/* * Wireless utility functions * * Copyright 2007-2009 Johannes Berg */ #include #include #include #include #include #include "core.h" struct ieee80211_rate * ieee80211_get_response_rate(struct ieee80211_supported_band *sband, u32 basic_rates, int bitrate) { struct ieee80211_rate *result = &sband->bitrates[0]; int i; for (i = 0; i < sband->n_bitrates; i++) { if (!(basic_rates & BIT(i))) continue; if (sband->bitrates[i].bitrate > bitrate) continue; result = &sband->bitrates[i]; } return result; } EXPORT_SYMBOL(ieee80211_get_response_rate); int ieee80211_channel_to_frequency(int chan) { if (chan < 14) return 2407 + chan * 5; if (chan == 14) return 2484; /* FIXME: 802.11j 17.3.8.3.2 */ return (chan + 1000) * 5; } EXPORT_SYMBOL(ieee80211_channel_to_frequency); int ieee80211_frequency_to_channel(int freq) { if (freq == 2484) return 14; if (freq < 2484) return (freq - 2407) / 5; /* FIXME: 802.11j 17.3.8.3.2 */ return freq/5 - 1000; } EXPORT_SYMBOL(ieee80211_frequency_to_channel); struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, int freq) { enum ieee80211_band band; struct ieee80211_supported_band *sband; int i; for (band = 0; band < IEEE80211_NUM_BANDS; band++) { sband = wiphy->bands[band]; if (!sband) continue; for (i = 0; i < sband->n_channels; i++) { if (sband->channels[i].center_freq == freq) return &sband->channels[i]; } } return NULL; } EXPORT_SYMBOL(__ieee80211_get_channel); static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, enum ieee80211_band band) { int i, want; switch (band) { case IEEE80211_BAND_5GHZ: want = 3; for (i = 0; i < sband->n_bitrates; i++) { if (sband->bitrates[i].bitrate == 60 || sband->bitrates[i].bitrate == 120 || sband->bitrates[i].bitrate == 240) { sband->bitrates[i].flags |= IEEE80211_RATE_MANDATORY_A; want--; } } WARN_ON(want); break; case IEEE80211_BAND_2GHZ: want = 7; for (i = 0; i < sband->n_bitrates; i++) { if (sband->bitrates[i].bitrate == 10) { sband->bitrates[i].flags |= IEEE80211_RATE_MANDATORY_B | IEEE80211_RATE_MANDATORY_G; want--; } if (sband->bitrates[i].bitrate == 20 || sband->bitrates[i].bitrate == 55 || sband->bitrates[i].bitrate == 110 || sband->bitrates[i].bitrate == 60 || sband->bitrates[i].bitrate == 120 || sband->bitrates[i].bitrate == 240) { sband->bitrates[i].flags |= IEEE80211_RATE_MANDATORY_G; want--; } if (sband->bitrates[i].bitrate != 10 && sband->bitrates[i].bitrate != 20 && sband->bitrates[i].bitrate != 55 && sband->bitrates[i].bitrate != 110) sband->bitrates[i].flags |= IEEE80211_RATE_ERP_G; } WARN_ON(want != 0 && want != 3 && want != 6); break; case IEEE80211_NUM_BANDS: WARN_ON(1); break; } } void ieee80211_set_bitrate_flags(struct wiphy *wiphy) { enum ieee80211_band band; for (band = 0; band < IEEE80211_NUM_BANDS; band++) if (wiphy->bands[band]) set_mandatory_flags_band(wiphy->bands[band], band); } int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, struct key_params *params, int key_idx, const u8 *mac_addr) { int i; if (key_idx > 5) return -EINVAL; /* * Disallow pairwise keys with non-zero index unless it's WEP * (because current deployments use pairwise WEP keys with * non-zero indizes but 802.11i clearly specifies to use zero) */ if (mac_addr && key_idx && params->cipher != WLAN_CIPHER_SUITE_WEP40 && params->cipher != WLAN_CIPHER_SUITE_WEP104) return -EINVAL; switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: if (params->key_len != WLAN_KEY_LEN_WEP40) return -EINVAL; break; case WLAN_CIPHER_SUITE_TKIP: if (params->key_len != WLAN_KEY_LEN_TKIP) return -EINVAL; break; case WLAN_CIPHER_SUITE_CCMP: if (params->key_len != WLAN_KEY_LEN_CCMP) return -EINVAL; break; case WLAN_CIPHER_SUITE_WEP104: if (params->key_len != WLAN_KEY_LEN_WEP104) return -EINVAL; break; case WLAN_CIPHER_SUITE_AES_CMAC: if (params->key_len != WLAN_KEY_LEN_AES_CMAC) return -EINVAL; break; default: /* * We don't know anything about this algorithm, * allow using it -- but the driver must check * all parameters! We still check