23/2012 MHC Adjust TX agc directly not throughput BB digital. * *---------------------------------------------------------------------------*/ void ODM_TxPwrTrackAdjust88E(struct odm_dm_struct *dm_odm, u8 Type,/* 0 = OFDM, 1 = CCK */ u8 *pDirection, /* 1 = +(increase) 2 = -(decrease) */ u32 *pOutWriteVal /* Tx tracking CCK/OFDM BB swing index adjust */ ) { u8 pwr_value = 0; /* Tx power tracking BB swing table. */ /* The base index = 12. +((12-n)/2)dB 13~?? = decrease tx pwr by -((n-12)/2)dB */ if (Type == 0) { /* For OFDM afjust */ ODM_RT_TRACE(dm_odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("BbSwingIdxOfdm = %d BbSwingFlagOfdm=%d\n", dm_odm->BbSwingIdxOfdm, dm_odm->BbSwingFlagOfdm)); if (dm_odm->BbSwingIdxOfdm <= dm_odm->BbSwingIdxOfdmBase) { *pDirection = 1; pwr_value = (dm_odm->BbSwingIdxOfdmBase - dm_odm->BbSwingIdxOfdm); } else { *pDirection = 2; pwr_value = (dm_odm->BbSwingIdxOfdm - dm_odm->BbSwingIdxOfdmBase); } ODM_RT_TRACE(dm_odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("BbSwingIdxOfdm = %d BbSwingFlagOfdm=%d\n", dm_odm->BbSwingIdxOfdm, dm_odm->BbSwingFlagOfdm)); } else if (Type == 1) { /* For CCK adjust. */ ODM_RT_TRACE(dm_odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("dm_odm->BbSwingIdxCck = %d dm_odm->BbSwingIdxCckBase = %d\n", dm_odm->BbSwingIdxCck, dm_odm->BbSwingIdxCckBase)); if (dm_odm->BbSwingIdxCck <= dm_odm->BbSwingIdxCckBase) { *pDirection = 1; pwr_value = (dm_odm->BbSwingIdxCckBase - dm_odm->BbSwingIdxCck); } else { *pDirection = 2; pwr_value = (dm_odm->BbSwingIdxCck - dm_odm->BbSwingIdxCckBase); } } /* */ /* 2012/04/25 MH According to Ed/Luke.Lees estimate for EVM the max tx power tracking */ /* need to be less than 6 power index for 88E. */ /* */ if (pwr_value >= ODM_TXPWRTRACK_MAX_IDX_88E && *pDirection == 1) pwr_value = ODM_TXPWRTRACK_MAX_IDX_88E; *pOutWriteVal = pwr_value | (pwr_value<<8) | (pwr_value<<16) | (pwr_value<<24); } /* ODM_TxPwrTrackAdjust88E */ /*----------------------------------------------------------------------------- * Function: odm_TxPwrTrackSetPwr88E() * * Overview: 88E change all channel tx power accordign to flag. * OFDM & CCK are all different. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 04/23/2012 MHC Create Version 0. * *---------------------------------------------------------------------------*/ static void odm_TxPwrTrackSetPwr88E(struct odm_dm_struct *dm_odm) { if (dm_odm->BbSwingFlagOfdm || dm_odm->BbSwingFlagCck) { ODM_RT_TRACE(dm_odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD, ("odm_TxPwrTrackSetPwr88E CH=%d\n", *(dm_odm->pChannel))); PHY_SetTxPowerLevel8188E(dm_odm->Adapter, *(dm_odm->pChannel)); dm_odm->BbSwingFlagOfdm = false; dm_odm->BbSwingFlagCck = false; } } /* odm_TxPwrTrackSetPwr88E */ /* 091212 chiyokolin */ void odm_TXPowerTrackingCallback_ThermalMeter_8188E( struct adapter *Adapter ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter); u8 ThermalValue = 0, delta, delta_LCK, delta_IQK, offset; u8 ThermalValue_AVG_count = 0; u32 ThermalValue_AVG = 0; s32 ele_A = 0, ele_D, TempCCk, X, value32; s32 Y, ele_C = 0; s8 OFDM_index[2], CCK_index = 0; s8 OFDM_index_old[2] = {0, 0}, CCK_index_old = 0; u32 i = 0, j = 0; bool is2t = false; u8 OFDM_min_index = 6, rf; /* OFDM BB Swing should be less than +3.0dB, which is required by Arthur */ u8 Indexforchannel = 0/*GetRightChnlPlaceforIQK(pHalData->CurrentChannel)*/; s8 OFDM_index_mapping[2][index_mapping_NUM_88E] = { {0, 0, 2, 3, 4, 4, /* 2.4G, decrease power */ 5, 6, 7, 7, 8, 9, 10, 10, 11}, /* For lower temperature, 20120220 updated on 20120220. */ {0, 0, -1, -2, -3, -4, /* 2.4G, increase power */ -4, -4, -4, -5, -7, -8, -9, -9, -10}, }; u8 Thermal_mapping[2][index_mapping_NUM_88E] = { {0, 2, 4, 6, 8, 10, /* 2.4G, decrease power */ 12, 14, 16, 18, 20, 22, 24, 26, 27}, {0, 2, 4, 6, 8, 10, /* 2.4G,, increase power */ 12, 14, 16, 18, 20, 22, 25, 25, 25}, }; struct odm_dm_struct *dm_odm = &pHalData->odmpriv; /* 2012/04/25 MH Add for tx power tracking to set tx power in tx agc for 88E. */ odm_TxPwrTrackSetPwr88E(dm_odm); dm_odm->RFCalibrateInfo.TXPowerTrackingCallbackCnt++; /* cosa add for debug */ dm_odm->RFCalibrateInfo.bTXPowerTrackingInit = true; /* RFCalibrateInfo.RegA24 will be initialized when ODM HW configuring, but MP configures with para files. */ dm_odm->RFCalibrateInfo.RegA24 = 0x090e1317; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("===>dm_TXPowerTrackingCallback_ThermalMeter_8188E txpowercontrol %d\n", dm_odm->RFCalibrateInfo.TxPowerTrackControl)); ThermalValue = (u8)ODM_GetRFReg(dm_odm, RF_PATH_A, RF_T_METER_88E, 0xfc00); /* 0x42: RF Reg[15:10] 88E */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Readback Thermal Meter = 0x%x pre thermal meter 0x%x EEPROMthermalmeter 0x%x\n", ThermalValue, dm_odm->RFCalibrateInfo.ThermalValue, pHalData->EEPROMThermalMeter)); if (is2t) rf = 2; else rf = 1; if (ThermalValue) { /* Query OFDM path A default setting */ ele_D = ODM_GetBBReg(dm_odm, rOFDM0_XATxIQImbalance, bMaskDWord)&bMaskOFDM_D; for (i = 0; i < OFDM_TABLE_SIZE_92D; i++) { /* find the index */ if (ele_D == (OFDMSwingTable[i]&bMaskOFDM_D)) { OFDM_index_old[0] = (u8)i; dm_odm->BbSwingIdxOfdmBase = (u8)i; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Initial pathA ele_D reg0x%x = 0x%x, OFDM_index=0x%x\n", rOFDM0_XATxIQImbalance, ele_D, OFDM_index_old[0])); break; } } /* Query OFDM path B default setting */ if (is2t) { ele_D = ODM_GetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, bMaskDWord)&bMaskOFDM_D; for (i = 0; i < OFDM_TABLE_SIZE_92D; i++) { /* find the index */ if (ele_D == (OFDMSwingTable[i]&bMaskOFDM_D)) { OFDM_index_old[1] = (u8)i; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Initial pathB ele_D reg0x%x = 0x%x, OFDM_index=0x%x\n", rOFDM0_XBTxIQImbalance, ele_D, OFDM_index_old[1])); break; } } } /* Query CCK default setting From 0xa24 */ TempCCk = dm_odm->RFCalibrateInfo.RegA24; for (i = 0; i < CCK_TABLE_SIZE; i++) { if (dm_odm->RFCalibrateInfo.bCCKinCH14) { if (ODM_CompareMemory(dm_odm, (void *)&TempCCk, (void *)&CCKSwingTable_Ch14[i][2], 4) == 0) { CCK_index_old = (u8)i; dm_odm->BbSwingIdxCckBase = (u8)i; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Initial reg0x%x = 0x%x, CCK_index=0x%x, ch 14 %d\n", rCCK0_TxFilter2, TempCCk, CCK_index_old, dm_odm->RFCalibrateInfo.bCCKinCH14)); break; } } else { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("RegA24: 0x%X, CCKSwingTable_Ch1_Ch13[%d][2]: CCKSwingTable_Ch1_Ch13[i][2]: 0x%X\n", TempCCk, i, CCKSwingTable_Ch1_Ch13[i][2])); if (ODM_CompareMemory(dm_odm, (void *)&TempCCk, (void *)&CCKSwingTable_Ch1_Ch13[i][2], 4) == 0) { CCK_index_old = (u8)i; dm_odm->BbSwingIdxCckBase = (u8)i; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Initial reg0x%x = 0x%x, CCK_index=0x%x, ch14 %d\n", rCCK0_TxFilter2, TempCCk, CCK_index_old, dm_odm->RFCalibrateInfo.bCCKinCH14)); break; } } } if (!dm_odm->RFCalibrateInfo.ThermalValue) { dm_odm->RFCalibrateInfo.ThermalValue = pHalData->EEPROMThermalMeter; dm_odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue; dm_odm->RFCalibrateInfo.ThermalValue_IQK = ThermalValue; for (i = 0; i < rf; i++) dm_odm->RFCalibrateInfo.OFDM_index[i] = OFDM_index_old[i]; dm_odm->RFCalibrateInfo.CCK_index = CCK_index_old; } if (dm_odm->RFCalibrateInfo.bReloadtxpowerindex) ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("reload ofdm index for band switch\n")); /* calculate average thermal meter */ dm_odm->RFCalibrateInfo.ThermalValue_AVG[dm_odm->RFCalibrateInfo.ThermalValue_AVG_index] = ThermalValue; dm_odm->RFCalibrateInfo.ThermalValue_AVG_index++; if (dm_odm->RFCalibrateInfo.ThermalValue_AVG_index == AVG_THERMAL_NUM_88E) dm_odm->RFCalibrateInfo.ThermalValue_AVG_index = 0; for (i = 0; i < AVG_THERMAL_NUM_88E; i++) { if (dm_odm->RFCalibrateInfo.ThermalValue_AVG[i]) { ThermalValue_AVG += dm_odm->RFCalibrateInfo.ThermalValue_AVG[i]; ThermalValue_AVG_count++; } } if (ThermalValue_AVG_count) { ThermalValue = (u8)(ThermalValue_AVG / ThermalValue_AVG_count); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("AVG Thermal Meter = 0x%x\n", ThermalValue)); } if (dm_odm->RFCalibrateInfo.bReloadtxpowerindex) { delta = ThermalValue > pHalData->EEPROMThermalMeter ? (ThermalValue - pHalData->EEPROMThermalMeter) : (pHalData->EEPROMThermalMeter - ThermalValue); dm_odm->RFCalibrateInfo.bReloadtxpowerindex = false; dm_odm->RFCalibrateInfo.bDoneTxpower = false; } else if (dm_odm->RFCalibrateInfo.bDoneTxpower) { delta = (ThermalValue > dm_odm->RFCalibrateInfo.ThermalValue) ? (ThermalValue - dm_odm->RFCalibrateInfo.ThermalValue) : (dm_odm->RFCalibrateInfo.ThermalValue - ThermalValue); } else { delta = ThermalValue > pHalData->EEPROMThermalMeter ? (ThermalValue - pHalData->EEPROMThermalMeter) : (pHalData->EEPROMThermalMeter - ThermalValue); } delta_LCK = (ThermalValue > dm_odm->RFCalibrateInfo.ThermalValue_LCK) ? (ThermalValue - dm_odm->RFCalibrateInfo.ThermalValue_LCK) : (dm_odm->RFCalibrateInfo.ThermalValue_LCK - ThermalValue); delta_IQK = (ThermalValue > dm_odm->RFCalibrateInfo.ThermalValue_IQK) ? (ThermalValue - dm_odm->RFCalibrateInfo.ThermalValue_IQK) : (dm_odm->RFCalibrateInfo.ThermalValue_IQK - ThermalValue); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Readback Thermal Meter = 0x%x pre thermal meter 0x%x EEPROMthermalmeter 0x%x delta 0x%x delta_LCK 0x%x delta_IQK 0x%x\n", ThermalValue, dm_odm->RFCalibrateInfo.ThermalValue, pHalData->EEPROMThermalMeter, delta, delta_LCK, delta_IQK)); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("pre thermal meter LCK 0x%x pre thermal meter IQK 0x%x delta_LCK_bound 0x%x delta_IQK_bound 0x%x\n", dm_odm->RFCalibrateInfo.ThermalValue_LCK, dm_odm->RFCalibrateInfo.ThermalValue_IQK, dm_odm->RFCalibrateInfo.Delta_LCK, dm_odm->RFCalibrateInfo.Delta_IQK)); if ((delta_LCK >= 8)) { /* Delta temperature is equal to or larger than 20 centigrade. */ dm_odm->RFCalibrateInfo.ThermalValue_LCK = ThermalValue; PHY_LCCalibrate_8188E(Adapter); } if (delta > 0 && dm_odm->RFCalibrateInfo.TxPowerTrackControl) { delta = ThermalValue > pHalData->EEPROMThermalMeter ? (ThermalValue - pHalData->EEPROMThermalMeter) : (pHalData->EEPROMThermalMeter - ThermalValue); /* calculate new OFDM / CCK offset */ if (ThermalValue > pHalData->EEPROMThermalMeter) j = 1; else j = 0; for (offset = 0; offset < index_mapping_NUM_88E; offset++) { if (delta < Thermal_mapping[j][offset]) { if (offset != 0) offset--; break; } } if (offset >= index_mapping_NUM_88E) offset = index_mapping_NUM_88E-1; for (i = 0; i < rf; i++) OFDM_index[i] = dm_odm->RFCalibrateInfo.OFDM_index[i] + OFDM_index_mapping[j][offset]; CCK_index = dm_odm->RFCalibrateInfo.CCK_index + OFDM_index_mapping[j][offset]; if (is2t) { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("temp OFDM_A_index=0x%x, OFDM_B_index=0x%x, CCK_index=0x%x\n", dm_odm->RFCalibrateInfo.OFDM_index[0], dm_odm->RFCalibrateInfo.OFDM_index[1], dm_odm->RFCalibrateInfo.CCK_index)); } else { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("temp OFDM_A_index=0x%x, CCK_index=0x%x\n", dm_odm->RFCalibrateInfo.OFDM_index[0], dm_odm->RFCalibrateInfo.CCK_index)); } for (i = 0; i < rf; i++) { if (OFDM_index[i] > OFDM_TABLE_SIZE_92D-1) OFDM_index[i] = OFDM_TABLE_SIZE_92D-1; else if (OFDM_index[i] < OFDM_min_index) OFDM_index[i] = OFDM_min_index; } if (CCK_index > CCK_TABLE_SIZE-1) CCK_index = CCK_TABLE_SIZE-1; else if (CCK_index < 0) CCK_index = 0; if (is2t) { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("new OFDM_A_index=0x%x, OFDM_B_index=0x%x, CCK_index=0x%x\n", OFDM_index[0], OFDM_index[1], CCK_index)); } else { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("new OFDM_A_index=0x%x, CCK_index=0x%x\n", OFDM_index[0], CCK_index)); } /* 2 temporarily remove bNOPG */ /* Config by SwingTable */ if (dm_odm->RFCalibrateInfo.TxPowerTrackControl) { dm_odm->RFCalibrateInfo.bDoneTxpower = true; /* Adujst OFDM Ant_A according to IQK result */ ele_D = (OFDMSwingTable[(u8)OFDM_index[0]] & 0xFFC00000)>>22; X = dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[Indexforchannel].Value[0][0]; Y = dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[Indexforchannel].Value[0][1]; /* Revse TX power table. */ dm_odm->BbSwingIdxOfdm = (u8)OFDM_index[0]; dm_odm->BbSwingIdxCck = (u8)CCK_index; if (dm_odm->BbSwingIdxOfdmCurrent != dm_odm->BbSwingIdxOfdm) { dm_odm->BbSwingIdxOfdmCurrent = dm_odm->BbSwingIdxOfdm; dm_odm->BbSwingFlagOfdm = true; } if (dm_odm->BbSwingIdxCckCurrent != dm_odm->BbSwingIdxCck) { dm_odm->BbSwingIdxCckCurrent = dm_odm->BbSwingIdxCck; dm_odm->BbSwingFlagCck = true; } if (X != 0) { if ((X & 0x00000200) != 0) X = X | 0xFFFFFC00; ele_A = ((X * ele_D)>>8)&0x000003FF; /* new element C = element D x Y */ if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; ele_C = ((Y * ele_D)>>8)&0x000003FF; /* 2012/04/23 MH According to Luke's suggestion, we can not write BB digital */ /* to increase TX power. Otherwise, EVM will be bad. */ } ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("TxPwrTracking for path A: X=0x%x, Y=0x%x ele_A=0x%x ele_C=0x%x ele_D=0x%x 0xe94=0x%x 0xe9c=0x%x\n", (u32)X, (u32)Y, (u32)ele_A, (u32)ele_C, (u32)ele_D, (u32)X, (u32)Y)); if (is2t) { ele_D = (OFDMSwingTable[(u8)OFDM_index[1]] & 0xFFC00000)>>22; /* new element A = element D x X */ X = dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[Indexforchannel].Value[0][4]; Y = dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[Indexforchannel].Value[0][5]; if ((X != 0) && (*(dm_odm->pBandType) == ODM_BAND_2_4G)) { if ((X & 0x00000200) != 0) /* consider minus */ X = X | 0xFFFFFC00; ele_A = ((X * ele_D)>>8)&0x000003FF; /* new element C = element D x Y */ if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; ele_C = ((Y * ele_D)>>8)&0x00003FF; /* wtite new elements A, C, D to regC88 and regC9C, element B is always 0 */ value32 = (ele_D<<22) | ((ele_C&0x3F)<<16) | ele_A; ODM_SetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, bMaskDWord, value32); value32 = (ele_C&0x000003C0)>>6; ODM_SetBBReg(dm_odm, rOFDM0_XDTxAFE, bMaskH4Bits, value32); value32 = ((X * ele_D)>>7)&0x01; ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT28, value32); } else { ODM_SetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, bMaskDWord, OFDMSwingTable[(u8)OFDM_index[1]]); ODM_SetBBReg(dm_odm, rOFDM0_XDTxAFE, bMaskH4Bits, 0x00); ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT28, 0x00); } ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("TxPwrTracking path B: X=0x%x, Y=0x%x ele_A=0x%x ele_C=0x%x ele_D=0x%x 0xeb4=0x%x 0xebc=0x%x\n", (u32)X, (u32)Y, (u32)ele_A, (u32)ele_C, (u32)ele_D, (u32)X, (u32)Y)); } ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("TxPwrTracking 0xc80 = 0x%x, 0xc94 = 0x%x RF 0x24 = 0x%x\n", ODM_GetBBReg(dm_odm, 0xc80, bMaskDWord), ODM_GetBBReg(dm_odm, 0xc94, bMaskDWord), ODM_GetRFReg(dm_odm, RF_PATH_A, 0x24, bRFRegOffsetMask))); } } if (delta_IQK >= 8) { /* Delta temperature is equal to or larger than 20 centigrade. */ ODM_ResetIQKResult(dm_odm); dm_odm->RFCalibrateInfo.ThermalValue_IQK = ThermalValue; PHY_IQCalibrate_8188E(Adapter, false); } /* update thermal meter value */ if (dm_odm->RFCalibrateInfo.TxPowerTrackControl) dm_odm->RFCalibrateInfo.ThermalValue = ThermalValue; } ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("<===dm_TXPowerTrackingCallback_ThermalMeter_8188E\n")); dm_odm->RFCalibrateInfo.TXPowercount = 0; } /* 1 7. IQK */ #define MAX_TOLERANCE 5 #define IQK_DELAY_TIME 1 /* ms */ static u8 /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */ phy_PathA_IQK_8188E(struct adapter *adapt, bool configPathB) { u32 regeac, regE94, regE9C, regEA4; u8 result = 0x00; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A IQK!