/* * Copyright (C) 1994 Linus Torvalds * * Pentium III FXSR, SSE support * General FPU state handling cleanups * Gareth Hughes , May 2000 * x86-64 work by Andi Kleen 2002 */ #ifndef _ASM_X86_FPU_INTERNAL_H #define _ASM_X86_FPU_INTERNAL_H #include #include #include #include #include #include #include #ifdef CONFIG_X86_64 # include # include struct ksignal; int ia32_setup_rt_frame(int sig, struct ksignal *ksig, compat_sigset_t *set, struct pt_regs *regs); int ia32_setup_frame(int sig, struct ksignal *ksig, compat_sigset_t *set, struct pt_regs *regs); #else # define user_i387_ia32_struct user_i387_struct # define user32_fxsr_struct user_fxsr_struct # define ia32_setup_frame __setup_frame # define ia32_setup_rt_frame __setup_rt_frame #endif #define MXCSR_DEFAULT 0x1f80 extern unsigned int mxcsr_feature_mask; extern void fpu__init_cpu(void); extern void eager_fpu_init(void); extern void fpu__init_system_xstate(void); extern void fpu__init_cpu_xstate(void); extern void fpu__init_system(struct cpuinfo_x86 *c); extern void fpu__activate_curr(struct fpu *fpu); extern void fpstate_init(struct fpu *fpu); extern void fpu__clear(struct task_struct *tsk); extern int dump_fpu(struct pt_regs *, struct user_i387_struct *); extern void fpu__restore(void); extern void fpu__init_check_bugs(void); extern void fpu__resume_cpu(void); DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); extern void convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk); extern void convert_to_fxsr(struct task_struct *tsk, const struct user_i387_ia32_struct *env); extern user_regset_active_fn regset_fpregs_active, regset_xregset_fpregs_active; extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get, xstateregs_get; extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set, xstateregs_set; /* * xstateregs_active == regset_fpregs_active. Please refer to the comment * at the definition of regset_fpregs_active. */ #define xstateregs_active regset_fpregs_active #ifdef CONFIG_MATH_EMULATION extern void finit_soft_fpu(struct i387_soft_struct *soft); #else static inline void finit_soft_fpu(struct i387_soft_struct *soft) {} #endif /* * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx, * on this CPU. * * This will disable any lazy FPU state restore of the current FPU state, * but if the current thread owns the FPU, it will still be saved by. */ static inline void __cpu_disable_lazy_restore(unsigned int cpu) { per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; } static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu) { return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; } static inline int is_ia32_compat_frame(void) { return config_enabled(CONFIG_IA32_EMULATION) && test_thread_flag(TIF_IA32); } static inline int is_ia32_frame(void) { return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame(); } static inline int is_x32_frame(void) { return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32); } #define X87_FSW_ES (1 << 7) /* Exception Summary */ static __always_inline __pure bool use_eager_fpu(void) { return static_cpu_has_safe(X86_FEATURE_EAGER_FPU); } static __always_inline __pure bool use_xsaveopt(void) { return static_cpu_has_safe(X86_FEATURE_XSAVEOPT); } static __always_inline __pure bool use_xsave(void) { return static_cpu_has_safe(X86_FEATURE_XSAVE); } static __always_inline __pure bool use_fxsr(void) { return static_cpu_has_safe(X86_FEATURE_FXSR); } static inline void fx_finit(struct i387_fxsave_struct *fx) { fx->cwd = 0x37f; fx->mxcsr = MXCSR_DEFAULT; } extern void __sanitize_i387_state(struct task_struct *); static inline void sanitize_i387_state(struct task_struct *tsk) { if (!use_xsaveopt()) return; __sanitize_i387_state(tsk); } #define user_insn(insn, output, input...) \ ({ \ int err; \ asm volatile(ASM_STAC "\n" \ "1:" #insn "\n\t" \ "2: " ASM_CLAC "\n" \ ".section .fixup,\"ax\"\n" \ "3: movl $-1,%[err]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : [err] "=r" (err), output \ : "0"(0), input); \ err; \ }) #define check_insn(insn, output, input...) \ ({ \ int err; \ asm volatile("1:" #insn "\n\t" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: movl $-1,%[err]\n" \ " jmp 2b\n" \ ".previous\n" \ _ASM_EXTABLE(1b, 3b) \ : [err] "=r" (err), output \ : "0"(0), input); \ err; \ }) static inline int fsave_user(struct i387_fsave_struct __user *fx) { return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); } static inline int fxsave_user(struct i387_fxsave_struct __user *fx) { if (config_enabled(CONFIG_X86_32)) return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); else if (config_enabled(CONFIG_AS_FXSAVEQ)) return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); /* See