below whether * or not the driver supports this algorithm, * of course. */ break; } if (params->seq) { switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: /* These ciphers do not use key sequence */ return -EINVAL; case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_AES_CMAC: if (params->seq_len != 6) return -EINVAL; break; } } for (i = 0; i < rdev->wiphy.n_cipher_suites; i++) if (params->cipher == rdev->wiphy.cipher_suites[i]) break; if (i == rdev->wiphy.n_cipher_suites) return -EINVAL; return 0; } /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ const unsigned char rfc1042_header[] __aligned(2) = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; EXPORT_SYMBOL(rfc1042_header); /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ const unsigned char bridge_tunnel_header[] __aligned(2) = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; EXPORT_SYMBOL(bridge_tunnel_header); unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) { unsigned int hdrlen = 24; if (ieee80211_is_data(fc)) { if (ieee80211_has_a4(fc)) hdrlen = 30; if (ieee80211_is_data_qos(fc)) { hdrlen += IEEE80211_QOS_CTL_LEN; if (ieee80211_has_order(fc)) hdrlen += IEEE80211_HT_CTL_LEN; } goto out; } if (ieee80211_is_ctl(fc)) { /* * ACK and CTS are 10 bytes, all others 16. To see how * to get this condition consider * subtype mask: 0b0000000011110000 (0x00F0) * ACK subtype: 0b0000000011010000 (0x00D0) * CTS subtype: 0b0000000011000000 (0x00C0) * bits that matter: ^^^ (0x00E0) * value of those: 0b0000000011000000 (0x00C0) */ if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) hdrlen = 10; else hdrlen = 16; } out: return hdrlen; } EXPORT_SYMBOL(ieee80211_hdrlen); unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) { const struct ieee80211_hdr *hdr = (const struct ieee80211_hdr *)skb->data; unsigned int hdrlen; if (unlikely(skb->len < 10)) return 0; hdrlen = ieee80211_hdrlen(hdr->frame_control); if (unlikely(hdrlen > skb->len)) return 0; return hdrlen; } EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) { int ae = meshhdr->flags & MESH_FLAGS_AE; /* 7.1.3.5a.2 */ switch (ae) { case 0: return 6; case MESH_FLAGS_AE_A4: return 12; case MESH_FLAGS_AE_A5_A6: return 18; case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6): return 24; default: return 6; } } int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, enum nl80211_iftype iftype) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; u16 hdrlen, ethertype; u8 *payload; u8 dst[ETH_ALEN]; u8 src[ETH_ALEN] __aligned(2); if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) return -1; hdrlen = ieee80211_hdrlen(hdr->frame_control); /* convert IEEE 802.11 header + possible LLC headers into Ethernet * header * IEEE 802.11 address fields: * ToDS FromDS Addr1 Addr2 Addr3 Addr4 * 0 0 DA SA BSSID n/a * 0 1 DA BSSID SA n/a * 1 0 BSSID SA DA n/a * 1 1 RA TA DA SA */ memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); switch (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { case cpu_to_le16(IEEE80211_FCTL_TODS): if (unlikely(iftype != NL80211_IFTYPE_AP && iftype != NL80211_IFTYPE_AP_VLAN && iftype != NL80211_IFTYPE_P2P_GO)) return -1; break; case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): if (unlikely(iftype != NL80211_IFTYPE_WDS && iftype != NL80211_IFTYPE_MESH_POINT && iftype != NL80211_IFTYPE_AP_VLAN && iftype != NL80211_IFTYPE_STATION)) return -1; if (iftype == NL80211_IFTYPE_MESH_POINT) { struct ieee80211s_hdr *meshdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); /* make sure meshdr->flags is on the linear part */ if (!pskb_may_pull(skb, hdrlen + 1)) return -1; if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { skb_copy_bits(skb, hdrlen + offsetof(struct ieee80211s_hdr, eaddr1), dst, ETH_ALEN); skb_copy_bits(skb, hdrlen + offsetof(struct ieee80211s_hdr, eaddr2), src, ETH_ALEN); } hdrlen += ieee80211_get_mesh_hdrlen(meshdr); } break; case cpu_to_le16(IEEE80211_FCTL_FROMDS): if ((iftype != NL80211_IFTYPE_STATION && iftype != NL80211_IFTYPE_P2P_CLIENT && iftype != NL80211_IFTYPE_MESH_POINT) || (is_multicast_ether_addr(dst) && !compare_ether_addr(src, addr))) return -1; if (iftype == NL80211_IFTYPE_MESH_POINT) { struct ieee80211s_hdr *meshdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); /* make sure meshdr->flags is on the linear part */ if (!pskb_may_pull(skb, hdrlen + 1)) return -1; if (meshdr->flags & MESH_FLAGS_AE_A4) skb_copy_bits(skb, hdrlen + offsetof(struct ieee80211s_hdr, eaddr1), src, ETH_ALEN); hdrlen += ieee80211_get_mesh_hdrlen(meshdr); } break; case cpu_to_le16(0): if (iftype != NL80211_IFTYPE_ADHOC) return -1; break; } if (!pskb_may_pull(skb, hdrlen + 8)) return -1; payload = skb->data + hdrlen; ethertype = (payload[6] << 8) | payload[7]; if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || compare_ether_addr(payload, bridge_tunnel_header) == 0)) { /* remove RFC1042 or Bridge-Tunnel encapsulation and * replace EtherType */ skb_pull(skb, hdrlen + 6); memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); } else { struct ethhdr *ehdr; __be16 len; skb_pull(skb, hdrlen); len = htons(skb->len); ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); memcpy(ehdr->h_dest, dst, ETH_ALEN); memcpy(ehdr->h_source, src, ETH_ALEN); ehdr->h_proto = len; } return 0; } EXPORT_SYMBOL(ieee80211_data_to_8023); int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, enum nl80211_iftype iftype, u8 *bssid, bool qos) { struct ieee80211_hdr hdr; u16 hdrlen, ethertype; __le16 fc; const u8 *encaps_data; int encaps_len, skip_header_bytes; int nh_pos, h_pos; int head_need; if (unlikely(skb->len < ETH_HLEN)) return -EINVAL; nh_pos = skb_network_header(skb) - skb->data; h_pos = skb_transport_header(skb) - skb->data; /* convert Ethernet header to proper 802.11 header (based on * operation mode) */ ethertype = (skb->data[12] << 8) | skb->data[13]; fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); switch (iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_GO: fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA BSSID SA */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, addr, ETH_ALEN); memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 24; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: fc |= cpu_to_le16(IEEE80211_FCTL_TODS); /* BSSID SA DA */ memcpy(hdr.addr1, bssid, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); hdrlen = 24; break; case NL80211_IFTYPE_ADHOC: /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, bssid, ETH_ALEN); hdrlen = 24; break; default: return -EOPNOTSUPP; } if (qos) { fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); hdrlen += 2; } hdr.frame_control = fc; hdr.duration_id = 0; hdr.seq_ctrl = 0; skip_header_bytes = ETH_HLEN; if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { encaps_data = bridge_tunnel_header; encaps_len = sizeof(bridge_tunnel_header); skip_header_bytes -= 2; } else if (ethertype > 0x600) { encaps_data = rfc1042_header; encaps_len = sizeof(rfc1042_header); skip_header_bytes -= 2; } else { encaps_data = NULL; encaps_len = 0; } skb_pull(skb, skip_header_bytes); nh_pos -= skip_header_bytes; h_pos -= skip_header_bytes; head_need = hdrlen + encaps_len - skb_headroom(skb); if (head_need > 0 || skb_cloned(skb)) { head_need = max(head_need, 0); if (head_need) skb_orphan(skb); if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) { printk(KERN_ERR "failed to reallocate Tx buffer\n"); return -ENOMEM; } skb->truesize += head_need; } if (encaps_data) { memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); nh_pos += encaps_len; h_pos += encaps_len; } memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); nh_pos += hdrlen; h_pos += hdrlen; /* Update skb pointers to various headers since this modified frame * is going to go through Linux networking code that may potentially * need things like pointer to IP header. */ skb_set_mac_header(skb, 