\n")); /* 1 Tx IQK */ /* path-A IQK setting */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path-A IQK setting!\n")); ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1c); ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x30008c1c); ODM_SetBBReg(dm_odm, rTx_IQK_PI_A, bMaskDWord, 0x8214032a); ODM_SetBBReg(dm_odm, rRx_IQK_PI_A, bMaskDWord, 0x28160000); /* LO calibration setting */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("LO calibration setting!\n")); ODM_SetBBReg(dm_odm, rIQK_AGC_Rsp, bMaskDWord, 0x00462911); /* One shot, path A LOK & IQK */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("One shot, path A LOK & IQK!\n")); ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf9000000); ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf8000000); /* delay x ms */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Delay %d ms for One shot, path A LOK & IQK.\n", IQK_DELAY_TIME_88E)); /* PlatformStallExecution(IQK_DELAY_TIME_88E*1000); */ ODM_delay_ms(IQK_DELAY_TIME_88E); /* Check failed */ regeac = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xeac = 0x%x\n", regeac)); regE94 = ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_A, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe94 = 0x%x\n", regE94)); regE9C = ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_A, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe9c = 0x%x\n", regE9C)); regEA4 = ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_A_2, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xea4 = 0x%x\n", regEA4)); if (!(regeac & BIT28) && (((regE94 & 0x03FF0000)>>16) != 0x142) && (((regE9C & 0x03FF0000)>>16) != 0x42)) result |= 0x01; return result; } static u8 /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */ phy_PathA_RxIQK(struct adapter *adapt, bool configPathB) { u32 regeac, regE94, regE9C, regEA4, u4tmp; u8 result = 0x00; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A Rx IQK!\n")); /* 1 Get TXIMR setting */ /* modify RXIQK mode table */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path-A Rx IQK modify RXIQK mode table!\n")); ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x00000000); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_WE_LUT, bRFRegOffsetMask, 0x800a0); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_RCK_OS, bRFRegOffsetMask, 0x30000); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_TXPA_G1, bRFRegOffsetMask, 0x0000f); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_TXPA_G2, bRFRegOffsetMask, 0xf117B); /* PA,PAD off */ ODM_SetRFReg(dm_odm, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x980); ODM_SetRFReg(dm_odm, RF_PATH_A, 0x56, bRFRegOffsetMask, 0x51000); ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80800000); /* IQK setting */ ODM_SetBBReg(dm_odm, rTx_IQK, bMaskDWord, 0x01007c00); ODM_SetBBReg(dm_odm, rRx_IQK, bMaskDWord, 0x81004800); /* path-A IQK setting */ ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1c); ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x30008c1c); ODM_SetBBReg(dm_odm, rTx_IQK_PI_A, bMaskDWord, 0x82160c1f); ODM_SetBBReg(dm_odm, rRx_IQK_PI_A, bMaskDWord, 0x28160000); /* LO calibration setting */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("LO calibration setting!\n")); ODM_SetBBReg(dm_odm, rIQK_AGC_Rsp, bMaskDWord, 0x0046a911); /* One shot, path A LOK & IQK */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("One shot, path A LOK & IQK!\n")); ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf9000000); ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf8000000); /* delay x ms */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Delay %d ms for One shot, path A LOK & IQK.\n", IQK_DELAY_TIME_88E)); ODM_delay_ms(IQK_DELAY_TIME_88E); /* Check failed */ regeac = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xeac = 0x%x\n", regeac)); regE94 = ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_A, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe94 = 0x%x\n", regE94)); regE9C = ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_A, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe9c = 0x%x\n", regE9C)); if (!(regeac & BIT28) && (((regE94 & 0x03FF0000)>>16) != 0x142) && (((regE9C & 0x03FF0000)>>16) != 0x42)) result |= 0x01; else /* if Tx not OK, ignore Rx */ return result; u4tmp = 0x80007C00 | (regE94&0x3FF0000) | ((regE9C&0x3FF0000) >> 16); ODM_SetBBReg(dm_odm, rTx_IQK, bMaskDWord, u4tmp); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe40 = 0x%x u4tmp = 0x%x\n", ODM_GetBBReg(dm_odm, rTx_IQK, bMaskDWord), u4tmp)); /* 1 RX IQK */ /* modify RXIQK mode table */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path-A Rx IQK modify RXIQK mode table 2!\n")); ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x00000000); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_WE_LUT, bRFRegOffsetMask, 0x800a0); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_RCK_OS, bRFRegOffsetMask, 0x30000); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_TXPA_G1, bRFRegOffsetMask, 0x0000f); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_TXPA_G2, bRFRegOffsetMask, 0xf7ffa); ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80800000); /* IQK setting */ ODM_SetBBReg(dm_odm, rRx_IQK, bMaskDWord, 0x01004800); /* path-A IQK setting */ ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x38008c1c); ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x18008c1c); ODM_SetBBReg(dm_odm, rTx_IQK_PI_A, bMaskDWord, 0x82160c05); ODM_SetBBReg(dm_odm, rRx_IQK_PI_A, bMaskDWord, 0x28160c1f); /* LO calibration setting */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("LO calibration setting!\n")); ODM_SetBBReg(dm_odm, rIQK_AGC_Rsp, bMaskDWord, 0x0046a911); /* One shot, path A LOK & IQK */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("One shot, path A LOK & IQK!\n")); ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf9000000); ODM_SetBBReg(dm_odm, rIQK_AGC_Pts, bMaskDWord, 0xf8000000); /* delay x ms */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Delay %d ms for One shot, path A LOK & IQK.\n", IQK_DELAY_TIME_88E)); /* PlatformStallExecution(IQK_DELAY_TIME_88E*1000); */ ODM_delay_ms(IQK_DELAY_TIME_88E); /* Check failed */ regeac = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xeac = 0x%x\n", regeac)); regE94 = ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_A, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe94 = 0x%x\n", regE94)); regE9C = ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_A, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xe9c = 0x%x\n", regE9C)); regEA4 = ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_A_2, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xea4 = 0x%x\n", regEA4)); /* reload RF 0xdf */ ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x00000000); ODM_SetRFReg(dm_odm, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x180); if (!