/* * * Bluetooth HCI Three-wire UART driver * * Copyright (C) 2012 Intel Corporation * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include "hci_uart.h" #define HCI_3WIRE_ACK_PKT 0 #define HCI_3WIRE_LINK_PKT 15 #define H5_TXWINSIZE 4 #define H5_ACK_TIMEOUT msecs_to_jiffies(250) /* * Maximum Three-wire packet: * 4 byte header + max value for 12-bit length + 2 bytes for CRC */ #define H5_MAX_LEN (4 + 0xfff + 2) #define SLIP_DELIMITER 0xc0 #define SLIP_ESC 0xdb #define SLIP_ESC_DELIM 0xdc #define SLIP_ESC_ESC 0xdd struct h5 { struct sk_buff_head unack; /* Unack'ed packets queue */ struct sk_buff_head rel; /* Reliable packets queue */ struct sk_buff_head unrel; /* Unreliable packets queue */ struct sk_buff *rx_skb; /* Receive buffer */ size_t rx_pending; /* Expecting more bytes */ bool rx_esc; /* SLIP escape mode */ int (*rx_func) (struct hci_uart *hu, u8 c); struct timer_list timer; /* Retransmission timer */ bool txack_req; u8 next_ack; u8 next_seq; }; static void h5_reset_rx(struct h5 *h5); static void h5_timed_event(unsigned long arg) { struct hci_uart *hu = (struct hci_uart *) arg; struct h5 *h5 = hu->priv; struct sk_buff *skb; unsigned long flags; BT_DBG("hu %p retransmitting %u pkts", hu, h5->unack.qlen); spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING); while ((skb = __skb_dequeue_tail(&h5->unack)) != NULL) { h5->next_seq = (h5->next_seq - 1) & 0x07; skb_queue_head(&h5->rel, skb); } spin_unlock_irqrestore(&h5->unack.lock, flags); hci_uart_tx_wakeup(hu); } static int h5_open(struct hci_uart *hu) { struct h5 *h5; BT_DBG("hu %p", hu); h5 = kzalloc(sizeof(*h5), GFP_KERNEL); if (!h5) return -ENOMEM; hu->priv = h5; skb_queue_head_init(&h5->unack); skb_queue_head_init(&h5->rel); skb_queue_head_init(&h5->unrel); h5_reset_rx(h5); init_timer(&h5->timer); h5->timer.function = h5_timed_event; h5->timer.data = (unsigned long) hu; return 0; } static int h5_close(struct hci_uart *hu) { struct h5 *h5 = hu->priv; skb_queue_purge(&h5->unack); skb_queue_purge(&h5->rel); skb_queue_purge(&h5->unrel); del_timer(&h5->timer); kfree(h5); return 0; } static void h5_handle_internal_rx(struct hci_uart *hu) { BT_DBG("%s", hu->hdev->name); } static void h5_complete_rx_pkt(struct hci_uart *hu) { struct h5 *h5 = hu->priv; u8 pkt_type; BT_DBG("%s", hu->hdev->name); pkt_type = h5->rx_skb->data[1] & 0x0f; switch (pkt_type) { case HCI_EVENT_PKT: case HCI_ACLDATA_PKT: case HCI_SCODATA_PKT: bt_cb(h5->rx_skb)->pkt_type = pkt_type; /* Remove Three-wire header */ skb_pull(h5->rx_skb, 4); hci_recv_frame(h5->rx_skb); h5->rx_skb = NULL; break; default: h5_handle_internal_rx(hu); break; } h5_reset_rx(h5); } static int h5_rx_crc(struct hci_uart *hu, unsigned char c) { struct h5 *h5 = hu->priv; BT_DBG("%s 0x%02hhx", hu->hdev->name, c); h5_complete_rx_pkt(hu); h5_reset_rx(h5); return 0; } static int h5_rx_payload(struct hci_uart *hu, unsigned char c) { struct h5 *h5 = hu->priv; const unsigned char *hdr = h5->rx_skb->data; BT_DBG("%s 0x%02hhx", hu->hdev->name, c); if ((hdr[0] >> 4) & 0x01) { h5->rx_func = h5_rx_crc; h5->rx_pending = 2; } else { h5_complete_rx_pkt(hu); h5_reset_rx(h5); } return 0; } static int h5_rx_3wire_hdr(struct hci_uart *hu, unsigned char c) { struct h5 *h5 = hu->priv; const unsigned char *hdr = h5->rx_skb->data; BT_DBG("%s 0x%02hhx", hu->hdev->name, c); if (((hdr[0] + hdr[1] + hdr[2] + hdr[3]) & 0xff) != 0xff) { BT_ERR("Invalid header checksum"); h5_reset_rx(h5); return 0; } h5->rx_func = h5_rx_payload; h5->rx_pending = ((hdr[1] >> 4) & 0xff) + (hdr[2] << 4); return 0; } static int h5_rx_pkt_start(struct hci_uart *hu, unsigned char c) { struct h5 *h5 = hu->priv; BT_DBG("%s 0x%02hhx", hu->hdev->name, c); if (c == SLIP_DELIMITER) return 1; h5->rx_func = h5_rx_3wire_hdr; h5->rx_pending = 4; h5->rx_skb = bt_skb_alloc(H5_MAX_LEN, GFP_ATOMIC); if (!h5->rx_skb) { BT_ERR("Can't allocate mem for new packet"); h5_reset_rx(h5); return -ENOMEM; } h5->rx_skb->dev = (void *) hu->hdev; return 0; } static int h5_rx_delimiter(struct hci_uart *hu, unsigned char c) { struct h5 *h5 = hu->priv; BT_DBG("%s 0x%02hhx", hu->hdev->name, c); if (c == SLIP_DELIMITER) h5->rx_func = h5_rx_pkt_start; return 1; } static void h5_unslip_one_byte(struct h5 *h5, unsigned char c) { const u8 delim = SLIP_DELIMITER, esc = SLIP_ESC; const u8 *byte = &c; if (!h5->rx_esc && c == SLIP_ESC) { h5->rx_esc = true; return; } if (h5->rx_esc) { switch (c) { case SLIP_ESC_DELIM: byte = &delim; break; case SLIP_ESC_ESC: byte = &esc; break; default: BT_ERR("Invalid esc byte 0x%02hhx", c); h5_reset_rx(h5); return; } h5->rx_esc = false; } memcpy(skb_put(h5->rx_skb, 1), byte, 1); h5->rx_pending--; BT_DBG("unsliped 0x%02hhx", *byte); } static void h5_reset_rx(struct h5 *h5) { if (h5->rx_skb) { kfree_skb(h5->rx_skb); h5->rx_skb = NULL; } h5->rx_func = h5_rx_delimiter; h5->rx_pending = 0; h5->rx_esc = false; } static int h5_recv(struct hci_uart *hu, void *data, int count) { struct h5 *h5 = hu->priv; unsigned char *ptr = data; BT_DBG("%s count %d", hu->hdev->name, count); while (count > 0) { int processed; if (h5->rx_pending > 0) { if (*ptr == SLIP_DELIMITER) { BT_ERR("Too short H5 packet"); h5_reset_rx(h5); continue; } h5_unslip_one_byte(h5, *ptr); ptr++; count--; continue; } processed = h5->rx_func(hu, *ptr); if (processed < 0) return processed; ptr += processed; count -= processed; } return 0; } static int h5_enqueue(struct hci_uart *hu, struct sk_buff *skb) { struct h5 *h5 = hu->priv; if (skb->len > 0xfff) { BT_ERR("Packet too long (%u bytes)", skb->len); kfree_skb(skb); return 0; } switch (bt_cb(skb)->pkt_type) { case HCI_ACLDATA_PKT: case HCI_COMMAND_PKT: skb_queue_tail(&h5->rel, skb); break; case HCI_SCODATA_PKT: skb_queue_tail(&h5->unrel, skb); break; default: BT_ERR("Unknown packet type %u", bt_cb(skb)->pkt_type); kfree_skb(skb); break; } return 0; } static void h5_slip_delim(struct sk_buff *skb) { const char delim = SLIP_DELIMITER; memcpy(skb_put(skb, 1), &delim, 1); } static void h5_slip_one_byte(struct sk_buff *skb, u8 c) { const char esc_delim[2] = { SLIP_ESC, SLIP_ESC_DELIM }; const char esc_esc[2] = { SLIP_ESC, SLIP_ESC_ESC }; switch (c) { case SLIP_DELIMITER: memcpy(skb_put(skb, 2), &esc_delim, 2); break; case SLIP_ESC: memcpy(skb_put(skb, 2), &esc_esc, 2); break; default: memcpy(skb_put(skb, 1), &c, 1); } } static struct sk_buff *h5_build_pkt(struct h5 *h5, bool rel, u8 pkt_type, const u8 *data, size_t len) { struct sk_buff *nskb; u8 hdr[4]; int i; /* * Max len of packet: (original len + 4 (H5 hdr) + 2 (crc)) * 2 * (because bytes 0xc0 and 0xdb are escaped, worst case is when * the packet is all made of 0xc0 and 0xdb) + 2 (0xc0 * delimiters at start and end). */ nskb = alloc_skb((len + 6) * 2 + 2, GFP_ATOMIC); if (!nskb) return NULL; bt_cb(nskb)->pkt_type = pkt_type; h5_slip_delim(nskb); hdr[0] = h5->next_ack << 3; h5->txack_req = false; if (rel) { hdr[0] |= 1 << 7; hdr[0] |= h5->next_seq; h5->next_seq = (h5->next_seq + 1) % 8; } hdr[1] = pkt_type | ((len & 0x0f) << 4); hdr[2] = len >> 4; hdr[3] = ~((hdr[0] + hdr[1] + hdr[2]) & 0xff); for (i = 0; i < 4; i++) h5_slip_one_byte(nskb, hdr[i]); for (i = 0; i < len; i++) h5_slip_one_byte(nskb, data[i]); h5_slip_delim(nskb); return nskb; } static struct sk_buff *h5_prepare_pkt(struct h5 *h5, u8 pkt_type, const u8 *data, size_t len) { bool rel; switch (pkt_type) { case HCI_ACLDATA_PKT: case HCI_COMMAND_PKT: rel = true; break; case HCI_SCODATA_PKT: case HCI_3WIRE_LINK_PKT: case HCI_3WIRE_ACK_PKT: rel = false; break; default: BT_ERR("Unknown packet type %u", pkt_type); return NULL; } return h5_build_pkt(h5, rel, pkt_type, data, len); } static struct sk_buff *h5_prepare_ack(struct h5 *h5) { h5->txack_req = false; return NULL; } static struct sk_buff *h5_dequeue(struct hci_uart *hu) { struct h5 *h5 = hu->priv; unsigned long flags; struct sk_buff *skb, *nskb; if ((skb = skb_dequeue(&h5->unrel)) != NULL) { nskb = h5_prepare_pkt(h5, bt_cb(skb)->pkt_type, skb->data, skb->len); if (nskb) { kfree_skb(skb); return nskb; } skb_queue_head(&h5->unrel, skb); BT_ERR("Could not dequeue pkt because alloc_skb failed"); } spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING); if (h5->unack.qlen >= H5_TXWINSIZE) goto unlock; if ((skb = skb_dequeue(&h5->rel)) != NULL) { nskb = h5_prepare_pkt(h5, bt_cb(skb)->pkt_type, skb->data, skb->len); if (nskb) { __skb_queue_tail(&h5->unack, skb); mod_timer(&h5->timer, jiffies + H5_ACK_TIMEOUT); spin_unlock_irqrestore(&h5->unack.lock, flags); return nskb; } skb_queue_head(&h5->rel, skb); BT_ERR("Could not dequeue pkt because alloc_skb failed"); } unlock: spin_unlock_irqrestore(&h5->unack.lock, flags); if (h5->txack_req) return h5_prepare_ack(h5); return NULL; } static int h5_flush(struct hci_uart *hu) { BT_DBG("hu %p", hu); return 0; } static struct hci_uart_proto h5p = { .id = HCI_UART_3WIRE, .open = h5_open, .close = h5_close, .recv = h5_recv, .enqueue = h5_enqueue, .dequeue = h5_dequeue, .flush = h5_flush, }; int __init h5_init(void) { int err = hci_uart_register_proto(&h5p); if (!err) BT_INFO("HCI Three-wire UART (H5) protocol initialized"); else BT_ERR("HCI Three-wire UART (H5) protocol init failed"); return err; } int __exit h5_deinit(void) { return hci_uart_unregister_proto(&h5p); }