0); skb_set_network_header(skb, nh_pos); skb_set_transport_header(skb, h_pos); return 0; } EXPORT_SYMBOL(ieee80211_data_from_8023); void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, const u8 *addr, enum nl80211_iftype iftype, const unsigned int extra_headroom) { struct sk_buff *frame = NULL; u16 ethertype; u8 *payload; const struct ethhdr *eth; int remaining, err; u8 dst[ETH_ALEN], src[ETH_ALEN]; err = ieee80211_data_to_8023(skb, addr, iftype); if (err) goto out; /* skip the wrapping header */ eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); if (!eth) goto out; while (skb != frame) { u8 padding; __be16 len = eth->h_proto; unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); remaining = skb->len; memcpy(dst, eth->h_dest, ETH_ALEN); memcpy(src, eth->h_source, ETH_ALEN); padding = (4 - subframe_len) & 0x3; /* the last MSDU has no padding */ if (subframe_len > remaining) goto purge; skb_pull(skb, sizeof(struct ethhdr)); /* reuse skb for the last subframe */ if (remaining <= subframe_len + padding) frame = skb; else { unsigned int hlen = ALIGN(extra_headroom, 4); /* * Allocate and reserve two bytes more for payload * alignment since sizeof(struct ethhdr) is 14. */ frame = dev_alloc_skb(hlen + subframe_len + 2); if (!frame) goto purge; skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); memcpy(skb_put(frame, ntohs(len)), skb->data, ntohs(len)); eth = (struct ethhdr *)skb_pull(skb, ntohs(len) + padding); if (!eth) { dev_kfree_skb(frame); goto purge; } } skb_reset_network_header(frame); frame->dev = skb->dev; frame->priority = skb->priority; payload = frame->data; ethertype = (payload[6] << 8) | payload[7]; if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || compare_ether_addr(payload, bridge_tunnel_header) == 0)) { /* remove RFC1042 or Bridge-Tunnel * encapsulation and replace EtherType */ skb_pull(frame, 6); memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); } else { memcpy(skb_push(frame, sizeof(__be16)), &len, sizeof(__be16)); memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); } __skb_queue_tail(list, frame); } return; purge: __skb_queue_purge(list); out: dev_kfree_skb(skb); } EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); /* Given a data frame determine the 802.1p/1d tag to use. */ unsigned int cfg80211_classify8021d(struct sk_buff *skb) { unsigned int dscp; /* skb->priority values from 256->263 are magic values to * directly indicate a specific 802.1d priority. This is used * to allow 802.1d priority to be passed directly in from VLAN * tags, etc. */ if (skb->priority >= 256 && skb->priority <= 263) return skb->priority - 256; switch (skb->protocol) { case htons(ETH_P_IP): dscp = ip_hdr(skb)->tos & 0xfc; break; default: return 0; } return dscp >> 5; } EXPORT_SYMBOL(cfg80211_classify8021d); const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) { u8 *end, *pos; pos = bss->information_elements; if (pos == NULL) return NULL; end = pos + bss->len_information_elements; while (pos + 1 < end) { if (pos + 2 + pos[1] > end) break; if (pos[0] == ie) return pos; pos += 2 + pos[1]; } return NULL; } EXPORT_SYMBOL(ieee80211_bss_get_ie); void cfg80211_upload_connect_keys(struct wireless_dev *wdev) { struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy); struct net_device *dev = wdev->netdev; int i; if (!wdev->connect_keys) return; for (i = 0; i < 6; i++) { if (!wdev->connect_keys->params[i].cipher) continue; if (rdev->ops->add_key(wdev->wiphy, dev, i, NULL, &wdev->connect_keys->params[i])) { printk(KERN_ERR "%s: failed to set key %d\n", dev->name, i); continue; } if (wdev->connect_keys->def == i) if (rdev->ops->set_default_key(wdev->wiphy, dev, i)) { printk(KERN_ERR "%s: failed to set defkey %d\n", dev->name, i); continue; } if (wdev->connect_keys->defmgmt == i) if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i)) printk(KERN_ERR "%s: failed to set mgtdef %d\n", dev->name, i); } kfree(wdev->connect_keys); wdev->connect_keys = NULL; } static void cfg80211_process_wdev_events(struct