/* * Port on Texas Instruments TMS320C6x architecture * * Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated * Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const char *c6x_soc_name; int c6x_num_cores; EXPORT_SYMBOL_GPL(c6x_num_cores); unsigned int c6x_silicon_rev; EXPORT_SYMBOL_GPL(c6x_silicon_rev); /* * Device status register. This holds information * about device configuration needed by some drivers. */ unsigned int c6x_devstat; EXPORT_SYMBOL_GPL(c6x_devstat); /* * Some SoCs have fuse registers holding a unique MAC * address. This is parsed out of the device tree with * the resulting MAC being held here. */ unsigned char c6x_fuse_mac[6]; unsigned long memory_start; unsigned long memory_end; unsigned long ram_start; unsigned long ram_end; /* Uncached memory for DMA consistent use (memdma=) */ static unsigned long dma_start __initdata; static unsigned long dma_size __initdata; struct cpuinfo_c6x { const char *cpu_name; const char *cpu_voltage; const char *mmu; const char *fpu; char *cpu_rev; unsigned int core_id; char __cpu_rev[5]; }; static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data); unsigned int ticks_per_ns_scaled; EXPORT_SYMBOL(ticks_per_ns_scaled); unsigned int c6x_core_freq; static void __init get_cpuinfo(void) { unsigned cpu_id, rev_id, csr; struct clk *coreclk = clk_get_sys(NULL, "core"); unsigned long core_khz; u64 tmp; struct cpuinfo_c6x *p; struct device_node *node, *np; p = &per_cpu(cpu_data, smp_processor_id()); if (!IS_ERR(coreclk)) c6x_core_freq = clk_get_rate(coreclk); else { printk(KERN_WARNING "Cannot find core clock frequency. Using 700MHz\n"); c6x_core_freq = 700000000; } core_khz = c6x_core_freq / 1000; tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE; do_div(tmp, 1000000); ticks_per_ns_scaled = tmp; csr = get_creg(CSR); cpu_id = csr >> 24; rev_id = (csr >> 16) & 0xff; p->mmu = "none"; p->fpu = "none"; p->cpu_voltage = "unknown"; switch (cpu_id) { case 0: p->cpu_name = "C67x"; p->fpu = "yes"; break; case 2: p->cpu_name = "C62x"; break; case 8: p->cpu_name = "C64x"; break; case 12: p->cpu_name = "C64x"; break; case 16: p->cpu_name = "C64x+"; p->cpu_voltage = "1.2"; break; case 21: p->cpu_name = "C66X"; p->cpu_voltage = "1.2"; break; default: p->cpu_name = "unknown"; break; } if (cpu_id < 16) { switch (rev_id) { case 0x1: if (cpu_id > 8) { p->cpu_rev = "DM640/DM641/DM642/DM643"; p->cpu_voltage = "1.2 - 1.4"; } else { p->cpu_rev = "C6201"; p->cpu_voltage = "2.5"; } break; case 0x2: p->cpu_rev = "C6201B/C6202/C6211"; p->cpu_voltage = "1.8"; break; case 0x3: p->cpu_rev = "C6202B/C6203/C6204/C6205"; p->cpu_voltage = "1.5"; break; case 0x201: p->cpu_rev = "C6701 revision 0 (early CPU)"; p->cpu_voltage = "1.8"; break; case 0x202: p->cpu_rev = "C6701/C6711/C6712"; p->cpu_voltage = "1.8"; break; case 0x801: p->cpu_rev = "C64x"; p->cpu_voltage = "1.5"; break; default: p->cpu_rev = "unknown"; } } else { p->cpu_rev = p->__cpu_rev; snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id); } p->core_id = get_coreid(); node = of_find_node_by_name(NULL, "cpus"); if (node) { for_each_child_of_node(node, np) if (!strcmp("cpu", np->name)) ++c6x_num_cores; of_node_put(node); } node = of_find_node_by_name(NULL, "soc"); if (node) { if (of_property_read_string(node, "model", &c6x_soc_name)) c6x_soc_name = "unknown"; of_node_put(node); } else c6x_soc_name = "unknown"; printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n", p->core_id, p->cpu_name, p->cpu_rev, p->cpu_voltage, c6x_core_freq / 1000000); } /* * Early parsing of the command line */ static u32 mem_size __initdata; /* "mem=" parsing. */ static int __init early_mem(char *p) { if (!p) return -EINVAL; mem_size = memparse(p, &p); /* don't remove all of memory when handling "mem={invalid}" */ if (mem_size == 0) return -EINVAL; return 0; } early_param("mem", early_mem); /* "memdma=[@
]" parsing. */ static int __init early_memdma(char *p) { if (!p) return -EINVAL; dma_size = memparse(p, &p); if (*p == '@') dma_start = memparse(p, &p); return 0; } early_param("memdma", early_memdma); int __init c6x_add_memory(phys_addr_t start, unsigned long size) { static int ram_found __initdata; /* We only handle one bank (the one with PAGE_OFFSET) for now */ if (ram_found) return -EINVAL; if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size)) return 0; ram_start = start; ram_end = start + size; ram_found = 1; return 0; } /* * Do early machine setup and device tree parsing. This is called very * early on the boot process. */ notrace void __init machine_init(unsigned long dt_ptr) { void *dtb = __va(dt_ptr); void *fdt = _fdt_start; /* interrupts must be masked */ set_creg(IER, 2); /* * Set the Interrupt Service Table (IST) to the beginning of the * vector table. */ set_ist(_vectors_start); lockdep_init(); /* * dtb