comment in fpu_fxsave() below. */ return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx)); } static inline int fxrstor_checking(struct i387_fxsave_struct *fx) { if (config_enabled(CONFIG_X86_32)) return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else if (config_enabled(CONFIG_AS_FXSAVEQ)) return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); /* See comment in fpu_fxsave() below. */ return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx)); } static inline int fxrstor_user(struct i387_fxsave_struct __user *fx) { if (config_enabled(CONFIG_X86_32)) return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); else if (config_enabled(CONFIG_AS_FXSAVEQ)) return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); /* See comment in fpu_fxsave() below. */ return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx)); } static inline int frstor_checking(struct i387_fsave_struct *fx) { return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline int frstor_user(struct i387_fsave_struct __user *fx) { return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); } static inline void fpu_fxsave(struct fpu *fpu) { if (config_enabled(CONFIG_X86_32)) asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave)); else if (config_enabled(CONFIG_AS_FXSAVEQ)) asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave)); else { /* Using "rex64; fxsave %0" is broken because, if the memory * operand uses any extended registers for addressing, a second * REX prefix will be generated (to the assembler, rex64 * followed by semicolon is a separate instruction), and hence * the 64-bitness is lost. * * Using "fxsaveq %0" would be the ideal choice, but is only * supported starting with gas 2.16. * * Using, as a workaround, the properly prefixed form below * isn't accepted by any binutils version so far released, * complaining that the same type of prefix is used twice if * an extended register is needed for addressing (fix submitted * to mainline 2005-11-21). * * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave)); * * This, however, we can work around by forcing the compiler to * select an addressing mode that doesn't require extended * registers. */ asm volatile( "rex64/fxsave (%[fx])" : "=m" (fpu->state.fxsave) : [fx] "R" (&fpu->state.fxsave)); } } /* * These must be called with preempt disabled. Returns * 'true' if the FPU state is still intact and we can * keep registers active. * * The legacy FNSAVE instruction cleared all FPU state * unconditionally, so registers are essentially destroyed. * Modern FPU state can be kept in registers, if there are * no pending FP exceptions. */ static inline int copy_fpregs_to_fpstate(struct fpu *fpu) { if (likely(use_xsave())) { xsave_state(&fpu->state.xsave); return 1; } if (likely(use_fxsr())) { fpu_fxsave(fpu); return 1; } /* * Legacy FPU register saving, FNSAVE always clears FPU registers, * so we have to mark them inactive: */ asm volatile("fnsave %[fx]; fwait" : [fx] "=m" (fpu->state.fsave)); return 0; } extern void fpu__save(struct fpu *fpu); static inline int fpu_restore_checking(struct fpu *fpu) { if (use_xsave()) return fpu_xrstor_checking(&fpu->state.xsave); else if (use_fxsr()) return fxrstor_checking(&fpu->state.fxsave); else return frstor_checking(&fpu->state.fsave); } static inline int restore_fpu_checking(struct fpu *fpu) { /* * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is * pending. Clear the x87 state here by setting it to fixed values. * "m" is a random variable that should be in L1. */ if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) { asm volatile( "fnclex\n\t" "emms\n\t" "fildl %P[addr]" /* set F?P to defined value */ : : [addr] "m" (fpu->fpregs_active)); } return fpu_restore_checking(fpu); } /* Must be paired with an 'stts' after! */ static inline void __fpregs_deactivate(struct fpu *fpu) { fpu->fpregs_active = 0; this_cpu_write(fpu_fpregs_owner_ctx, NULL); } /* Must be paired with a 'clts' before! */ static inline void __fpregs_activate(struct fpu *fpu) { fpu->fpregs_active = 1; this_cpu_write(fpu_fpregs_owner_ctx, fpu); } /* * The question "does this thread have fpu access?" * is slightly racy, since preemption could come in * and revoke it immediately after the test. * * However, even in that very unlikely scenario, * we can just assume we have FPU access - typically * to save the FP state - we'll just take a #NM * fault and get the FPU access back. */ static inline int user_has_fpu(void) { return current->thread.fpu.fpregs_active; } /* * Encapsulate the CR0.TS handling together with the * software flag. * * These generally need preemption protection to work, * do try to avoid using these