wireless_dev *wdev) { struct cfg80211_event *ev; unsigned long flags; const u8 *bssid = NULL; spin_lock_irqsave(&wdev->event_lock, flags); while (!list_empty(&wdev->event_list)) { ev = list_first_entry(&wdev->event_list, struct cfg80211_event, list); list_del(&ev->list); spin_unlock_irqrestore(&wdev->event_lock, flags); wdev_lock(wdev); switch (ev->type) { case EVENT_CONNECT_RESULT: if (!is_zero_ether_addr(ev->cr.bssid)) bssid = ev->cr.bssid; __cfg80211_connect_result( wdev->netdev, bssid, ev->cr.req_ie, ev->cr.req_ie_len, ev->cr.resp_ie, ev->cr.resp_ie_len, ev->cr.status, ev->cr.status == WLAN_STATUS_SUCCESS, NULL); break; case EVENT_ROAMED: __cfg80211_roamed(wdev, ev->rm.bssid, ev->rm.req_ie, ev->rm.req_ie_len, ev->rm.resp_ie, ev->rm.resp_ie_len); break; case EVENT_DISCONNECTED: __cfg80211_disconnected(wdev->netdev, ev->dc.ie, ev->dc.ie_len, ev->dc.reason, true); break; case EVENT_IBSS_JOINED: __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid); break; } wdev_unlock(wdev); kfree(ev); spin_lock_irqsave(&wdev->event_lock, flags); } spin_unlock_irqrestore(&wdev->event_lock, flags); } void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) { struct wireless_dev *wdev; ASSERT_RTNL(); ASSERT_RDEV_LOCK(rdev); mutex_lock(&rdev->devlist_mtx); list_for_each_entry(wdev, &rdev->netdev_list, list) cfg80211_process_wdev_events(wdev); mutex_unlock(&rdev->devlist_mtx); } int cfg80211_change_iface(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype ntype, u32 *flags, struct vif_params *params) { int err; enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; ASSERT_RDEV_LOCK(rdev); /* don't support changing VLANs, you just re-create them */ if (otype == NL80211_IFTYPE_AP_VLAN) return -EOPNOTSUPP; if (!rdev->ops->change_virtual_intf || !(rdev->wiphy.interface_modes & (1 << ntype))) return -EOPNOTSUPP; /* if it's part of a bridge, reject changing type to station/ibss */ if ((dev->priv_flags & IFF_BRIDGE_PORT) && (ntype == NL80211_IFTYPE_ADHOC || ntype == NL80211_IFTYPE_STATION || ntype == NL80211_IFTYPE_P2P_CLIENT)) return -EBUSY; if (ntype != otype) { dev->ieee80211_ptr->use_4addr = false; switch (otype) { case NL80211_IFTYPE_ADHOC: cfg80211_leave_ibss(rdev, dev, false); break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: cfg80211_disconnect(rdev, dev, WLAN_REASON_DEAUTH_LEAVING, true); break; case NL80211_IFTYPE_MESH_POINT: /* mesh should be handled? */ break; default: break; } cfg80211_process_rdev_events(rdev); } err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, ntype, flags, params); WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); if (!err && params && params->use_4addr != -1) dev->ieee80211_ptr->use_4addr = params->use_4addr; if (!err) { dev->priv_flags &= ~IFF_DONT_BRIDGE; switch (ntype) { case NL80211_IFTYPE_STATION: if (dev->ieee80211_ptr->use_4addr) break; /* fall through */ case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_ADHOC: dev->priv_flags |= IFF_DONT_BRIDGE; break; case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_MESH_POINT: /* bridging OK */ break; case NL80211_IFTYPE_MONITOR: /* monitor can't bridge anyway */ break; case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: /* not happening */ break; } } return err; } u16 cfg80211_calculate_bitrate(struct rate_info *rate) { int modulation, streams, bitrate; if (!(rate->flags & RATE_INFO_FLAGS_MCS)) return rate->legacy; /* the formula below does only work for MCS values smaller than 32 */ if (rate->mcs >= 32) return 0; modulation = rate->mcs & 7; streams = (rate->mcs >> 3) + 1; bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ? 13500000 : 6500000; if (modulation < 4) bitrate *= (modulation + 1); else if (modulation == 4) bitrate *= (modulation + 2); else bitrate *= (modulation + 3); bitrate *= streams; if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) bitrate = (bitrate / 9) * 10; /* do NOT round down here */ return (bitrate + 50000) / 100000; }