is passed in from bootloader. * fdt is linked in blob. */ if (dtb && dtb != fdt) fdt = dtb; /* Do some early initialization based on the flat device tree */ early_init_dt_scan(fdt); parse_early_param(); } void __init setup_arch(char **cmdline_p) { int bootmap_size; struct memblock_region *reg; printk(KERN_INFO "Initializing kernel\n"); /* Initialize command line */ *cmdline_p = boot_command_line; memory_end = ram_end; memory_end &= ~(PAGE_SIZE - 1); if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end) memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size); /* add block that this kernel can use */ memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET); /* reserve kernel text/data/bss */ memblock_reserve(PAGE_OFFSET, PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET)); if (dma_size) { /* align to cacheability granularity */ dma_size = CACHE_REGION_END(dma_size); if (!dma_start) dma_start = memory_end - dma_size; /* align to cacheability granularity */ dma_start = CACHE_REGION_START(dma_start); /* reserve DMA memory taken from kernel memory */ if (memblock_is_region_memory(dma_start, dma_size)) memblock_reserve(dma_start, dma_size); } memory_start = PAGE_ALIGN((unsigned int) &_end); printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n", memory_start, memory_end); #ifdef CONFIG_BLK_DEV_INITRD /* * Reserve initrd memory if in kernel memory. */ if (initrd_start < initrd_end) if (memblock_is_region_memory(initrd_start, initrd_end - initrd_start)) memblock_reserve(initrd_start, initrd_end - initrd_start); #endif init_mm.start_code = (unsigned long) &_stext; init_mm.end_code = (unsigned long) &_etext; init_mm.end_data = memory_start; init_mm.brk = memory_start; /* * Give all the memory to the bootmap allocator, tell it to put the * boot mem_map at the start of memory */ bootmap_size = init_bootmem_node(NODE_DATA(0), memory_start >> PAGE_SHIFT, PAGE_OFFSET >> PAGE_SHIFT, memory_end >> PAGE_SHIFT); memblock_reserve(memory_start, bootmap_size); unflatten_device_tree(); c6x_cache_init(); /* Set the whole external memory as non-cacheable */ disable_caching(ram_start, ram_end - 1); /* Set caching of external RAM used by Linux */ for_each_memblock(memory, reg) enable_caching(CACHE_REGION_START(reg->base), CACHE_REGION_START(reg->base + reg->size - 1)); #ifdef CONFIG_BLK_DEV_INITRD /* * Enable caching for initrd which falls outside kernel memory. */ if (initrd_start < initrd_end) { if (!memblock_is_region_memory(initrd_start, initrd_end - initrd_start)) enable_caching(CACHE_REGION_START(initrd_start), CACHE_REGION_START(initrd_end - 1)); } #endif /* * Disable caching for dma coherent memory taken from kernel memory. */ if (dma_size && memblock_is_region_memory(dma_start, dma_size)) disable_caching(dma_start, CACHE_REGION_START(dma_start + dma_size - 1)); /* Initialize the coherent memory allocator */ coherent_mem_init(dma_start, dma_size); /* * Free all memory as a starting point. */ free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET); /* * Then reserve memory which is already being used. */ for_each_memblock(reserved, reg) { pr_debug("reserved - 0x%08x-0x%08x\n", (u32) reg->base, (u32) reg->size); reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); } max_low_pfn = PFN_DOWN(memory_end); min_low_pfn = PFN_UP(memory_start); max_mapnr = max_low_pfn - min_low_pfn; /* Get kmalloc into gear */ paging_init(); /* * Probe for Device State Configuration Registers. * We have to do this early in case timer needs to be enabled * through DSCR. */ dscr_probe(); /* We do this early for timer and core clock frequency */ c64x_setup_clocks(); /* Get CPU info */ get_cpuinfo(); #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif } #define cpu_to_ptr(n) ((void *)((long)(n)+1)) #define ptr_to_cpu(p) ((long)(p) - 1) static int show_cpuinfo(struct seq_file *m, void *v) { int n = ptr_to_cpu(v); struct cpuinfo_c6x *p = &per_cpu(cpu_data, n); if (n == 0) { seq_printf(m, "soc\t\t: %s\n" "soc revision\t: 0x%x\n" "soc cores\t: %d\n", c6x_soc_name, c6x_silicon_rev, c6x_num_cores); } seq_printf(m, "\n" "processor\t: %d\n" "cpu\t\t: %s\n" "core revision\t: %s\n" "core voltage\t: %s\n" "core id\t\t: %d\n" "mmu\t\t: %s\n" "fpu\t\t: %s\n" "cpu MHz\t\t: %u\n" "bogomips\t: %lu.%02lu\n\n", n, p->cpu_name, p->cpu_rev, p->cpu_voltage, p->core_id, p->mmu, p->fpu, (c6x_core_freq + 500000) / 1000000, (loops_per_jiffy/(500000/HZ)), (loops_per_jiffy/(5000/HZ))%100); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return NULL; } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { c_start, c_stop, c_next, show_cpuinfo }; static struct cpu cpu_devices[NR_CPUS]; static int __init topology_init(void) { int i; for_each_present_cpu(i) register_cpu(&cpu_devices[i], i); return 0; } subsys_initcall(topology_init);