(regeac & BIT27) && /* if Tx is OK, check whether Rx is OK */ (((regEA4 & 0x03FF0000)>>16) != 0x132) && (((regeac & 0x03FF0000)>>16) != 0x36)) result |= 0x02; else ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A Rx IQK fail!!\n")); return result; } static u8 /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */ phy_PathB_IQK_8188E(struct adapter *adapt) { u32 regeac, regeb4, regebc, regec4, regecc; u8 result = 0x00; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path B IQK!\n")); /* One shot, path B LOK & IQK */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("One shot, path A LOK & IQK!\n")); ODM_SetBBReg(dm_odm, rIQK_AGC_Cont, bMaskDWord, 0x00000002); ODM_SetBBReg(dm_odm, rIQK_AGC_Cont, bMaskDWord, 0x00000000); /* delay x ms */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Delay %d ms for One shot, path B LOK & IQK.\n", IQK_DELAY_TIME_88E)); ODM_delay_ms(IQK_DELAY_TIME_88E); /* Check failed */ regeac = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xeac = 0x%x\n", regeac)); regeb4 = ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_B, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xeb4 = 0x%x\n", regeb4)); regebc = ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_B, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xebc = 0x%x\n", regebc)); regec4 = ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_B_2, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xec4 = 0x%x\n", regec4)); regecc = ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_B_2, bMaskDWord); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("0xecc = 0x%x\n", regecc)); if (!(regeac & BIT31) && (((regeb4 & 0x03FF0000)>>16) != 0x142) && (((regebc & 0x03FF0000)>>16) != 0x42)) result |= 0x01; else return result; if (!(regeac & BIT30) && (((regec4 & 0x03FF0000)>>16) != 0x132) && (((regecc & 0x03FF0000)>>16) != 0x36)) result |= 0x02; else ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path B Rx IQK fail!!\n")); return result; } static void patha_fill_iqk(struct adapter *adapt, bool iqkok, s32 result[][8], u8 final_candidate, bool txonly) { u32 Oldval_0, X, TX0_A, reg; s32 Y, TX0_C; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A IQ Calibration %s !\n", (iqkok) ? "Success" : "Failed")); if (final_candidate == 0xFF) { return; } else if (iqkok) { Oldval_0 = (ODM_GetBBReg(dm_odm, rOFDM0_XATxIQImbalance, bMaskDWord) >> 22) & 0x3FF; X = result[final_candidate][0]; if ((X & 0x00000200) != 0) X = X | 0xFFFFFC00; TX0_A = (X * Oldval_0) >> 8; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("X = 0x%x, TX0_A = 0x%x, Oldval_0 0x%x\n", X, TX0_A, Oldval_0)); ODM_SetBBReg(dm_odm, rOFDM0_XATxIQImbalance, 0x3FF, TX0_A); ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(31), ((X * Oldval_0>>7) & 0x1)); Y = result[final_candidate][1]; if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; TX0_C = (Y * Oldval_0) >> 8; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Y = 0x%x, TX = 0x%x\n", Y, TX0_C)); ODM_SetBBReg(dm_odm, rOFDM0_XCTxAFE, 0xF0000000, ((TX0_C&0x3C0)>>6)); ODM_SetBBReg(dm_odm, rOFDM0_XATxIQImbalance, 0x003F0000, (TX0_C&0x3F)); ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(29), ((Y * Oldval_0>>7) & 0x1)); if (txonly) { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("patha_fill_iqk only Tx OK\n")); return; } reg = result[final_candidate][2]; ODM_SetBBReg(dm_odm, rOFDM0_XARxIQImbalance, 0x3FF, reg); reg = result[final_candidate][3] & 0x3F; ODM_SetBBReg(dm_odm, rOFDM0_XARxIQImbalance, 0xFC00, reg); reg = (result[final_candidate][3] >> 6) & 0xF; ODM_SetBBReg(dm_odm, rOFDM0_RxIQExtAnta, 0xF0000000, reg); } } static void pathb_fill_iqk(struct adapter *adapt, bool iqkok, s32 result[][8], u8 final_candidate, bool txonly) { u32 Oldval_1, X, TX1_A, reg; s32 Y, TX1_C; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path B IQ Calibration %s !\n", (iqkok) ? "Success" : "Failed")); if (final_candidate == 0xFF) { return; } else if (iqkok) { Oldval_1 = (ODM_GetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, bMaskDWord) >> 22) & 0x3FF; X = result[final_candidate][4]; if ((X & 0x00000200) != 0) X = X | 0xFFFFFC00; TX1_A = (X * Oldval_1) >> 8; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("X = 0x%x, TX1_A = 0x%x\n", X, TX1_A)); ODM_SetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, 0x3FF, TX1_A); ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(27), ((X * Oldval_1>>7) & 0x1)); Y = result[final_candidate][5]; if ((Y & 0x00000200) != 0) Y = Y | 0xFFFFFC00; TX1_C = (Y * Oldval_1) >> 8; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Y = 0x%x, TX1_C = 0x%x\n", Y, TX1_C)); ODM_SetBBReg(dm_odm, rOFDM0_XDTxAFE, 0xF0000000, ((TX1_C&0x3C0)>>6)); ODM_SetBBReg(dm_odm, rOFDM0_XBTxIQImbalance, 0x003F0000, (TX1_C&0x3F)); ODM_SetBBReg(dm_odm, rOFDM0_ECCAThreshold, BIT(25), ((Y * Oldval_1>>7) & 0x1)); if (txonly) return; reg = result[final_candidate][6]; ODM_SetBBReg(dm_odm, rOFDM0_XBRxIQImbalance, 0x3FF, reg); reg = result[final_candidate][7] & 0x3F; ODM_SetBBReg(dm_odm, rOFDM0_XBRxIQImbalance, 0xFC00, reg); reg = (result[final_candidate][7] >> 6) & 0xF; ODM_SetBBReg(dm_odm, rOFDM0_AGCRSSITable, 0x0000F000, reg); } } /* */ /* 2011/07/26 MH Add an API for testing IQK fail case. */ /* */ /* MP Already declare in odm.c */ static bool ODM_CheckPowerStatus(struct adapter *Adapter) { return true; } void _PHY_SaveADDARegisters(struct adapter *adapt, u32 *ADDAReg, u32 *ADDABackup, u32 RegisterNum) { u32 i; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; if (ODM_CheckPowerStatus(adapt) == false) return; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Save ADDA parameters.\n")); for (i = 0; i < RegisterNum; i++) { ADDABackup[i] = ODM_GetBBReg(dm_odm, ADDAReg[i], bMaskDWord); } } static void _PHY_SaveMACRegisters( struct adapter *adapt, u32 *MACReg, u32 *MACBackup ) { u32 i; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Save MAC parameters.\n")); for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++) { MACBackup[i] = ODM_Read1Byte(dm_odm, MACReg[i]); } MACBackup[i] = ODM_Read4Byte(dm_odm, MACReg[i]); } static void reload_adda_reg(struct adapter *adapt, u32 *ADDAReg, u32 *ADDABackup, u32 RegiesterNum) { u32 i; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Reload ADDA power saving parameters !\n")); for (i = 0; i < RegiesterNum; i++) ODM_SetBBReg(dm_odm, ADDAReg[i], bMaskDWord, ADDABackup[i]); } static void _PHY_ReloadMACRegisters( struct adapter *adapt, u32 *MACReg, u32 *MACBackup ) { u32 i; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Reload MAC parameters !\n")); for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++) { ODM_Write1Byte(dm_odm, MACReg[i], (u8)MACBackup[i]); } ODM_Write4Byte(dm_odm, MACReg[i], MACBackup[i]); } void _PHY_PathADDAOn( struct adapter *adapt, u32 *ADDAReg, bool isPathAOn, bool is2t ) { u32 pathOn; u32 i; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("ADDA ON.\n")); pathOn = isPathAOn ? 0x04db25a4 : 0x0b1b25a4; if (false == is2t) { pathOn = 0x0bdb25a0; ODM_SetBBReg(dm_odm, ADDAReg[0], bMaskDWord, 0x0b1b25a0); } else { ODM_SetBBReg(dm_odm, ADDAReg[0], bMaskDWord, pathOn); } for (i = 1; i < IQK_ADDA_REG_NUM; i++) ODM_SetBBReg(dm_odm, ADDAReg[i], bMaskDWord, pathOn); } void _PHY_MACSettingCalibration( struct adapter *adapt, u32 *MACReg, u32 *MACBackup ) { u32 i = 0; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("MAC settings for Calibration.