/* * rotary_encoder.c * * (c) 2009 Daniel Mack * Copyright (C) 2011 Johan Hovold * * state machine code inspired by code from Tim Ruetz * * A generic driver for rotary encoders connected to GPIO lines. * See file:Documentation/input/rotary-encoder.txt for more information * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "rotary-encoder" struct rotary_encoder { struct input_dev *input; const struct rotary_encoder_platform_data *pdata; struct mutex access_mutex; unsigned int axis; unsigned int pos; struct gpio_desc *gpio_a; struct gpio_desc *gpio_b; unsigned int irq_a; unsigned int irq_b; bool armed; unsigned char dir; /* 0 - clockwise, 1 - CCW */ char last_stable; }; static int rotary_encoder_get_state(struct rotary_encoder *encoder) { int a = !!gpiod_get_value_cansleep(encoder->gpio_a); int b = !!gpiod_get_value_cansleep(encoder->gpio_b); return ((a << 1) | b); } static void rotary_encoder_report_event(struct rotary_encoder *encoder) { const struct rotary_encoder_platform_data *pdata = encoder->pdata; if (pdata->relative_axis) { input_report_rel(encoder->input, pdata->axis, encoder->dir ? -1 : 1); } else { unsigned int pos = encoder->pos; if (encoder->dir) { /* turning counter-clockwise */ if (pdata->rollover) pos += pdata->steps; if (pos) pos--; } else { /* turning clockwise */ if (pdata->rollover || pos < pdata->steps) pos++; } if (pdata->rollover) pos %= pdata->steps; encoder->pos = pos; input_report_abs(encoder->input, pdata->axis, encoder->pos); } input_sync(encoder->input); } static irqreturn_t rotary_encoder_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; int state; mutex_lock(&encoder->access_mutex); state = rotary_encoder_get_state(encoder); switch (state) { case 0x0: if (encoder->armed) { rotary_encoder_report_event(encoder); encoder->armed = false; } break; case 0x1: case 0x2: if (encoder->armed) encoder->dir = state - 1; break; case 0x3: encoder->armed = true; break; } mutex_unlock(&encoder->access_mutex); return IRQ_HANDLED; } static irqreturn_t rotary_encoder_half_period_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; int state; mutex_lock(&encoder->access_mutex); state = rotary_encoder_get_state(encoder); switch (state) { case 0x00: case 0x03: if (state != encoder->last_stable) { rotary_encoder_report_event(encoder); encoder->last_stable = state; } break; case 0x01: case 0x02: encoder->dir = (encoder->last_stable + state) & 0x01; break; } mutex_unlock(&encoder->access_mutex); return IRQ_HANDLED; } static irqreturn_t rotary_encoder_quarter_period_irq(int irq, void *dev_id) { struct rotary_encoder *encoder = dev_id; unsigned char sum; int state; mutex_lock(&encoder->access_mutex); state = rotary_encoder_get_state(encoder); /* * We encode the previous and the current state using a byte. * The previous state in the MSB nibble, the current state in the LSB * nibble. Then use a table to decide the direction of the turn. */ sum = (encoder->last_stable << 4) + state; switch (sum) { case 0x31: case 0x10: case 0x02: case 0x23: encoder->dir = 0; /* clockwise */ break; case 0x13: case 0x01: case 0x20: case 0x32: encoder->dir = 1; /* counter-clockwise */ break; default: /* * Ignore all other values. This covers the case when the * state didn't change (a spurious interrupt) and the * cases where the state changed by two steps, making it * impossible to tell the direction. * * In either case, don't report any event and save the * state for later. */ goto out; } rotary_encoder_report_event(encoder); out: encoder->last_stable = state; mutex_unlock(&encoder->access_mutex); return IRQ_HANDLED; } #ifdef CONFIG_OF static const struct of_device_id rotary_encoder_of_match[] = { { .compatible = "rotary-encoder", }, { }, }; MODULE_DEVICE_TABLE(of, rotary_encoder_of_match); static struct rotary_encoder_platform_data *rotary_encoder_parse_dt(struct device *dev) { const struct of_device_id *of_id = of_match_device(rotary_encoder_of_match, dev); struct device_node *np = dev->of_node; struct rotary_encoder_platform_data *pdata; int error; if (!of_id || !np) return NULL; pdata = devm_kzalloc(dev, sizeof(struct rotary_encoder_platform_data), GFP_KERNEL); if (!pdata) return ERR_PTR(-ENOMEM); of_property_read_u32(np, "rotary-encoder,steps", &pdata->steps); of_property_read_u32(np, "linux,axis", &pdata->axis); pdata->relative_axis = of_property_read_bool(np, "rotary-encoder,relative-axis"); pdata->rollover = of_property_read_bool(np, "rotary-encoder,rollover"); error = of_property_read_u32(np, "rotary-encoder,steps-per-period", &pdata->steps_per_period); if (error) { /* * The 'half-period' property has been deprecated, you must use * 'steps-per-period' and set an appropriate value, but we still * need to parse it to maintain compatibility. */ if (of_property_read_bool(np, "rotary-encoder,half-period")) { pdata->steps_per_period = 2; } else { /* Fallback to one step per period behavior */ pdata->steps_per_period = 1; } } pdata->wakeup_source = of_property_read_bool(np, "wakeup-source"); return pdata; } #else static inline struct rotary_encoder_platform_data * rotary_encoder_parse_dt(struct device *dev) { return NULL; } #endif static int rotary_encoder_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct rotary_encoder_platform_data *pdata = dev_get_platdata(dev); struct rotary_encoder *encoder; struct input_dev *input; irq_handler_t handler; int err; if (!pdata) { pdata = rotary_encoder_parse_dt(dev); if (IS_ERR(pdata)) return PTR_ERR(pdata); if (!pdata) { dev_err(dev, "missing platform data\n"); return -EINVAL; } } encoder = devm_kzalloc(dev, sizeof(struct rotary_encoder), GFP_KERNEL); if (!encoder) return -ENOMEM; mutex_init(&encoder->access_mutex); encoder->pdata = pdata; encoder->gpio_a = devm_gpiod_get_index(dev, NULL, 0, GPIOD_IN); if (IS_ERR(encoder->gpio_a)) { err = PTR_ERR(encoder->gpio_a); dev_err(dev, "unable to get GPIO at index 0: %d\n", err); return err; } encoder->irq_a = gpiod_to_irq(encoder->gpio_a); encoder->gpio_b = devm_gpiod_get_index(dev, NULL, 1, GPIOD_IN); if (IS_ERR(encoder->gpio_b)) { err = PTR_ERR(encoder->gpio_b); dev_err(dev, "unable to get GPIO at index 1: %d\n", err); return err; } encoder->irq_b = gpiod_to_irq(encoder->gpio_b); input = devm_input_allocate_device(dev); if (!input) return -ENOMEM; encoder->input = input; input->name = pdev->name; input->id.bustype = BUS_HOST; input->dev.parent = dev; if (pdata->relative_axis) input_set_capability(input, EV_REL, pdata->axis); else input_set_abs_params(input, pdata->axis, 0, pdata->steps, 0, 1); switch (pdata->steps_per_period) { case 4: handler = &rotary_encoder_quarter_period_irq; encoder->last_stable = rotary_encoder_get_state(encoder); break; case 2: handler = &rotary_encoder_half_period_irq; encoder->last_stable = rotary_encoder_get_state(encoder); break; case 1: handler = &rotary_encoder_irq; break; default: dev_err(dev, "'%d' is not a valid steps-per-period value\n", pdata->steps_per_period); return -EINVAL; } err = devm_request_threaded_irq(dev, encoder->irq_a, NULL, handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT, DRV_NAME, encoder); if (err) { dev_err(dev, "unable to request IRQ %d\n", encoder->irq_a); return err; } err = devm_request_threaded_irq(dev, encoder->irq_b, NULL, handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT, DRV_NAME, encoder); if (err) { dev_err(dev, "unable to request IRQ %d\n", encoder->irq_b); return err; } err = input_register_device(input); if (err) { dev_err(dev, "failed to register input device\n"); return err; } device_init_wakeup(&pdev->dev, pdata->wakeup_source); platform_set_drvdata(pdev, encoder); return 0; } static int __maybe_unused rotary_encoder_suspend(struct device *dev) { struct rotary_encoder *encoder = dev_get_drvdata(dev); if (device_may_wakeup(dev)) { enable_irq_wake(encoder->irq_a); enable_irq_wake(encoder->irq_b); } return 0; } static int __maybe_unused rotary_encoder_resume(struct device *dev) { struct rotary_encoder *encoder = dev_get_drvdata(dev); if (device_may_wakeup(dev)) { disable_irq_wake(encoder->irq_a); disable_irq_wake(encoder->irq_b); } return 0; } static SIMPLE_DEV_PM_OPS(rotary_encoder_pm_ops, rotary_encoder_suspend, rotary_encoder_resume); static struct platform_driver rotary_encoder_driver = { .probe = rotary_encoder_probe, .driver = { .name = DRV_NAME, .pm = &rotary_encoder_pm_ops, .of_match_table = of_match_ptr(rotary_encoder_of_match), } }; module_platform_driver(rotary_encoder_driver); MODULE_ALIAS("platform:" DRV_NAME); MODULE_DESCRIPTION("GPIO rotary encoder driver"); MODULE_AUTHOR("Daniel Mack , Johan Hovold"); MODULE_LICENSE("GPL v2");