/* * SMP related functions * * Copyright IBM Corp. 1999, 2012 * Author(s): Denis Joseph Barrow, * Martin Schwidefsky , * Heiko Carstens , * * based on other smp stuff by * (c) 1995 Alan Cox, CymruNET Ltd * (c) 1998 Ingo Molnar * * The code outside of smp.c uses logical cpu numbers, only smp.c does * the translation of logical to physical cpu ids. All new code that * operates on physical cpu numbers needs to go into smp.c. */ #define KMSG_COMPONENT "cpu" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "entry.h" enum { ec_schedule = 0, ec_call_function_single, ec_stop_cpu, }; enum { CPU_STATE_STANDBY, CPU_STATE_CONFIGURED, }; static DEFINE_PER_CPU(struct cpu *, cpu_device); struct pcpu { struct _lowcore *lowcore; /* lowcore page(s) for the cpu */ unsigned long ec_mask; /* bit mask for ec_xxx functions */ signed char state; /* physical cpu state */ signed char polarization; /* physical polarization */ u16 address; /* physical cpu address */ }; static u8 boot_core_type; static struct pcpu pcpu_devices[NR_CPUS]; unsigned int smp_cpu_mt_shift; EXPORT_SYMBOL(smp_cpu_mt_shift); unsigned int smp_cpu_mtid; EXPORT_SYMBOL(smp_cpu_mtid); #ifdef CONFIG_CRASH_DUMP __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS]; #endif static unsigned int smp_max_threads __initdata = -1U; static int __init early_nosmt(char *s) { smp_max_threads = 1; return 0; } early_param("nosmt", early_nosmt); static int __init early_smt(char *s) { get_option(&s, &smp_max_threads); return 0; } early_param("smt", early_smt); /* * The smp_cpu_state_mutex must be held when changing the state or polarization * member of a pcpu data structure within the pcpu_devices arreay. */ DEFINE_MUTEX(smp_cpu_state_mutex); /* * Signal processor helper functions. */ static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm) { int cc; while (1) { cc = __pcpu_sigp(addr, order, parm, NULL); if (cc != SIGP_CC_BUSY) return cc; cpu_relax(); } } static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm) { int cc, retry; for (retry = 0; ; retry++) { cc = __pcpu_sigp(pcpu->address, order, parm, NULL); if (cc != SIGP_CC_BUSY) break; if (retry >= 3) udelay(10); } return cc; } static inline int pcpu_stopped(struct pcpu *pcpu) { u32 uninitialized_var(status); if (__pcpu_sigp(pcpu->address, SIGP_SENSE, 0, &status) != SIGP_CC_STATUS_STORED) return 0; return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED)); } static inline int pcpu_running(struct pcpu *pcpu) { if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING, 0, NULL) != SIGP_CC_STATUS_STORED) return 1; /* Status stored condition code is equivalent to cpu not running. */ return 0; } /* * Find struct pcpu by cpu address. */ static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address) { int cpu; for_each_cpu(cpu, mask) if (pcpu_devices[cpu].address == address) return pcpu_devices + cpu; return NULL; } static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit) { int order; if (test_and_set_bit(ec_bit, &pcpu->ec_mask)) return; order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL; pcpu_sigp_retry(pcpu, order, 0); } #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE) #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE) static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu) { unsigned long async_stack, panic_stack; struct _lowcore *lc; if (pcpu != &pcpu_devices[0]) { pcpu->lowcore = (struct _lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER); async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER); panic_stack = __get_free_page(GFP_KERNEL); if (!pcpu->lowcore || !panic_stack || !async_stack) goto out; } else { async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET; panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET; } lc = pcpu->lowcore; memcpy(lc, &S390_lowcore, 512); memset((char *) lc + 512, 0, sizeof(*lc) - 512); lc->async_stack = async_stack + ASYNC_FRAME_OFFSET; lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET; lc->cpu_nr = cpu; lc->spinlock_lockval = arch_spin_lockval(cpu); if (MACHINE_HAS_VX) lc->vector_save_area_addr = (unsigned long) &lc->vector_save_area; if (vdso_alloc_per_cpu(lc)) goto out; lowcore_ptr[cpu] = lc; pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc); return 0; out: if (pcpu != &pcpu_devices[0]) { free_page(panic_stack); free_pages(async_stack, ASYNC_ORDER); free_pages((unsigned long) pcpu->lowcore, LC_ORDER); } return -ENOMEM; } #ifdef CONFIG_HOTPLUG_CPU static void pcpu_free_lowcore(struct pcpu *pcpu) { pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0); lowcore_ptr[pcpu - pcpu_devices] = NULL; vdso_free_per_cpu(pcpu->lowcore); if (pcpu == &pcpu_devices[0]) return; free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET); free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER); free_pages((unsigned long) pcpu->lowcore, LC_ORDER); } #endif /* CONFIG_HOTPLUG_CPU */ static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu) { struct _lowcore *lc = pcpu->lowcore; if (MACHINE_HAS_TLB_LC) cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask); cpumask_set_cpu(cpu, mm_cpumask(&init_mm)); atomic_inc(&init_mm.context.attach_count); lc->cpu_nr = cpu; lc->spinlock_lockval = arch_spin_lockval(cpu); lc->percpu_offset = __per_cpu_offset[cpu]; lc->kernel_asce = S390_lowcore.kernel_asce; lc->machine_flags = S390_lowcore.machine_flags; lc->user_timer = lc->system_timer = lc->steal_timer = 0; __ctl_store(lc->cregs_save_area, 0, 15); save_access_regs((unsigned int *) lc->access_regs_save_area); memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list, MAX_FACILITY_BIT/8); } static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk) { struct _lowcore *lc = pcpu->lowcore; struct thread_info *ti = task_thread_info(tsk); lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs); lc->thread_info = (unsigned long) task_thread_info(tsk); lc->current_task = (unsigned long) tsk; lc->lpp = LPP_MAGIC; lc->current_pid = tsk->pid; lc->user_timer = ti->user_timer; lc->system_timer = ti->system_timer; lc->steal_timer = 0; } static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data) { struct _lowcore *lc = pcpu->lowcore; lc->restart_stack = lc->kernel_stack; lc->restart_fn = (unsigned long) func; lc->restart_data = (unsigned long) data; lc->restart_source = -1UL; pcpu_sigp_retry(pcpu, SIGP_RESTART, 0); } /* * Call function via PSW restart on pcpu and stop the current cpu. */ static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *), void *data, unsigned long stack) { struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices]; unsigned long source_cpu = stap(); __load_psw_mask(PSW_KERNEL_BITS); if (pcpu->address == source_cpu) func(data); /* should not return */ /* Stop target cpu (if func returns this stops the current cpu). */ pcpu_sigp_retry(pcpu, SIGP_STOP, 0); /* Restart func on the target cpu and stop the current cpu. */ mem_assign_absolute(lc->restart_stack, stack); mem_assign_absolute(lc->restart_fn, (unsigned long) func); mem_assign_absolute(lc->restart_data, (unsigned long) data); mem_assign_absolute(lc->restart_source, source_cpu); asm volatile( "0: sigp 0,%0,%2 # sigp restart to target cpu\n" " brc 2,0b # busy, try again\n" "1: sigp 0,%1,%3 # sigp stop to current cpu\n" " brc 2,1b # busy, try again\n" : : "d" (pcpu->address), "d" (source_cpu), "K" (SIGP_RESTART), "K" (SIGP_STOP) : "0", "1", "cc"); for (;;) ; } /* * Enable additional logical cpus for multi-threading. */ static int pcpu_set_smt(unsigned int mtid) { register unsigned long reg1 asm ("1") = (unsigned long) mtid; int cc; if (smp_cpu_mtid == mtid) return 0; asm volatile( " sigp %1,0,%2 # sigp set multi-threading\n" " ipm %0\n" " srl %0,28\n" : "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING) : "cc"); if (cc == 0) { smp_cpu_mtid = mtid; smp_cpu_mt_shift = 0; while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift)) smp_cpu_mt_shift++; pcpu_devices[0].address = stap(); } return cc; } /* * Call function on an online CPU. */ void smp_call_online_cpu(void (*func)(void *), void *data) { struct pcpu *pcpu; /* Use the current cpu if it is online. */ pcpu = pcpu_find_address(cpu_online_mask, stap()); if (!pcpu) /* Use the first online cpu. */ pcpu = pcpu_devices + cpumask_first(cpu_online_mask); pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack); } /* * Call function on the ipl CPU. */ void smp_call_ipl_cpu(void (*func)(void *), void *data) { pcpu_delegate(&pcpu_devices[0], func, data, pcpu_devices->lowcore->panic_stack - PANIC_FRAME_OFFSET + PAGE_SIZE); } int smp_find_processor_id(u16 address) { int cpu; for_each_present_cpu(cpu) if (pcpu_devices[cpu].address == address) return cpu; return -1; } int smp_vcpu_scheduled(int cpu) { return pcpu_running(pcpu_devices + cpu); } void smp_yield_cpu(int cpu) { if (MACHINE_HAS_DIAG9C) { diag_stat_inc_norecursion(DIAG_STAT_X09C); asm volatile("diag %0,0,0x9c" : : "d" (pcpu_devices[cpu].address)); } else if (MACHINE_HAS_DIAG44) { diag_stat_inc_norecursion(DIAG_STAT_X044); asm volatile("diag 0,0,0x44"); } } /* * Send cpus emergency shutdown signal. This gives the cpus the * opportunity to complete outstanding interrupts. */ static void smp_emergency_stop(cpumask_t *cpumask) { u64 end; int cpu; end = get_tod_clock() + (1000000UL << 12); for_each_cpu(cpu, cpumask) { struct pcpu *pcpu = pcpu_devices + cpu; set_bit(ec_stop_cpu, &pcpu->ec_mask); while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL, 0, NULL) == SIGP_CC_BUSY && get_tod_clock() < end) cpu_relax(); } while (get_tod_clock() < end) { for_each_cpu(cpu, cpumask) if (pcpu_stopped(pcpu_devices + cpu)) cpumask_clear_cpu(cpu, cpumask); if (cpumask_empty(cpumask)) break; cpu_relax(); } } /* * Stop all cpus but the current one. */ void smp_send_stop(void) { cpumask_t cpumask; int cpu; /* Disable all interrupts/machine checks */ __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT); trace_hardirqs_off(); debug_set_critical(); cpumask_copy(&cpumask, cpu_online_mask); cpumask_clear_cpu(smp_processor_id(), &cpumask); if (oops_in_progress) smp_emergency_stop(&cpumask); /* stop all processors */ for_each_cpu(cpu, &cpumask) { struct pcpu *pcpu = pcpu_devices + cpu; pcpu_sigp_retry(pcpu, SIGP_STOP, 0); while (!pcpu_stopped(pcpu)) cpu_relax(); } } /* * This is the main routine where commands issued by other * cpus are handled. */ static void smp_handle_ext_call(void) { unsigned long bits; /* handle bit signal external calls */ bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0); if (test_bit(ec_stop_cpu, &bits)) smp_stop_cpu(); if (test_bit(ec_schedule, &bits)) scheduler_ipi(); if (test_bit(ec_call_function_single, &bits)) generic_smp_call_function_single_interrupt(); } static void do_ext_call_interrupt(struct ext_code ext_code, unsigned int param32, unsigned long param64) { inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS); smp_handle_ext_call(); } void arch_send_call_function_ipi_mask(const struct cpumask *mask) { int cpu; for_each_cpu(cpu, mask) pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); } void arch_send_call_function_single_ipi(int cpu) { pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single); } /* * this function sends a 'reschedule' IPI to another CPU. * it goes straight through and wastes no time serializing * anything. Worst case is that we lose a reschedule ... */ void smp_send_reschedule(int cpu) { pcpu_ec_call(pcpu_devices + cpu, ec_schedule); } /* * parameter area for the set/clear control bit callbacks */ struct ec_creg_mask_parms { unsigned long orval; unsigned long andval; int cr; }; /* * callback for setting/clearing control bits */ static void smp_ctl_bit_callback(void *info) { struct ec_creg_mask_parms *pp = info; unsigned long cregs[16]; __ctl_store(cregs, 0, 15); cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval; __ctl_load(cregs, 0, 15); } /* * Set a bit in a control register of all cpus */ void smp_ctl_set_bit(int cr, int bit) { struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr }; on_each_cpu(smp_ctl_bit_callback, &parms, 