\n")); ODM_Write1Byte(dm_odm, MACReg[i], 0x3F); for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++) { ODM_Write1Byte(dm_odm, MACReg[i], (u8)(MACBackup[i]&(~BIT3))); } ODM_Write1Byte(dm_odm, MACReg[i], (u8)(MACBackup[i]&(~BIT5))); } void _PHY_PathAStandBy( struct adapter *adapt ) { struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path-A standby mode!\n")); ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x0); ODM_SetBBReg(dm_odm, 0x840, bMaskDWord, 0x00010000); ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80800000); } static void _PHY_PIModeSwitch( struct adapter *adapt, bool PIMode ) { u32 mode; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("BB Switch to %s mode!\n", (PIMode ? "PI" : "SI"))); mode = PIMode ? 0x01000100 : 0x01000000; ODM_SetBBReg(dm_odm, rFPGA0_XA_HSSIParameter1, bMaskDWord, mode); ODM_SetBBReg(dm_odm, rFPGA0_XB_HSSIParameter1, bMaskDWord, mode); } static bool phy_SimularityCompare_8188E( struct adapter *adapt, s32 resulta[][8], u8 c1, u8 c2 ) { u32 i, j, diff, sim_bitmap, bound = 0; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; u8 final_candidate[2] = {0xFF, 0xFF}; /* for path A and path B */ bool result = true; bool is2t; s32 tmp1 = 0, tmp2 = 0; if ((dm_odm->RFType == ODM_2T2R) || (dm_odm->RFType == ODM_2T3R) || (dm_odm->RFType == ODM_2T4R)) is2t = true; else is2t = false; if (is2t) bound = 8; else bound = 4; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("===> IQK:phy_SimularityCompare_8188E c1 %d c2 %d!!!\n", c1, c2)); sim_bitmap = 0; for (i = 0; i < bound; i++) { if ((i == 1) || (i == 3) || (i == 5) || (i == 7)) { if ((resulta[c1][i] & 0x00000200) != 0) tmp1 = resulta[c1][i] | 0xFFFFFC00; else tmp1 = resulta[c1][i]; if ((resulta[c2][i] & 0x00000200) != 0) tmp2 = resulta[c2][i] | 0xFFFFFC00; else tmp2 = resulta[c2][i]; } else { tmp1 = resulta[c1][i]; tmp2 = resulta[c2][i]; } diff = (tmp1 > tmp2) ? (tmp1 - tmp2) : (tmp2 - tmp1); if (diff > MAX_TOLERANCE) { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK:phy_SimularityCompare_8188E differnece overflow index %d compare1 0x%x compare2 0x%x!!!\n", i, resulta[c1][i], resulta[c2][i])); if ((i == 2 || i == 6) && !sim_bitmap) { if (resulta[c1][i] + resulta[c1][i+1] == 0) final_candidate[(i/4)] = c2; else if (resulta[c2][i] + resulta[c2][i+1] == 0) final_candidate[(i/4)] = c1; else sim_bitmap = sim_bitmap | (1<odmpriv; u32 i; u8 PathAOK, PathBOK; u32 ADDA_REG[IQK_ADDA_REG_NUM] = { rFPGA0_XCD_SwitchControl, rBlue_Tooth, rRx_Wait_CCA, rTx_CCK_RFON, rTx_CCK_BBON, rTx_OFDM_RFON, rTx_OFDM_BBON, rTx_To_Rx, rTx_To_Tx, rRx_CCK, rRx_OFDM, rRx_Wait_RIFS, rRx_TO_Rx, rStandby, rSleep, rPMPD_ANAEN }; u32 IQK_MAC_REG[IQK_MAC_REG_NUM] = { REG_TXPAUSE, REG_BCN_CTRL, REG_BCN_CTRL_1, REG_GPIO_MUXCFG}; /* since 92C & 92D have the different define in IQK_BB_REG */ u32 IQK_BB_REG_92C[IQK_BB_REG_NUM] = { rOFDM0_TRxPathEnable, rOFDM0_TRMuxPar, rFPGA0_XCD_RFInterfaceSW, rConfig_AntA, rConfig_AntB, rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE, rFPGA0_XB_RFInterfaceOE, rFPGA0_RFMOD }; u32 retryCount = 9; if (*(dm_odm->mp_mode) == 1) retryCount = 9; else retryCount = 2; /* Note: IQ calibration must be performed after loading */ /* PHY_REG.txt , and radio_a, radio_b.txt */ if (t == 0) { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQ Calibration for %s for %d times\n", (is2t ? "2T2R" : "1T1R"), t)); /* Save ADDA parameters, turn Path A ADDA on */ _PHY_SaveADDARegisters(adapt, ADDA_REG, dm_odm->RFCalibrateInfo.ADDA_backup, IQK_ADDA_REG_NUM); _PHY_SaveMACRegisters(adapt, IQK_MAC_REG, dm_odm->RFCalibrateInfo.IQK_MAC_backup); _PHY_SaveADDARegisters(adapt, IQK_BB_REG_92C, dm_odm->RFCalibrateInfo.IQK_BB_backup, IQK_BB_REG_NUM); } ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQ Calibration for %s for %d times\n", (is2t ? "2T2R" : "1T1R"), t)); _PHY_PathADDAOn(adapt, ADDA_REG, true, is2t); if (t == 0) dm_odm->RFCalibrateInfo.bRfPiEnable = (u8)ODM_GetBBReg(dm_odm, rFPGA0_XA_HSSIParameter1, BIT(8)); if (!dm_odm->RFCalibrateInfo.bRfPiEnable) { /* Switch BB to PI mode to do IQ Calibration. */ _PHY_PIModeSwitch(adapt, true); } /* BB setting */ ODM_SetBBReg(dm_odm, rFPGA0_RFMOD, BIT24, 0x00); ODM_SetBBReg(dm_odm, rOFDM0_TRxPathEnable, bMaskDWord, 0x03a05600); ODM_SetBBReg(dm_odm, rOFDM0_TRMuxPar, bMaskDWord, 0x000800e4); ODM_SetBBReg(dm_odm, rFPGA0_XCD_RFInterfaceSW, bMaskDWord, 0x22204000); ODM_SetBBReg(dm_odm, rFPGA0_XAB_RFInterfaceSW, BIT10, 0x01); ODM_SetBBReg(dm_odm, rFPGA0_XAB_RFInterfaceSW, BIT26, 0x01); ODM_SetBBReg(dm_odm, rFPGA0_XA_RFInterfaceOE, BIT10, 0x00); ODM_SetBBReg(dm_odm, rFPGA0_XB_RFInterfaceOE, BIT10, 0x00); if (is2t) { ODM_SetBBReg(dm_odm, rFPGA0_XA_LSSIParameter, bMaskDWord, 0x00010000); ODM_SetBBReg(dm_odm, rFPGA0_XB_LSSIParameter, bMaskDWord, 0x00010000); } /* MAC settings */ _PHY_MACSettingCalibration(adapt, IQK_MAC_REG, dm_odm->RFCalibrateInfo.IQK_MAC_backup); /* Page B init */ /* AP or IQK */ ODM_SetBBReg(dm_odm, rConfig_AntA, bMaskDWord, 0x0f600000); if (is2t) ODM_SetBBReg(dm_odm, rConfig_AntB, bMaskDWord, 0x0f600000); /* IQ calibration setting */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK setting!\n")); ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80800000); ODM_SetBBReg(dm_odm, rTx_IQK, bMaskDWord, 0x01007c00); ODM_SetBBReg(dm_odm, rRx_IQK, bMaskDWord, 0x81004800); for (i = 0; i < retryCount; i++) { PathAOK = phy_PathA_IQK_8188E(adapt, is2t); if (PathAOK == 0x01) { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A Tx IQK Success!!\n")); result[t][0] = (ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_A, bMaskDWord)&0x3FF0000)>>16; result[t][1] = (ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_A, bMaskDWord)&0x3FF0000)>>16; break; } } for (i = 0; i < retryCount; i++) { PathAOK = phy_PathA_RxIQK(adapt, is2t); if (PathAOK == 0x03) { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A Rx IQK Success!!\n")); result[t][2] = (ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_A_2, bMaskDWord)&0x3FF0000)>>16; result[t][3] = (ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_A_2, bMaskDWord)&0x3FF0000)>>16; break; } else { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A Rx IQK Fail!!\n")); } } if (0x00 == PathAOK) { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path A IQK failed!!\n")); } if (is2t) { _PHY_PathAStandBy(adapt); /* Turn Path B ADDA on */ _PHY_PathADDAOn(adapt, ADDA_REG, false, is2t); for (i = 0; i < retryCount; i++) { PathBOK = phy_PathB_IQK_8188E(adapt); if (PathBOK == 0x03) { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path B IQK Success!!\n")); result[t][4] = (ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_B, bMaskDWord)&0x3FF0000)>>16; result[t][5] = (ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_B, bMaskDWord)&0x3FF0000)>>16; result[t][6] = (ODM_GetBBReg(dm_odm, rRx_Power_Before_IQK_B_2, bMaskDWord)&0x3FF0000)>>16; result[t][7] = (ODM_GetBBReg(dm_odm, rRx_Power_After_IQK_B_2, bMaskDWord)&0x3FF0000)>>16; break; } else if (i == (retryCount - 1) && PathBOK == 0x01) { /* Tx IQK OK */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path B Only Tx IQK Success!!\n")); result[t][4] = (ODM_GetBBReg(dm_odm, rTx_Power_Before_IQK_B, bMaskDWord)&0x3FF0000)>>16; result[t][5] = (ODM_GetBBReg(dm_odm, rTx_Power_After_IQK_B, bMaskDWord)&0x3FF0000)>>16; } } if (0x00 == PathBOK) { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("Path B IQK failed!!\n")); } } /* Back to BB mode, load original value */ ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK:Back to BB mode, load original value!