on their own. */ static inline void fpregs_activate(struct fpu *fpu) { if (!use_eager_fpu()) clts(); __fpregs_activate(fpu); } static inline void fpregs_deactivate(struct fpu *fpu) { __fpregs_deactivate(fpu); if (!use_eager_fpu()) stts(); } static inline void drop_fpu(struct fpu *fpu) { /* * Forget coprocessor state.. */ preempt_disable(); fpu->counter = 0; if (fpu->fpregs_active) { /* Ignore delayed exceptions from user space */ asm volatile("1: fwait\n" "2:\n" _ASM_EXTABLE(1b, 2b)); fpregs_deactivate(fpu); } fpu->fpstate_active = 0; preempt_enable(); } static inline void restore_init_xstate(void) { if (use_xsave()) xrstor_state(&init_xstate_ctx, -1); else fxrstor_checking(&init_xstate_ctx.i387); } /* * Reset the FPU state in the eager case and drop it in the lazy case (later use * will reinit it). */ static inline void fpu_reset_state(struct fpu *fpu) { if (!use_eager_fpu()) drop_fpu(fpu); else restore_init_xstate(); } /* * FPU state switching for scheduling. * * This is a two-stage process: * * - switch_fpu_prepare() saves the old state and * sets the new state of the CR0.TS bit. This is * done within the context of the old process. * * - switch_fpu_finish() restores the new state as * necessary. */ typedef struct { int preload; } fpu_switch_t; static inline fpu_switch_t switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu) { fpu_switch_t fpu; /* * If the task has used the math, pre-load the FPU on xsave processors * or if the past 5 consecutive context-switches used math. */ fpu.preload = new_fpu->fpstate_active && (use_eager_fpu() || new_fpu->counter > 5); if (old_fpu->fpregs_active) { if (!copy_fpregs_to_fpstate(old_fpu)) old_fpu->last_cpu = -1; else old_fpu->last_cpu = cpu; /* But leave fpu_fpregs_owner_ctx! */ old_fpu->fpregs_active = 0; /* Don't change CR0.TS if we just switch! */ if (fpu.preload) { new_fpu->counter++; __fpregs_activate(new_fpu); prefetch(&new_fpu->state); } else if (!use_eager_fpu()) stts(); } else { old_fpu->counter = 0; old_fpu->last_cpu = -1; if (fpu.preload) { new_fpu->counter++; if (fpu_want_lazy_restore(new_fpu, cpu)) fpu.preload = 0; else prefetch(&new_fpu->state); fpregs_activate(new_fpu); } } return fpu; } /* * By the time this gets called, we've already cleared CR0.TS and * given the process the FPU if we are going to preload the FPU * state - all we need to do is to conditionally restore the register * state itself. */ static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch) { if (fpu_switch.preload) { if (unlikely(restore_fpu_checking(new_fpu))) fpu_reset_state(new_fpu); } } /* * Signal frame handlers... */ extern int save_xstate_sig(void __user *buf, void __user *fx, int size); extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size); static inline int xstate_sigframe_size(void) { return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size; } static inline int restore_xstate_sig(void __user *buf, int ia32_frame) { void __user *buf_fx = buf; int size = xstate_sigframe_size(); if (ia32_frame && use_fxsr()) { buf_fx = buf + sizeof(struct i387_fsave_struct); size += sizeof(struct i387_fsave_struct); } return __restore_xstate_sig(buf, buf_fx, size); } /* * Needs to be preemption-safe. * * NOTE! user_fpu_begin() must be used only immediately before restoring * the save state. It does not do any saving/restoring on its own. In * lazy FPU mode, it is just an optimization to avoid a #NM exception, * the task can lose the FPU right after preempt_enable(). */ static inline void user_fpu_begin(void) { struct fpu *fpu = ¤t->thread.fpu; preempt_disable(); if (!user_has_fpu()) fpregs_activate(fpu); preempt_enable(); } /* * i387 state interaction */ static inline unsigned short get_fpu_cwd(struct task_struct *tsk) { if (cpu_has_fxsr) { return tsk->thread.fpu.state.fxsave.cwd; } else { return (unsigned short)tsk->thread.fpu.state.fsave.cwd; } } static inline unsigned short get_fpu_swd(struct task_struct *tsk) { if (cpu_has_fxsr) { return tsk->thread.fpu.state.fxsave.swd; } else { return (unsigned short)tsk->thread.fpu.state.fsave.swd; } } static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk) { if (cpu_has_xmm) { return tsk->thread.fpu.state.fxsave.mxcsr; } else { return MXCSR_DEFAULT; } } extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu); static inline unsigned long alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx, unsigned long *size) { unsigned long frame_size = xstate_sigframe_size(); *buf_fx = sp = round_down(sp - frame_size, 64); if (ia32_frame && use_fxsr()) { frame_size += sizeof(struct i387_fsave_struct); sp -= sizeof(struct i387_fsave_struct); } *size = frame_size; return sp; } #endif /* _ASM_X86_FPU_INTERNAL_H */