/* * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd. * http://www.samsung.com * * EXYNOS4 - CPU frequency scaling support * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct clk *cpu_clk; static struct clk *moutcore; static struct clk *mout_mpll; static struct clk *mout_apll; static struct regulator *arm_regulator; static struct cpufreq_freqs freqs; struct cpufreq_clkdiv { unsigned int clkdiv; }; static unsigned int locking_frequency; static bool frequency_locked; static DEFINE_MUTEX(cpufreq_lock); enum cpufreq_level_index { L0, L1, L2, L3, L4, CPUFREQ_LEVEL_END, }; static struct cpufreq_clkdiv exynos4_clkdiv_table[CPUFREQ_LEVEL_END]; static struct cpufreq_frequency_table exynos4_freq_table[] = { {L0, 1200*1000}, {L1, 1000*1000}, {L2, 800*1000}, {L3, 500*1000}, {L4, 200*1000}, {0, CPUFREQ_TABLE_END}, }; static unsigned int clkdiv_cpu0[CPUFREQ_LEVEL_END][7] = { /* * Clock divider value for following * { DIVCORE, DIVCOREM0, DIVCOREM1, DIVPERIPH, * DIVATB, DIVPCLK_DBG, DIVAPLL } */ /* ARM L0: 1200MHz */ { 0, 3, 7, 3, 4, 1, 7 }, /* ARM L1: 1000MHz */ { 0, 3, 7, 3, 4, 1, 7 }, /* ARM L2: 800MHz */ { 0, 3, 7, 3, 3, 1, 7 }, /* ARM L3: 500MHz */ { 0, 3, 7, 3, 3, 1, 7 }, /* ARM L4: 200MHz */ { 0, 1, 3, 1, 3, 1, 0 }, }; static unsigned int clkdiv_cpu1[CPUFREQ_LEVEL_END][2] = { /* * Clock divider value for following * { DIVCOPY, DIVHPM } */ /* ARM L0: 1200MHz */ { 5, 0 }, /* ARM L1: 1000MHz */ { 4, 0 }, /* ARM L2: 800MHz */ { 3, 0 }, /* ARM L3: 500MHz */ { 3, 0 }, /* ARM L4: 200MHz */ { 3, 0 }, }; struct cpufreq_voltage_table { unsigned int index; /* any */ unsigned int arm_volt; /* uV */ }; static struct cpufreq_voltage_table exynos4_volt_table[CPUFREQ_LEVEL_END] = { { .index = L0, .arm_volt = 1350000, }, { .index = L1, .arm_volt = 1300000, }, { .index = L2, .arm_volt = 1200000, }, { .index = L3, .arm_volt = 1100000, }, { .index = L4, .arm_volt = 1050000, }, }; static unsigned int exynos4_apll_pms_table[CPUFREQ_LEVEL_END] = { /* APLL FOUT L0: 1200MHz */ ((150 << 16) | (3 << 8) | 1), /* APLL FOUT L1: 1000MHz */ ((250 << 16) | (6 << 8) | 1), /* APLL FOUT L2: 800MHz */ ((200 << 16) | (6 << 8) | 1), /* APLL FOUT L3: 500MHz */ ((250 << 16) | (6 << 8) | 2), /* APLL FOUT L4: 200MHz */ ((200 << 16) | (6 << 8) | 3), }; static int exynos4_verify_speed(struct cpufreq_policy *policy) { return cpufreq_frequency_table_verify(policy, exynos4_freq_table); } static unsigned int exynos4_getspeed(unsigned int cpu) { return clk_get_rate(cpu_clk) / 1000; } static void exynos4_set_clkdiv(unsigned int div_index) { unsigned int tmp; /* Change Divider - CPU0 */ tmp = exynos4_clkdiv_table[div_index].clkdiv; __raw_writel(tmp, S5P_CLKDIV_CPU); do { tmp = __raw_readl(S5P_CLKDIV_STATCPU); } while (tmp & 0x1111111); /* Change Divider - CPU1 */ tmp = __raw_readl(S5P_CLKDIV_CPU1); tmp &= ~((0x7 << 4) | 0x7); tmp |= ((clkdiv_cpu1[div_index][0] << 4) | (clkdiv_cpu1[div_index][1] << 0)); __raw_writel(tmp, S5P_CLKDIV_CPU1); do { tmp = __raw_readl(S5P_CLKDIV_STATCPU1); } while (tmp & 0x11); } static void exynos4_set_apll(unsigned int index) { unsigned int tmp; /* 1. MUX_CORE_SEL = MPLL, ARMCLK uses MPLL for lock time */ clk_set_parent(moutcore, mout_mpll); do { tmp = (__raw_readl(S5P_CLKMUX_STATCPU) >> S5P_CLKSRC_CPU_MUXCORE_SHIFT); tmp &= 0x7; } while (tmp != 0x2); /* 2. Set APLL Lock time */ __raw_writel(S5P_APLL_LOCKTIME, S5P_APLL_LOCK); /* 3. Change PLL PMS values */ tmp = __raw_readl(S5P_APLL_CON0); tmp &= ~((0x3ff << 16) | (0x3f << 8) | (0x7 << 0)); tmp |= exynos4_apll_pms_table[index]; __raw_writel(tmp, S5P_APLL_CON0); /* 4. wait_lock_time */ do { tmp = __raw_readl(S5P_APLL_CON0); } while (!