\n")); ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0); if (t != 0) { if (!dm_odm->RFCalibrateInfo.bRfPiEnable) { /* Switch back BB to SI mode after finish IQ Calibration. */ _PHY_PIModeSwitch(adapt, false); } /* Reload ADDA power saving parameters */ reload_adda_reg(adapt, ADDA_REG, dm_odm->RFCalibrateInfo.ADDA_backup, IQK_ADDA_REG_NUM); /* Reload MAC parameters */ _PHY_ReloadMACRegisters(adapt, IQK_MAC_REG, dm_odm->RFCalibrateInfo.IQK_MAC_backup); reload_adda_reg(adapt, IQK_BB_REG_92C, dm_odm->RFCalibrateInfo.IQK_BB_backup, IQK_BB_REG_NUM); /* Restore RX initial gain */ ODM_SetBBReg(dm_odm, rFPGA0_XA_LSSIParameter, bMaskDWord, 0x00032ed3); if (is2t) ODM_SetBBReg(dm_odm, rFPGA0_XB_LSSIParameter, bMaskDWord, 0x00032ed3); /* load 0xe30 IQC default value */ ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x01008c00); ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x01008c00); } ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_IQCalibrate_8188E() <==\n")); } static void phy_LCCalibrate_8188E(struct adapter *adapt, bool is2t) { u8 tmpreg; u32 RF_Amode = 0, RF_Bmode = 0, LC_Cal; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; /* Check continuous TX and Packet TX */ tmpreg = ODM_Read1Byte(dm_odm, 0xd03); if ((tmpreg&0x70) != 0) /* Deal with contisuous TX case */ ODM_Write1Byte(dm_odm, 0xd03, tmpreg&0x8F); /* disable all continuous TX */ else /* Deal with Packet TX case */ ODM_Write1Byte(dm_odm, REG_TXPAUSE, 0xFF); /* block all queues */ if ((tmpreg&0x70) != 0) { /* 1. Read original RF mode */ /* Path-A */ RF_Amode = PHY_QueryRFReg(adapt, RF_PATH_A, RF_AC, bMask12Bits); /* Path-B */ if (is2t) RF_Bmode = PHY_QueryRFReg(adapt, RF_PATH_B, RF_AC, bMask12Bits); /* 2. Set RF mode = standby mode */ /* Path-A */ ODM_SetRFReg(dm_odm, RF_PATH_A, RF_AC, bMask12Bits, (RF_Amode&0x8FFFF)|0x10000); /* Path-B */ if (is2t) ODM_SetRFReg(dm_odm, RF_PATH_B, RF_AC, bMask12Bits, (RF_Bmode&0x8FFFF)|0x10000); } /* 3. Read RF reg18 */ LC_Cal = PHY_QueryRFReg(adapt, RF_PATH_A, RF_CHNLBW, bMask12Bits); /* 4. Set LC calibration begin bit15 */ ODM_SetRFReg(dm_odm, RF_PATH_A, RF_CHNLBW, bMask12Bits, LC_Cal|0x08000); ODM_sleep_ms(100); /* Restore original situation */ if ((tmpreg&0x70) != 0) { /* Deal with continuous TX case */ /* Path-A */ ODM_Write1Byte(dm_odm, 0xd03, tmpreg); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_AC, bMask12Bits, RF_Amode); /* Path-B */ if (is2t) ODM_SetRFReg(dm_odm, RF_PATH_B, RF_AC, bMask12Bits, RF_Bmode); } else { /* Deal with Packet TX case */ ODM_Write1Byte(dm_odm, REG_TXPAUSE, 0x00); } } /* Analog Pre-distortion calibration */ #define APK_BB_REG_NUM 8 #define APK_CURVE_REG_NUM 4 #define PATH_NUM 2 static void phy_APCalibrate_8188E(struct adapter *adapt, s8 delta, bool is2t) { struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; u32 regD[PATH_NUM]; u32 tmpreg, index, offset, apkbound; u8 path, i, pathbound = PATH_NUM; u32 BB_backup[APK_BB_REG_NUM]; u32 BB_REG[APK_BB_REG_NUM] = { rFPGA1_TxBlock, rOFDM0_TRxPathEnable, rFPGA0_RFMOD, rOFDM0_TRMuxPar, rFPGA0_XCD_RFInterfaceSW, rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE, rFPGA0_XB_RFInterfaceOE }; u32 BB_AP_MODE[APK_BB_REG_NUM] = { 0x00000020, 0x00a05430, 0x02040000, 0x000800e4, 0x00204000 }; u32 BB_normal_AP_MODE[APK_BB_REG_NUM] = { 0x00000020, 0x00a05430, 0x02040000, 0x000800e4, 0x22204000 }; u32 AFE_backup[IQK_ADDA_REG_NUM]; u32 AFE_REG[IQK_ADDA_REG_NUM] = { rFPGA0_XCD_SwitchControl, rBlue_Tooth, rRx_Wait_CCA, rTx_CCK_RFON, rTx_CCK_BBON, rTx_OFDM_RFON, rTx_OFDM_BBON, rTx_To_Rx, rTx_To_Tx, rRx_CCK, rRx_OFDM, rRx_Wait_RIFS, rRx_TO_Rx, rStandby, rSleep, rPMPD_ANAEN }; u32 MAC_backup[IQK_MAC_REG_NUM]; u32 MAC_REG[IQK_MAC_REG_NUM] = { REG_TXPAUSE, REG_BCN_CTRL, REG_BCN_CTRL_1, REG_GPIO_MUXCFG}; u32 APK_RF_init_value[PATH_NUM][APK_BB_REG_NUM] = { {0x0852c, 0x1852c, 0x5852c, 0x1852c, 0x5852c}, {0x2852e, 0x0852e, 0x3852e, 0x0852e, 0x0852e} }; u32 APK_normal_RF_init_value[PATH_NUM][APK_BB_REG_NUM] = { {0x0852c, 0x0a52c, 0x3a52c, 0x5a52c, 0x5a52c}, /* path settings equal to path b settings */ {0x0852c, 0x0a52c, 0x5a52c, 0x5a52c, 0x5a52c} }; u32 APK_RF_value_0[PATH_NUM][APK_BB_REG_NUM] = { {0x52019, 0x52014, 0x52013, 0x5200f, 0x5208d}, {0x5201a, 0x52019, 0x52016, 0x52033, 0x52050} }; u32 APK_normal_RF_value_0[PATH_NUM][APK_BB_REG_NUM] = { {0x52019, 0x52017, 0x52010, 0x5200d, 0x5206a}, /* path settings equal to path b settings */ {0x52019, 0x52017, 0x52010, 0x5200d, 0x5206a} }; u32 AFE_on_off[PATH_NUM] = { 0x04db25a4, 0x0b1b25a4}; /* path A on path B off / path A off path B on */ u32 APK_offset[PATH_NUM] = { rConfig_AntA, rConfig_AntB}; u32 APK_normal_offset[PATH_NUM] = { rConfig_Pmpd_AntA, rConfig_Pmpd_AntB}; u32 APK_value[PATH_NUM] = { 0x92fc0000, 0x12fc0000}; u32 APK_normal_value[PATH_NUM] = { 0x92680000, 0x12680000}; s8 APK_delta_mapping[APK_BB_REG_NUM][13] = { {-4, -3, -2, -2, -1, -1, 0, 1, 2, 3, 4, 5, 6}, {-4, -3, -2, -2, -1, -1, 0, 1, 2, 3, 4, 5, 6}, {-6, -4, -2, -2, -1, -1, 0, 1, 2, 3, 4, 5, 6}, {-1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6}, {-11, -9, -7, -5, -3, -1, 0, 0, 0, 0, 0, 0, 0} }; u32 APK_normal_setting_value_1[13] = { 0x01017018, 0xf7ed8f84, 0x1b1a1816, 0x2522201e, 0x322e2b28, 0x433f3a36, 0x5b544e49, 0x7b726a62, 0xa69a8f84, 0xdfcfc0b3, 0x12680000, 0x00880000, 0x00880000 }; u32 APK_normal_setting_value_2[16] = { 0x01c7021d, 0x01670183, 0x01000123, 0x00bf00e2, 0x008d00a3, 0x0068007b, 0x004d0059, 0x003a0042, 0x002b0031, 0x001f0025, 0x0017001b, 0x00110014, 0x000c000f, 0x0009000b, 0x00070008, 0x00050006 }; u32 APK_result[PATH_NUM][APK_BB_REG_NUM]; /* val_1_1a, val_1_2a, val_2a, val_3a, val_4a */ s32 BB_offset, delta_V, delta_offset; if (*(dm_odm->mp_mode) == 1) { struct mpt_context *pMptCtx = &(adapt->mppriv.MptCtx); pMptCtx->APK_bound[0] = 45; pMptCtx->APK_bound[1] = 52; } ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("==>phy_APCalibrate_8188E() delta %d\n", delta)); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("AP Calibration for %s\n", (is2t ? "2T2R" : "1T1R"))); if (!is2t) pathbound = 1; /* 2 FOR NORMAL CHIP SETTINGS */ /* Temporarily do not allow normal driver to do the following settings * because these offset and value will cause RF internal PA to be * unpredictably disabled by HW, such that RF Tx signal will disappear * after disable/enable card many times on 88CU. RF SD and DD have not * find the root cause, so we remove these actions temporarily. */ if (*(dm_odm->mp_mode) != 1) return; /* settings adjust for normal chip */ for (index = 0; index < PATH_NUM; index++) { APK_offset[index] = APK_normal_offset[index]; APK_value[index] = APK_normal_value[index]; AFE_on_off[index] = 0x6fdb25a4; } for (index = 0; index < APK_BB_REG_NUM; index++) { for (path = 0; path < pathbound; path++) { APK_RF_init_value[path][index] = APK_normal_RF_init_value[path][index]; APK_RF_value_0[path][index] = APK_normal_RF_value_0[path][index]; } BB_AP_MODE[index] = BB_normal_AP_MODE[index]; } apkbound = 6; /* save BB default value */ for (index = 0; index < APK_BB_REG_NUM; index++) { if (index == 0) /* skip */ continue; BB_backup[index] = ODM_GetBBReg(dm_odm, BB_REG[index], bMaskDWord); } /* save MAC default value */ _PHY_SaveMACRegisters(adapt, MAC_REG, MAC_backup); /* save AFE default value */ _PHY_SaveADDARegisters(adapt, AFE_REG, AFE_backup, IQK_ADDA_REG_NUM); for (path = 0; path < pathbound; path++) { if (path == RF_PATH_A) { /* path A APK */ /* load APK setting */ /* path-A */ offset = rPdp_AntA; for (index = 0; index < 11; index++) { ODM_SetBBReg(dm_odm, offset, bMaskDWord, APK_normal_setting_value_1[index]); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", offset, ODM_GetBBReg(dm_odm, offset, bMaskDWord))); offset += 0x04; } ODM_SetBBReg(dm_odm, rConfig_Pmpd_AntB, bMaskDWord, 0x12680000); offset = rConfig_AntA; for (; index < 13; index++) { ODM_SetBBReg(dm_odm, offset, bMaskDWord, APK_normal_setting_value_1[index]); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", offset, ODM_GetBBReg(dm_odm, offset, bMaskDWord))); offset += 0x04; } /* page-B1 */ ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x40000000); /* path A */ offset = rPdp_AntA; for (index = 0; index < 16; index++) { ODM_SetBBReg(dm_odm, offset, bMaskDWord, APK_normal_setting_value_2[index]); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", offset, ODM_GetBBReg(dm_odm, offset, bMaskDWord))); offset += 0x04; } ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x00000000); } else if (path == RF_PATH_B) { /* path B APK */ /* load APK setting */ /* path-B */ offset = rPdp_AntB; for (index = 0; index < 10; index++) { ODM_SetBBReg(dm_odm, offset, bMaskDWord, APK_normal_setting_value_1[index]); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", offset, ODM_GetBBReg(dm_odm, offset, bMaskDWord))); offset += 0x04; } ODM_SetBBReg(dm_odm, rConfig_Pmpd_AntA, bMaskDWord, 0x12680000); PHY_SetBBReg(adapt, rConfig_Pmpd_AntB, bMaskDWord, 0x12680000); offset = rConfig_AntA; index = 11; for (; index < 13; index++) { /* offset 0xb68, 0xb6c */ ODM_SetBBReg(dm_odm, offset, bMaskDWord, APK_normal_setting_value_1[index]); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", offset, ODM_GetBBReg(dm_odm, offset, bMaskDWord))); offset += 0x04; } /* page-B1 */ ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x40000000); /* path B */ offset = 0xb60; for (index = 0; index < 16; index++) { ODM_SetBBReg(dm_odm, offset, bMaskDWord, APK_normal_setting_value_2[index]); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", offset, ODM_GetBBReg(dm_odm, offset, bMaskDWord))); offset += 0x04; } ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0); } /* save RF default value */ regD[path] = PHY_QueryRFReg(adapt, path, RF_TXBIAS_A, bMaskDWord); /* Path A AFE all on, path B AFE All off or vise versa */ for (index = 0; index < IQK_ADDA_REG_NUM; index++) ODM_SetBBReg(dm_odm, AFE_REG[index], bMaskDWord, AFE_on_off[path]); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0xe70 %x\n", ODM_GetBBReg(dm_odm, rRx_Wait_CCA, bMaskDWord))); /* BB to AP mode */ if (path == 0) { for (index = 0; index < APK_BB_REG_NUM; index++) { if (index == 0) /* skip */ continue; else if (index < 5) ODM_SetBBReg(dm_odm, BB_REG[index], bMaskDWord, BB_AP_MODE[index]); else if (BB_REG[index] == 0x870) ODM_SetBBReg(dm_odm, BB_REG[index], bMaskDWord, BB_backup[index]|BIT10|BIT26); else ODM_SetBBReg(dm_odm, BB_REG[index], BIT10, 0x0); } ODM_SetBBReg(dm_odm, rTx_IQK_Tone_A, bMaskDWord, 0x01008c00); ODM_SetBBReg(dm_odm, rRx_IQK_Tone_A, bMaskDWord, 0x01008c00); } else { /* path B */ ODM_SetBBReg(dm_odm, rTx_IQK_Tone_B, bMaskDWord, 0x01008c00); ODM_SetBBReg(dm_odm, rRx_IQK_Tone_B, bMaskDWord, 0x01008c00); } ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x800 %x\n", ODM_GetBBReg(dm_odm, 0x800, bMaskDWord))); /* MAC settings */ _PHY_MACSettingCalibration(adapt, MAC_REG, MAC_backup); if (path == RF_PATH_A) { /* Path B to standby mode */ ODM_SetRFReg(dm_odm, RF_PATH_B, RF_AC, bMaskDWord, 0x10000); } else { /* Path A to standby mode */ ODM_SetRFReg(dm_odm, RF_PATH_A, RF_AC, bMaskDWord, 0x10000); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_MODE1, bMaskDWord, 0x1000f); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_MODE2, bMaskDWord, 0x20103); } delta_offset = ((delta+14)/2); if (delta_offset < 0) delta_offset = 0; else if (delta_offset > 12) delta_offset = 12; /* AP calibration */ for (index = 0; index < APK_BB_REG_NUM; index++) { if (index != 1) /* only DO PA11+PAD01001, AP RF setting */ continue; tmpreg = APK_RF_init_value[path][index]; if (!dm_odm->RFCalibrateInfo.bAPKThermalMeterIgnore) { BB_offset = (tmpreg & 0xF0000) >> 16; if (!(tmpreg & BIT15)) /* sign bit 0 */ BB_offset = -BB_offset; delta_V = APK_delta_mapping[index][delta_offset]; BB_offset += delta_V; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() APK index %d tmpreg 0x%x delta_V %d delta_offset %d\n", index, tmpreg, delta_V, delta_offset)); if (BB_offset < 0) { tmpreg = tmpreg & (~BIT15); BB_offset = -BB_offset; } else { tmpreg = tmpreg | BIT15; } tmpreg = (tmpreg & 0xFFF0FFFF) | (BB_offset << 16); } ODM_SetRFReg(dm_odm, path, RF_IPA_A, bMaskDWord, 0x8992e); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0xc %x\n", PHY_QueryRFReg(adapt, path, RF_IPA_A, bMaskDWord))); ODM_SetRFReg(dm_odm, path, RF_AC, bMaskDWord, APK_RF_value_0[path][index]); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x0 %x\n", PHY_QueryRFReg(adapt, path, RF_AC, bMaskDWord))); ODM_SetRFReg(dm_odm, path, RF_TXBIAS_A, bMaskDWord, tmpreg); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0xd %x\n", PHY_QueryRFReg(adapt, path, RF_TXBIAS_A, bMaskDWord))); /* PA11+PAD01111, one shot */ i = 0; do { ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x80000000); ODM_SetBBReg(dm_odm, APK_offset[path], bMaskDWord, APK_value[0]); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", APK_offset[path], ODM_GetBBReg(dm_odm, APK_offset[path], bMaskDWord))); ODM_delay_ms(3); ODM_SetBBReg(dm_odm, APK_offset[path], bMaskDWord, APK_value[1]); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0x%x value 0x%x\n", APK_offset[path], ODM_GetBBReg(dm_odm, APK_offset[path], bMaskDWord))); ODM_delay_ms(20); ODM_SetBBReg(dm_odm, rFPGA0_IQK, bMaskDWord, 0x00000000); if (path == RF_PATH_A) tmpreg = ODM_GetBBReg(dm_odm, rAPK, 0x03E00000); else tmpreg = ODM_GetBBReg(dm_odm, rAPK, 0xF8000000); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("phy_APCalibrate_8188E() offset 0xbd8[25:21] %x\n", tmpreg)); i++; } while (tmpreg > apkbound && i < 4); APK_result[path][index] = tmpreg; } } /* reload MAC default value */ _PHY_ReloadMACRegisters(adapt, MAC_REG, MAC_backup); /* reload BB default value */ for (index = 0; index < APK_BB_REG_NUM; index++) { if (index == 0) /* skip */ continue; ODM_SetBBReg(dm_odm, BB_REG[index], bMaskDWord, BB_backup[index]); } /* reload AFE default value */ reload_adda_reg(adapt, AFE_REG, AFE_backup, IQK_ADDA_REG_NUM); /* reload RF path default value */ for (path = 0; path < pathbound; path++) { ODM_SetRFReg(dm_odm, path, 0xd, bMaskDWord, regD[path]); if (path == RF_PATH_B) { ODM_SetRFReg(dm_odm, RF_PATH_A, RF_MODE1, bMaskDWord, 0x1000f); ODM_SetRFReg(dm_odm, RF_PATH_A, RF_MODE2, bMaskDWord, 0x20101); } /* note no index == 0 */ if (APK_result[path][1] > 6) APK_result[path][1] = 6; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("apk path %d result %d 0x%x \t", path, 1, APK_result[path][1])); } ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("\n")); for (path = 0; path < pathbound; path++) { ODM_SetRFReg(dm_odm, path, 0x3, bMaskDWord, ((APK_result[path][1] << 15) | (APK_result[path][1] << 10) | (APK_result[path][1] << 5) | APK_result[path][1])); if (path == RF_PATH_A) ODM_SetRFReg(dm_odm, path, 0x4, bMaskDWord, ((APK_result[path][1] << 15) | (APK_result[path][1] << 10) | (0x00 << 5) | 0x05)); else ODM_SetRFReg(dm_odm, path, 0x4, bMaskDWord, ((APK_result[path][1] << 15) | (APK_result[path][1] << 10) | (0x02 << 5) | 0x05)); ODM_SetRFReg(dm_odm, path, RF_BS_PA_APSET_G9_G11, bMaskDWord, ((0x08 << 15) | (0x08 << 10) | (0x08 << 5) | 0x08)); } dm_odm->RFCalibrateInfo.bAPKdone = true; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("<==phy_APCalibrate_8188E()\n")); } #define DP_BB_REG_NUM 7 #define DP_RF_REG_NUM 1 #define DP_RETRY_LIMIT 10 #define DP_PATH_NUM 2 #define DP_DPK_NUM 3 #define DP_DPK_VALUE_NUM 2 void PHY_IQCalibrate_8188E(struct adapter *adapt, bool recovery) { struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; struct mpt_context *pMptCtx = &(adapt->mppriv.MptCtx); s32 result[4][8]; /* last is final result */ u8 i, final_candidate, Indexforchannel; bool pathaok, pathbok; s32 RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC; bool is12simular, is13simular, is23simular; bool singletone = false, carrier_sup = false; u32 IQK_BB_REG_92C[IQK_BB_REG_NUM] = { rOFDM0_XARxIQImbalance, rOFDM0_XBRxIQImbalance, rOFDM0_ECCAThreshold, rOFDM0_AGCRSSITable, rOFDM0_XATxIQImbalance, rOFDM0_XBTxIQImbalance, rOFDM0_XCTxAFE, rOFDM0_XDTxAFE, rOFDM0_RxIQExtAnta}; bool is2t; is2t = (dm_odm->RFType == ODM_2T2R) ? true : false; if (ODM_CheckPowerStatus(adapt) == false) return; if (!