/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc. */ #ifndef _ASM_PGTABLE_64_H #define _ASM_PGTABLE_64_H #include #include #include #include #include #include #ifdef CONFIG_PAGE_SIZE_64KB #include #else #include #endif /* * Each address space has 2 4K pages as its page directory, giving 1024 * (== PTRS_PER_PGD) 8 byte pointers to pmd tables. Each pmd table is a * single 4K page, giving 512 (== PTRS_PER_PMD) 8 byte pointers to page * tables. Each page table is also a single 4K page, giving 512 (== * PTRS_PER_PTE) 8 byte ptes. Each pud entry is initialized to point to * invalid_pmd_table, each pmd entry is initialized to point to * invalid_pte_table, each pte is initialized to 0. When memory is low, * and a pmd table or a page table allocation fails, empty_bad_pmd_table * and empty_bad_page_table is returned back to higher layer code, so * that the failure is recognized later on. Linux does not seem to * handle these failures very well though. The empty_bad_page_table has * invalid pte entries in it, to force page faults. * * Kernel mappings: kernel mappings are held in the swapper_pg_table. * The layout is identical to userspace except it's indexed with the * fault address - VMALLOC_START. */ /* PGDIR_SHIFT determines what a third-level page table entry can map */ #ifdef __PAGETABLE_PMD_FOLDED #define PGDIR_SHIFT (PAGE_SHIFT + PAGE_SHIFT + PTE_ORDER - 3) #else /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT + PTE_ORDER - 3)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PGDIR_SHIFT (PMD_SHIFT + (PAGE_SHIFT + PMD_ORDER - 3)) #endif #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * For 4kB page size we use a 3 level page tree and an 8kB pud, which * permits us mapping 40 bits of virtual address space. * * We used to implement 41 bits by having an order 1 pmd level but that seemed * rather pointless. * * For 8kB page size we use a 3 level page tree which permits a total of * 8TB of address space. Alternatively a 33-bit / 8GB organization using * two levels would be easy to implement. * * For 16kB page size we use a 2 level page tree which permits a total of * 36 bits of virtual address space. We could add a third level but it seems * like at the moment there's no need for this. * * For 64kB page size we use a 2 level page table tree for a total of 42 bits * of virtual address space. */ #ifdef CONFIG_PAGE_SIZE_4KB #define PGD_ORDER 1 #define PUD_ORDER aieeee_attempt_to_allocate_pud #define PMD_ORDER 0 #define PTE_ORDER 0 #endif #ifdef CONFIG_PAGE_SIZE_8KB #define PGD_ORDER 0 #define PUD_ORDER aieeee_attempt_to_allocate_pud #define PMD_ORDER 0 #define PTE_ORDER 0 #endif #ifdef CONFIG_PAGE_SIZE_16KB #define PGD_ORDER 0 #define PUD_ORDER aieeee_attempt_to_allocate_pud #define PMD_ORDER 0 #define PTE_ORDER 0 #endif #ifdef CONFIG_PAGE_SIZE_32KB #define PGD_ORDER 0 #define PUD_ORDER aieeee_attempt_to_allocate_pud #define PMD_ORDER 0 #define PTE_ORDER 0 #endif #ifdef CONFIG_PAGE_SIZE_64KB #define PGD_ORDER 0 #define PUD_ORDER aieeee_attempt_to_allocate_pud #define PMD_ORDER aieeee_attempt_to_allocate_pmd #define PTE_ORDER 0 #endif #define PTRS_PER_PGD ((PAGE_SIZE << PGD_ORDER) / sizeof(pgd_t)) #ifndef __PAGETABLE_PMD_FOLDED #define PTRS_PER_PMD ((PAGE_SIZE << PMD_ORDER) / sizeof(pmd_t)) #endif #define PTRS_PER_PTE ((PAGE_SIZE << PTE_ORDER) / sizeof(pte_t)) #if PGDIR_SIZE >= TASK_SIZE64 #define USER_PTRS_PER_PGD (1) #else #define USER_PTRS_PER_PGD (TASK_SIZE64 / PGDIR_SIZE) #endif #define FIRST_USER_ADDRESS 0UL /* * TLB refill handlers also map the vmalloc area into xuseg. Avoid * the first couple of pages so NULL pointer dereferences will still * reliably trap. */ #define VMALLOC_START (MAP_BASE + (2 * PAGE_SIZE)) #define VMALLOC_END \ (MAP_BASE + \ min(PTRS_PER_PGD * PTRS_PER_PMD * PTRS_PER_PTE * PAGE_SIZE, \ (1UL << cpu_vmbits)) - (1UL << 32)) #if defined(CONFIG_MODULES) && defined(KBUILD_64BIT_SYM32) && \ VMALLOC_START != CKSSEG /* Load modules into 32bit-compatible segment. */ #define MODULE_START CKSSEG #define MODULE_END (FIXADDR_START-2*PAGE_SIZE) #endif #define pte_ERROR(e) \ printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) #ifndef __PAGETABLE_PMD_FOLDED #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) #endif #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) extern pte_t invalid_pte_table[PTRS_PER_PTE]; extern pte_t empty_bad_page_table[PTRS_PER_PTE]; #ifndef __PAGETABLE_PMD_FOLDED /* * For 3-level pagetables we defines these ourselves, for 2-level the * definitions are supplied by . */ typedef struct { unsigned long pmd; } pmd_t; #define pmd_val(x) ((x).pmd) #define __pmd(x) ((pmd_t) { (x) } ) extern pmd_t invalid_pmd_table[PTRS_PER_PMD]; #endif /* * Empty pgd/pmd entries point to the invalid_pte_table. */ static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) == (unsigned long) invalid_pte_table; } static inline int pmd_bad(pmd_t pmd) { #ifdef CONFIG_HUGETLB_PAGE /* pmd_huge(pmd) but inline */ if (unlikely(pmd_val(pmd) & _PAGE_HUGE)) return 0; #endif if (unlikely(pmd_val(pmd) & ~PAGE_MASK)) return 1; return 0; } static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) != (unsigned long) invalid_pte_table; } static inline void pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = ((unsigned long) invalid_pte_table); } #ifndef __PAGETABLE_PMD_FOLDED /* * Empty pud entries point to the invalid_pmd_table. */ static inline int pud_none(pud_t pud) { return pud_val(pud) == (unsigned long) invalid_pmd_table; } static inline int pud_bad(pud_t pud) { return pud_val(pud) & ~PAGE_MASK; } static inline int pud_present(pud_t pud) { return pud_val(pud) != (unsigned long) invalid_pmd_table; } static inline void pud_clear(pud_t *pudp) { pud_val(*pudp) = ((unsigned long) invalid_pmd_table); } #endif #define pte_page(x) pfn_to_page(pte_pfn(x)) #ifdef CONFIG_CPU_VR41XX #define pte_pfn(x) ((unsigned long)((x).pte >> (PAGE_SHIFT + 2))) #define pfn_pte(pfn, prot) __pte(((pfn) << (PAGE_SHIFT + 2)) | pgprot_val(prot)) #else #define pte_pfn(x) ((unsigned long)((x).pte >> _PFN_SHIFT)) #define pfn_pte(pfn, prot) __pte(((pfn) << _PFN_SHIFT) | pgprot_val(prot)) #endif #define __pgd_offset(address) pgd_index(address) #define __pud_offset(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) #define __pmd_offset(address) pmd_index(address) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) /* to find an entry in a page-table-directory */ #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr)) #ifndef __PAGETABLE_PMD_FOLDED static inline unsigned long pud_page_vaddr(pud_t pud) { return pud_val(pud); } #define pud_phys(pud) virt_to_phys((void *)pud_val(pud)) #define pud_page(pud) (pfn_to_page(pud_phys(pud) >> PAGE_SHIFT)) /* Find an entry in the second-level page table.. */ static inline pmd_t *pmd_offset(pud_t * pud, unsigned long address) { return (pmd_t *) pud_page_vaddr(*pud) + pmd_index(address); } #endif /* Find an entry in the third-level page table.. */ #define __pte_offset(address) \ (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset(dir, address) \ ((pte_t *) pmd_page_vaddr(*(dir)) + __pte_offset(address)) #define pte_offset_kernel(dir, address) \ ((pte_t *) pmd_page_vaddr(*(dir)) + __pte_offset(address)) #define pte_offset_map(dir, address) \ ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) #define pte_unmap(pte) ((void)(pte)) /* * Initialize a new pgd / pmd table with invalid pointers. */ extern void pgd_init(unsigned long page); extern void pmd_init(unsigned long page, unsigned long pagetable); /* * Non-present pages: high 24 bits are offset, next 8 bits type, * low 32 bits zero. */ static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; } #define __swp_type(x) (((x).val >> 32) & 0xff) #define __swp_offset(x) ((x).val >> 40) #define __swp_entry(type, offset) ((swp_entry_t) { pte_val(mk_swap_pte((type), (offset))) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) /* * Bits 0, 4, 6, and 7 are taken. Let's leave bits 1, 2, 3, and 5 alone to * make things easier, and only use the upper 56 bits for the page offset... */ #define PTE_FILE_MAX_BITS 56 #define pte_to_pgoff(_pte) ((_pte).pte >> 8) #define pgoff_to_pte(off) ((pte_t) { ((off) << 8) | _PAGE_FILE }) #endif /* _ASM_PGTABLE_64_H */