(tmp & (0x1 << S5P_APLLCON0_LOCKED_SHIFT))); /* 5. MUX_CORE_SEL = APLL */ clk_set_parent(moutcore, mout_apll); do { tmp = __raw_readl(S5P_CLKMUX_STATCPU); tmp &= S5P_CLKMUX_STATCPU_MUXCORE_MASK; } while (tmp != (0x1 << S5P_CLKSRC_CPU_MUXCORE_SHIFT)); } static void exynos4_set_frequency(unsigned int old_index, unsigned int new_index) { unsigned int tmp; if (old_index > new_index) { /* * L1/L3, L2/L4 Level change require * to only change s divider value */ if (((old_index == L3) && (new_index == L1)) || ((old_index == L4) && (new_index == L2))) { /* 1. Change the system clock divider values */ exynos4_set_clkdiv(new_index); /* 2. Change just s value in apll m,p,s value */ tmp = __raw_readl(S5P_APLL_CON0); tmp &= ~(0x7 << 0); tmp |= (exynos4_apll_pms_table[new_index] & 0x7); __raw_writel(tmp, S5P_APLL_CON0); } else { /* Clock Configuration Procedure */ /* 1. Change the system clock divider values */ exynos4_set_clkdiv(new_index); /* 2. Change the apll m,p,s value */ exynos4_set_apll(new_index); } } else if (old_index < new_index) { /* * L1/L3, L2/L4 Level change require * to only change s divider value */ if (((old_index == L1) && (new_index == L3)) || ((old_index == L2) && (new_index == L4))) { /* 1. Change just s value in apll m,p,s value */ tmp = __raw_readl(S5P_APLL_CON0); tmp &= ~(0x7 << 0); tmp |= (exynos4_apll_pms_table[new_index] & 0x7); __raw_writel(tmp, S5P_APLL_CON0); /* 2. Change the system clock divider values */ exynos4_set_clkdiv(new_index); } else { /* Clock Configuration Procedure */ /* 1. Change the apll m,p,s value */ exynos4_set_apll(new_index); /* 2. Change the system clock divider values */ exynos4_set_clkdiv(new_index); } } } static int exynos4_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { unsigned int index, old_index; unsigned int arm_volt; int err = -EINVAL; freqs.old = exynos4_getspeed(policy->cpu); mutex_lock(&cpufreq_lock); if (frequency_locked && target_freq != locking_frequency) { err = -EAGAIN; goto out; } if (cpufreq_frequency_table_target(policy, exynos4_freq_table, freqs.old, relation, &old_index)) goto out; if (cpufreq_frequency_table_target(policy, exynos4_freq_table, target_freq, relation, &index)) goto out; err = 0; freqs.new = exynos4_freq_table[index].frequency; freqs.cpu = policy->cpu; if (freqs.new == freqs.old) goto out; /* get the voltage value */ arm_volt = exynos4_volt_table[index].arm_volt; cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); /* control regulator */ if (freqs.new > freqs.old) { /* Voltage up */ regulator_set_voltage(arm_regulator, arm_volt, arm_volt); } /* Clock Configuration Procedure */ exynos4_set_frequency(old_index, index); cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); /* control regulator */ if (freqs.new < freqs.old) { /* Voltage down */ regulator_set_voltage(arm_regulator, arm_volt, arm_volt); } out: mutex_unlock(&cpufreq_lock); return err; } #ifdef CONFIG_PM /* * These suspend/resume are used as syscore_ops, it is already too * late to set regulator voltages at this stage. */ static int exynos4_cpufreq_suspend(struct cpufreq_policy *policy) { return 0; } static int exynos4_cpufreq_resume(struct cpufreq_policy *policy) { return 0; } #endif /** * exynos4_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume * context * @notifier * @pm_event * @v * * While frequency_locked == true, target() ignores every frequency but * locking_frequency. The locking_frequency value is the initial frequency, * which is set by the bootloader. In order to eliminate possible * inconsistency in clock values, we save and restore frequencies during * suspend and resume and block CPUFREQ activities. Note that the standard * suspend/resume cannot be used as they are too deep (syscore_ops) for * regulator actions. */ static int exynos4_cpufreq_pm_notifier(struct notifier_block *notifier, unsigned long pm_event, void *v) { struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */ static unsigned int saved_frequency; unsigned int temp; mutex_lock(&cpufreq_lock); switch (pm_event) { case PM_SUSPEND_PREPARE: if (frequency_locked) goto out; frequency_locked = true; if (locking_frequency) { saved_frequency = exynos4_getspeed(0); mutex_unlock(&cpufreq_lock); exynos4_target(policy, locking_frequency, CPUFREQ_RELATION_H); mutex_lock(&cpufreq_lock); } break; case PM_POST_SUSPEND: if (saved_frequency) { /* * While frequency_locked, only locking_frequency * is valid for target(). In order to use * saved_frequency while keeping frequency_locked, * we temporarly overwrite locking_frequency. */ temp = locking_frequency; locking_frequency = saved_frequency; mutex_unlock(&cpufreq_lock); exynos4_target(policy, locking_frequency, CPUFREQ_RELATION_H); mutex_lock(&cpufreq_lock); locking_frequency = temp; } frequency_locked = false; break; } out: mutex_unlock(&cpufreq_lock); return NOTIFY_OK; } static struct notifier_block exynos4_cpufreq_nb = { .notifier_call = exynos4_cpufreq_pm_notifier, }; static int exynos4_cpufreq_cpu_init(struct cpufreq_policy *policy) { int ret; policy->cur = policy->min = policy->max = exynos4_getspeed(policy->cpu); cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu); /* set the transition latency value */ policy->cpuinfo.transition_latency = 100000; /* * EXYNOS4 multi-core processors has 2 cores * that the frequency cannot be set independently. * Each cpu is bound to the same speed. * So the affected cpu is all of the cpus. */ if (!cpu_online(1)) { cpumask_copy(policy->related_cpus, cpu_possible_mask); cpumask_copy(policy->cpus, cpu_online_mask); } else { cpumask_setall(policy->cpus); } ret = cpufreq_frequency_table_cpuinfo(policy, exynos4_freq_table); if (ret) return ret; cpufreq_frequency_table_get_attr(exynos4_freq_table, policy->cpu); return 0; } static int exynos4_cpufreq_cpu_exit(struct cpufreq_policy *policy) { cpufreq_frequency_table_put_attr(policy->cpu); return 0; } static struct freq_attr *exynos4_cpufreq_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver exynos4_driver = { .flags = CPUFREQ_STICKY, .verify = exynos4_verify_speed, .target = exynos4_target, .get = exynos4_getspeed, .init = exynos4_cpufreq_cpu_init, .exit = exynos4_cpufreq_cpu_exit, .name = "exynos4_cpufreq", .attr = exynos4_cpufreq_attr, #ifdef CONFIG_PM .suspend = exynos4_cpufreq_suspend, .resume = exynos4_cpufreq_resume, #endif }; static int __init exynos4_cpufreq_init(void) { int i; unsigned int tmp; cpu_clk = clk_get(NULL, "armclk"); if (IS_ERR(cpu_clk)) return PTR_ERR(cpu_clk); locking_frequency = exynos4_getspeed(0); moutcore = clk_get(NULL, "moutcore"); if (IS_ERR(moutcore)) goto out; mout_mpll = clk_get(NULL, "mout_mpll"); if (IS_ERR(mout_mpll)) goto out; mout_apll = clk_get(NULL, "mout_apll"); if (IS_ERR(mout_apll)) goto out; arm_regulator = regulator_get(NULL, "vdd_arm"); if (IS_ERR(arm_regulator)) { printk(KERN_ERR "failed to get resource %s\n", "vdd_arm"); goto out; } register_pm_notifier(&exynos4_cpufreq_nb); tmp = __raw_readl(S5P_CLKDIV_CPU); for (i = L0; i < CPUFREQ_LEVEL_END; i++) { tmp &= ~(S5P_CLKDIV_CPU0_CORE_MASK | S5P_CLKDIV_CPU0_COREM0_MASK | S5P_CLKDIV_CPU0_COREM1_MASK | S5P_CLKDIV_CPU0_PERIPH_MASK | S5P_CLKDIV_CPU0_ATB_MASK | S5P_CLKDIV_CPU0_PCLKDBG_MASK | S5P_CLKDIV_CPU0_APLL_MASK); tmp |= ((clkdiv_cpu0[i][0] << S5P_CLKDIV_CPU0_CORE_SHIFT) | (clkdiv_cpu0[i][1] << S5P_CLKDIV_CPU0_COREM0_SHIFT) | (clkdiv_cpu0[i][2] << S5P_CLKDIV_CPU0_COREM1_SHIFT) | (clkdiv_cpu0[i][3] << S5P_CLKDIV_CPU0_PERIPH_SHIFT) | (clkdiv_cpu0[i][4] << S5P_CLKDIV_CPU0_ATB_SHIFT) | (clkdiv_cpu0[i][5] << S5P_CLKDIV_CPU0_PCLKDBG_SHIFT) | (clkdiv_cpu0[i][6] << S5P_CLKDIV_CPU0_APLL_SHIFT)); exynos4_clkdiv_table[i].clkdiv = tmp; } return cpufreq_register_driver(&exynos4_driver); out: if (!IS_ERR(cpu_clk)) clk_put(cpu_clk); if (!IS_ERR(moutcore)) clk_put(moutcore); if (!IS_ERR(mout_mpll)) clk_put(mout_mpll); if (!IS_ERR(mout_apll)) clk_put(mout_apll); if (!IS_ERR(arm_regulator)) regulator_put(arm_regulator); printk(KERN_ERR "%s: failed initialization\n", __func__); return -EINVAL; } late_initcall(exynos4_cpufreq_init);