1); } EXPORT_SYMBOL(smp_ctl_set_bit); /* * Clear a bit in a control register of all cpus */ void smp_ctl_clear_bit(int cr, int bit) { struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr }; on_each_cpu(smp_ctl_bit_callback, &parms, 1); } EXPORT_SYMBOL(smp_ctl_clear_bit); #ifdef CONFIG_CRASH_DUMP int smp_store_status(int cpu) { struct pcpu *pcpu = pcpu_devices + cpu; unsigned long pa; pa = __pa(&pcpu->lowcore->floating_pt_save_area); if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS, pa) != SIGP_CC_ORDER_CODE_ACCEPTED) return -EIO; if (!MACHINE_HAS_VX) return 0; pa = __pa(pcpu->lowcore->vector_save_area_addr); if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS, pa) != SIGP_CC_ORDER_CODE_ACCEPTED) return -EIO; return 0; } /* * Collect CPU state of the previous, crashed system. * There are four cases: * 1) standard zfcp dump * condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP * The state for all CPUs except the boot CPU needs to be collected * with sigp stop-and-store-status. The boot CPU state is located in * the absolute lowcore of the memory stored in the HSA. The zcore code * will copy the boot CPU state from the HSA. * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory) * condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP * The state for all CPUs except the boot CPU needs to be collected * with sigp stop-and-store-status. The firmware or the boot-loader * stored the registers of the boot CPU in the absolute lowcore in the * memory of the old system. * 3) kdump and the old kernel did not store the CPU state, * or stand-alone kdump for DASD * condition: OLDMEM_BASE != NULL && !is_kdump_kernel() * The state for all CPUs except the boot CPU needs to be collected * with sigp stop-and-store-status. The kexec code or the boot-loader * stored the registers of the boot CPU in the memory of the old system. * 4) kdump and the old kernel stored the CPU state * condition: OLDMEM_BASE != NULL && is_kdump_kernel() * This case does not exist for s390 anymore, setup_arch explicitly * deactivates the elfcorehdr= kernel parameter */ static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr, bool is_boot_cpu, unsigned long page) { __vector128 *vxrs = (__vector128 *) page; if (is_boot_cpu) vxrs = boot_cpu_vector_save_area; else __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page); save_area_add_vxrs(sa, vxrs); } static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr, bool is_boot_cpu, unsigned long page) { void *regs = (void *) page; if (is_boot_cpu) copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512); else __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page); save_area_add_regs(sa, regs); } void __init smp_save_dump_cpus(void) { int addr, boot_cpu_addr, max_cpu_addr; struct save_area *sa; unsigned long page; bool is_boot_cpu; if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP)) /* No previous system present, normal boot. */ return; /* Allocate a page as dumping area for the store status sigps */ page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31); if (!page) panic("could not allocate memory for save area\n"); /* Set multi-threading state to the previous system. */ pcpu_set_smt(sclp.mtid_prev); boot_cpu_addr = stap(); max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev; for (addr = 0; addr <= max_cpu_addr; addr++) { if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) == SIGP_CC_NOT_OPERATIONAL) continue; is_boot_cpu = (addr == boot_cpu_addr); /* Allocate save area */ sa = save_area_alloc(is_boot_cpu); if (!sa) panic("could not allocate memory for save area\n"); if (MACHINE_HAS_VX) /* Get the vector registers */ smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page); /* * For a zfcp dump OLDMEM_BASE == NULL and the registers * of the boot CPU are stored in the HSA. To retrieve * these registers an SCLP request is required which is * done by drivers/s390/char/zcore.c:init_cpu_info() */ if (!is_boot_cpu || OLDMEM_BASE) /* Get the CPU registers */ smp_save_cpu_regs(sa, addr, is_boot_cpu, page); } memblock_free(page, PAGE_SIZE); diag308_reset(); pcpu_set_smt(0); } #endif /* CONFIG_CRASH_DUMP */ void smp_cpu_set_polarization(int cpu, int val) { pcpu_devices[cpu].polarization = val; } int smp_cpu_get_polarization(int cpu) { return pcpu_devices[cpu].polarization; } static struct sclp_core_info *smp_get_core_info(void) { static int use_sigp_detection; struct sclp_core_info *info; int address; info = kzalloc(sizeof(*info), GFP_KERNEL); if (info && (use_sigp_detection || sclp_get_core_info(info))) { use_sigp_detection = 1; for (address = 0; address < (SCLP_MAX_CORES << smp_cpu_mt_shift); address += (1U << smp_cpu_mt_shift)) { if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) == SIGP_CC_NOT_OPERATIONAL) continue; info->core[info->configured].core_id = address >> smp_cpu_mt_shift; info->configured++; } info->combined = info->configured; } return info; } static int smp_add_present_cpu(int cpu); static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add) { struct pcpu *pcpu; cpumask_t avail; int cpu, nr, i, j; u16 address; nr = 0; cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask); cpu = cpumask_first(&avail); for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) { if (sclp.has_core_type && info->core[i].type != boot_core_type) continue; address = info->core[i].core_id << smp_cpu_mt_shift; for (j = 0; j <= smp_cpu_mtid; j++) { if (pcpu_find_address(cpu_present_mask, address + j)) continue; pcpu = pcpu_devices + cpu; pcpu->address = address + j; pcpu->state = (cpu >= info->configured*(smp_cpu_mtid + 1)) ? CPU_STATE_STANDBY : CPU_STATE_CONFIGURED; smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN); set_cpu_present(cpu, true); if (sysfs_add && smp_add_present_cpu(cpu) != 0) set_cpu_present(cpu, false); else nr++; cpu = cpumask_next(cpu, &avail); if (cpu >= nr_cpu_ids) break; } } return nr; } static void __init smp_detect_cpus(void) { unsigned int cpu, mtid, c_cpus, s_cpus; struct sclp_core_info *info; u16 address; /* Get CPU information */ info = smp_get_core_info(); if (!info) panic("smp_detect_cpus failed to allocate memory\n"); /* Find boot CPU type */ if (sclp.has_core_type) { address = stap(); for (cpu = 0; cpu < info->combined; cpu++) if (info->core[cpu].core_id == address) { /* The boot cpu dictates the cpu type. */ boot_core_type = info->core[cpu].type; break; } if (cpu >= info->combined) panic("Could not find boot CPU type"); } /* Set multi-threading state for the current system */ mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp; mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1; pcpu_set_smt(mtid); /* Print number of CPUs */ c_cpus = s_cpus = 0; for (cpu = 0; cpu < info->combined; cpu++) { if (sclp.has_core_type && info->core[cpu].type != boot_core_type) continue; if (cpu < info->configured) c_cpus += smp_cpu_mtid + 1; else s_cpus += smp_cpu_mtid + 1; } pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus); /* Add CPUs present at boot */ get_online_cpus(); __smp_rescan_cpus(info, 0); put_online_cpus(); kfree(info); } /* * Activate a secondary processor. */ static void smp_start_secondary(void *cpuvoid) { S390_lowcore.last_update_clock = get_tod_clock(); S390_lowcore.restart_stack = (unsigned long) restart_stack; S390_lowcore.restart_fn = (unsigned long) do_restart; S390_lowcore.restart_data = 0; S390_lowcore.restart_source = -1UL; restore_access_regs(S390_lowcore.access_regs_save_area); __ctl_load(S390_lowcore.cregs_save_area, 0, 15); __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT); cpu_init(); preempt_disable(); init_cpu_timer(); vtime_init(); pfault_init(); notify_cpu_starting(smp_processor_id()); set_cpu_online(smp_processor_id(), true); inc_irq_stat(CPU_RST); local_irq_enable(); cpu_startup_entry(CPUHP_ONLINE); } /* Upping and downing of CPUs */ int __cpu_up(unsigned int cpu, struct task_struct *tidle) { struct pcpu *pcpu; int base, i, rc; pcpu = pcpu_devices + cpu; if (pcpu->state != CPU_STATE_CONFIGURED) return -EIO; base = cpu - (cpu % (smp_cpu_mtid + 1)); for (i = 0; i <= smp_cpu_mtid; i++) { if (base + i < nr_cpu_ids) if (cpu_online(base + i)) break; } /* * If this is the first CPU of the core to get online * do an initial CPU reset. */ if (i > smp_cpu_mtid && pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) != SIGP_CC_ORDER_CODE_ACCEPTED) return -EIO; rc = pcpu_alloc_lowcore(pcpu, cpu); if (rc) return rc; pcpu_prepare_secondary(pcpu, cpu); pcpu_attach_task(pcpu, tidle); pcpu_start_fn(pcpu, smp_start_secondary, NULL); /* Wait until cpu puts itself in the online & active maps */ while (!cpu_online(cpu) || !cpu_active(cpu)) cpu_relax(); return 0; } static unsigned int setup_possible_cpus __initdata; static int __init _setup_possible_cpus(char *s) { get_option(&s, &setup_possible_cpus); return 0; } early_param("possible_cpus", _setup_possible_cpus); #ifdef CONFIG_HOTPLUG_CPU int __cpu_disable(void) { unsigned long cregs[16]; /* Handle possible pending IPIs */ smp_handle_ext_call(); set_cpu_online(smp_processor_id(), false); /* Disable pseudo page faults on this cpu. */ pfault_fini(); /* Disable interrupt sources via control register. */ __ctl_store(cregs, 0, 15); cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */ cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */ cregs[14] &= ~0x1f000000UL; /* disable most machine checks */ __ctl_load(cregs, 0, 15); clear_cpu_flag(CIF_NOHZ_DELAY); return 0; } void __cpu_die(unsigned int cpu) { struct pcpu *pcpu; /* Wait until target cpu is down */ pcpu = pcpu_devices + cpu; while (!pcpu_stopped(pcpu)) cpu_relax(); pcpu_free_lowcore(pcpu); atomic_dec(&init_mm.context.attach_count); cpumask_clear_cpu(cpu, mm_cpumask(&init_mm)); if (MACHINE_HAS_TLB_LC) cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask); } void __noreturn cpu_die(void) { idle_task_exit(); pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0); for (;;) ; } #endif /* CONFIG_HOTPLUG_CPU */ void __init smp_fill_possible_mask(void) { unsigned int possible, sclp_max, cpu; sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1; sclp_max = min(smp_max_threads, sclp_max); sclp_max = sclp.max_cores * sclp_max ?: nr_cpu_ids; possible = setup_possible_cpus ?: nr_cpu_ids; possible = min(possible, sclp_max); for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++) set_cpu_possible(cpu, true); } void __init smp_prepare_cpus(unsigned int max_cpus) { /* request the 0x1201 emergency signal external interrupt */ if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt)) panic("Couldn't request external interrupt 0x1201"); /* request the 0x1202 external call external interrupt */ if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt)) panic("Couldn't request external interrupt 0x1202"); smp_detect_cpus(); } void __init smp_prepare_boot_cpu(void) { struct pcpu *pcpu = pcpu_devices; pcpu->state = CPU_STATE_CONFIGURED; pcpu->address = stap(); pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix(); S390_lowcore.percpu_offset = __per_cpu_offset[0]; smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN); set_cpu_present(0, true); set_cpu_online(0, true); } void __init smp_cpus_done(unsigned int max_cpus) { } void __init smp_setup_processor_id(void) { S390_lowcore.cpu_nr = 0; S390_lowcore.spinlock_lockval = arch_spin_lockval(0); } /* * the frequency of the profiling timer can be changed * by writing a multiplier value into /proc/profile. * * usually you want to run this on all CPUs ;) */ int setup_profiling_timer(unsigned int multiplier) { return 0; } #ifdef CONFIG_HOTPLUG_CPU static ssize_t cpu_configure_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t count; mutex_lock(&smp_cpu_state_mutex); count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state); mutex_unlock(&smp_cpu_state_mutex); return count; } static ssize_t cpu_configure_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct pcpu *pcpu; int cpu, val, rc, i; char delim; if (sscanf(buf, "%d %c", &val, &delim) != 1) return -EINVAL; if (val != 0 && val != 1) return -EINVAL; get_online_cpus(); mutex_lock(&smp_cpu_state_mutex); rc = -EBUSY; /* disallow configuration changes of online cpus and cpu 0 */ cpu = dev->id; cpu -= cpu % (smp_cpu_mtid + 1); if (cpu == 0) goto out; for (i = 0; i <= smp_cpu_mtid; i++) if (cpu_online(cpu + i)) goto out; pcpu = pcpu_devices + cpu; rc = 0; switch (val) { case 0: if (pcpu->state != CPU_STATE_CONFIGURED) break; rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift); if (rc) break; for (i = 0; i <= smp_cpu_mtid; i++) { if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i)) continue; pcpu[i].state = CPU_STATE_STANDBY; smp_cpu_set_polarization(cpu + i, POLARIZATION_UNKNOWN); } topology_expect_change(); break; case 1: if (pcpu->state != CPU_STATE_STANDBY) break; rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift); if (rc) break; for (i = 0; i <= smp_cpu_mtid; i++) { if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i)) continue; pcpu[i].state = CPU_STATE_CONFIGURED; smp_cpu_set_polarization(cpu + i, POLARIZATION_UNKNOWN); } topology_expect_change(); break; default: break; } out: mutex_unlock(&smp_cpu_state_mutex); put_online_cpus(); return rc ? rc : count; } static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store); #endif /* CONFIG_HOTPLUG_CPU */ static ssize_t show_cpu_address(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", pcpu_devices[dev->id].address); } static DEVICE_ATTR(address, 0444, show_cpu_address, NULL); static struct attribute *cpu_common_attrs[] = { #ifdef CONFIG_HOTPLUG_CPU &dev_attr_configure.attr, #endif &dev_attr_address.attr, NULL, }; static struct attribute_group cpu_common_attr_group = { .attrs = cpu_common_attrs, }; static struct attribute *cpu_online_attrs[] = { &dev_attr_idle_count.attr, &dev_attr_idle_time_us.attr, NULL, }; static struct attribute_group cpu_online_attr_group = { .attrs = cpu_online_attrs, }; static int smp_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned int)(long)hcpu; struct device *s = &per_cpu(cpu_device, cpu)->dev; int err = 0; switch (action & ~CPU_TASKS_FROZEN) { case CPU_ONLINE: err = sysfs_create_group(&s->kobj, &cpu_online_attr_group); break; case CPU_DEAD: sysfs_remove_group(&s->kobj, &cpu_online_attr_group); break; } return notifier_from_errno(err); } static int smp_add_present_cpu(int cpu) { struct device *s; struct cpu *c; int rc; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return -ENOMEM; per_cpu(cpu_device, cpu) = c; s = &c->dev; c->hotpluggable = 1; rc = register_cpu(c, cpu); if (rc) goto out; rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group); if (rc) goto out_cpu; if (cpu_online(cpu)) { rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group); if (rc) goto out_online; } rc = topology_cpu_init(c); if (rc) goto out_topology; return 0; out_topology: if (cpu_online(cpu)) sysfs_remove_group(&s->kobj, &cpu_online_attr_group); out_online: sysfs_remove_group(&s->kobj, &cpu_common_attr_group); out_cpu: #ifdef CONFIG_HOTPLUG_CPU unregister_cpu(c); #endif out: return rc; } #ifdef CONFIG_HOTPLUG_CPU int __ref smp_rescan_cpus(void) { struct sclp_core_info *info; int nr; info = smp_get_core_info(); if (!info) return -ENOMEM; get_online_cpus(); mutex_lock(&smp_cpu_state_mutex); nr = __smp_rescan_cpus(info, 1); mutex_unlock(&smp_cpu_state_mutex); put_online_cpus(); kfree(info); if (nr) topology_schedule_update(); return 0; } static ssize_t __ref rescan_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int rc; rc = smp_rescan_cpus(); return rc ? rc : count; } static DEVICE_ATTR(rescan, 0200, NULL, rescan_store); #endif /* CONFIG_HOTPLUG_CPU */ static int __init s390_smp_init(void) { int cpu, rc = 0; #ifdef CONFIG_HOTPLUG_CPU rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan); if (rc) return rc; #endif cpu_notifier_register_begin(); for_each_present_cpu(cpu) { rc = smp_add_present_cpu(cpu); if (rc) goto out; } __hotcpu_notifier(smp_cpu_notify, 0); out: cpu_notifier_register_done(); return rc; } subsys_initcall(s390_smp_init);