(dm_odm->SupportAbility & ODM_RF_CALIBRATION)) return; if (*(dm_odm->mp_mode) == 1) { singletone = pMptCtx->bSingleTone; carrier_sup = pMptCtx->bCarrierSuppression; } /* 20120213 Turn on when continuous Tx to pass lab testing. (required by Edlu) */ if (singletone || carrier_sup) return; if (recovery) { ODM_RT_TRACE(dm_odm, ODM_COMP_INIT, ODM_DBG_LOUD, ("PHY_IQCalibrate_8188E: Return due to recovery!\n")); reload_adda_reg(adapt, IQK_BB_REG_92C, dm_odm->RFCalibrateInfo.IQK_BB_backup_recover, 9); return; } ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK:Start!!!\n")); for (i = 0; i < 8; i++) { result[0][i] = 0; result[1][i] = 0; result[2][i] = 0; if ((i == 0) || (i == 2) || (i == 4) || (i == 6)) result[3][i] = 0x100; else result[3][i] = 0; } final_candidate = 0xff; pathaok = false; pathbok = false; is12simular = false; is23simular = false; is13simular = false; for (i = 0; i < 3; i++) { phy_IQCalibrate_8188E(adapt, result, i, is2t); if (i == 1) { is12simular = phy_SimularityCompare_8188E(adapt, result, 0, 1); if (is12simular) { final_candidate = 0; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: is12simular final_candidate is %x\n", final_candidate)); break; } } if (i == 2) { is13simular = phy_SimularityCompare_8188E(adapt, result, 0, 2); if (is13simular) { final_candidate = 0; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: is13simular final_candidate is %x\n", final_candidate)); break; } is23simular = phy_SimularityCompare_8188E(adapt, result, 1, 2); if (is23simular) { final_candidate = 1; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: is23simular final_candidate is %x\n", final_candidate)); } else { final_candidate = 3; } } } for (i = 0; i < 4; i++) { RegE94 = result[i][0]; RegE9C = result[i][1]; RegEA4 = result[i][2]; RegEAC = result[i][3]; RegEB4 = result[i][4]; RegEBC = result[i][5]; RegEC4 = result[i][6]; RegECC = result[i][7]; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: RegE94=%x RegE9C=%x RegEA4=%x RegEAC=%x RegEB4=%x RegEBC=%x RegEC4=%x RegECC=%x\n", RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC)); } if (final_candidate != 0xff) { RegE94 = result[final_candidate][0]; RegE9C = result[final_candidate][1]; RegEA4 = result[final_candidate][2]; RegEAC = result[final_candidate][3]; RegEB4 = result[final_candidate][4]; RegEBC = result[final_candidate][5]; dm_odm->RFCalibrateInfo.RegE94 = RegE94; dm_odm->RFCalibrateInfo.RegE9C = RegE9C; dm_odm->RFCalibrateInfo.RegEB4 = RegEB4; dm_odm->RFCalibrateInfo.RegEBC = RegEBC; RegEC4 = result[final_candidate][6]; RegECC = result[final_candidate][7]; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: final_candidate is %x\n", final_candidate)); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: RegE94=%x RegE9C=%x RegEA4=%x RegEAC=%x RegEB4=%x RegEBC=%x RegEC4=%x RegECC=%x\n", RegE94, RegE9C, RegEA4, RegEAC, RegEB4, RegEBC, RegEC4, RegECC)); pathaok = true; pathbok = true; } else { ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK: FAIL use default value\n")); dm_odm->RFCalibrateInfo.RegE94 = 0x100; dm_odm->RFCalibrateInfo.RegEB4 = 0x100; /* X default value */ dm_odm->RFCalibrateInfo.RegE9C = 0x0; dm_odm->RFCalibrateInfo.RegEBC = 0x0; /* Y default value */ } if (RegE94 != 0) patha_fill_iqk(adapt, pathaok, result, final_candidate, (RegEA4 == 0)); if (is2t) { if (RegEB4 != 0) pathb_fill_iqk(adapt, pathbok, result, final_candidate, (RegEC4 == 0)); } Indexforchannel = ODM_GetRightChnlPlaceforIQK(pHalData->CurrentChannel); /* To Fix BSOD when final_candidate is 0xff */ /* by sherry 20120321 */ if (final_candidate < 4) { for (i = 0; i < IQK_Matrix_REG_NUM; i++) dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[Indexforchannel].Value[0][i] = result[final_candidate][i]; dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[Indexforchannel].bIQKDone = true; } ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("\nIQK OK Indexforchannel %d.\n", Indexforchannel)); _PHY_SaveADDARegisters(adapt, IQK_BB_REG_92C, dm_odm->RFCalibrateInfo.IQK_BB_backup_recover, 9); ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("IQK finished\n")); } void PHY_LCCalibrate_8188E(struct adapter *adapt) { bool singletone = false, carrier_sup = false; u32 timeout = 2000, timecount = 0; struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; struct mpt_context *pMptCtx = &(adapt->mppriv.MptCtx); if (*(dm_odm->mp_mode) == 1) { singletone = pMptCtx->bSingleTone; carrier_sup = pMptCtx->bCarrierSuppression; } if (!(dm_odm->SupportAbility & ODM_RF_CALIBRATION)) return; /* 20120213 Turn on when continuous Tx to pass lab testing. (required by Edlu) */ if (singletone || carrier_sup) return; while (*(dm_odm->pbScanInProcess) && timecount < timeout) { ODM_delay_ms(50); timecount += 50; } dm_odm->RFCalibrateInfo.bLCKInProgress = true; if (dm_odm->RFType == ODM_2T2R) { phy_LCCalibrate_8188E(adapt, true); } else { /* For 88C 1T1R */ phy_LCCalibrate_8188E(adapt, false); } dm_odm->RFCalibrateInfo.bLCKInProgress = false; ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD, ("LCK:Finish!!!interface %d\n", dm_odm->InterfaceIndex)); } void PHY_APCalibrate_8188E(struct adapter *adapt, s8 delta) { struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; return; if (!(dm_odm->SupportAbility & ODM_RF_CALIBRATION)) return; #if FOR_BRAZIL_PRETEST != 1 if (dm_odm->RFCalibrateInfo.bAPKdone) #endif return; if (dm_odm->RFType == ODM_2T2R) { phy_APCalibrate_8188E(adapt, delta, true); } else { /* For 88C 1T1R */ phy_APCalibrate_8188E(adapt, delta, false); } } static void phy_setrfpathswitch_8188e(struct adapter *adapt, bool main, bool is2t) { struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; if (!adapt->hw_init_completed) { u8 u1btmp; u1btmp = ODM_Read1Byte(dm_odm, REG_LEDCFG2) | BIT7; ODM_Write1Byte(dm_odm, REG_LEDCFG2, u1btmp); ODM_SetBBReg(dm_odm, rFPGA0_XAB_RFParameter, BIT13, 0x01); } if (is2t) { /* 92C */ if (main) ODM_SetBBReg(dm_odm, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x1); /* 92C_Path_A */ else ODM_SetBBReg(dm_odm, rFPGA0_XB_RFInterfaceOE, BIT5|BIT6, 0x2); /* BT */ } else { /* 88C */ if (main) ODM_SetBBReg(dm_odm, rFPGA0_XA_RFInterfaceOE, BIT8|BIT9, 0x2); /* Main */ else ODM_SetBBReg(dm_odm, rFPGA0_XA_RFInterfaceOE, BIT8|BIT9, 0x1); /* Aux */ } } void PHY_SetRFPathSwitch_8188E(struct adapter *adapt, bool main) { struct hal_data_8188e *pHalData = GET_HAL_DATA(adapt); struct odm_dm_struct *dm_odm = &pHalData->odmpriv; if (dm_odm->RFType == ODM_2T2R) { phy_setrfpathswitch_8188e(adapt, main, true); } else { /* For 88C 1T1R */ phy_setrfpathswitch_8188e(adapt, main, false); } }