/* * This file is part of the Chelsio T3 Ethernet driver. * * Copyright (C) 2003-2006 Chelsio Communications. All rights reserved. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this * release for licensing terms and conditions. */ #include "common.h" #include "regs.h" #include "sge_defs.h" #include "firmware_exports.h" /** * t3_wait_op_done_val - wait until an operation is completed * @adapter: the adapter performing the operation * @reg: the register to check for completion * @mask: a single-bit field within @reg that indicates completion * @polarity: the value of the field when the operation is completed * @attempts: number of check iterations * @delay: delay in usecs between iterations * @valp: where to store the value of the register at completion time * * Wait until an operation is completed by checking a bit in a register * up to @attempts times. If @valp is not NULL the value of the register * at the time it indicated completion is stored there. Returns 0 if the * operation completes and -EAGAIN otherwise. */ int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, int polarity, int attempts, int delay, u32 *valp) { while (1) { u32 val = t3_read_reg(adapter, reg); if (!!(val & mask) == polarity) { if (valp) *valp = val; return 0; } if (--attempts == 0) return -EAGAIN; if (delay) udelay(delay); } } /** * t3_write_regs - write a bunch of registers * @adapter: the adapter to program * @p: an array of register address/register value pairs * @n: the number of address/value pairs * @offset: register address offset * * Takes an array of register address/register value pairs and writes each * value to the corresponding register. Register addresses are adjusted * by the supplied offset. */ void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p, int n, unsigned int offset) { while (n--) { t3_write_reg(adapter, p->reg_addr + offset, p->val); p++; } } /** * t3_set_reg_field - set a register field to a value * @adapter: the adapter to program * @addr: the register address * @mask: specifies the portion of the register to modify * @val: the new value for the register field * * Sets a register field specified by the supplied mask to the * given value. */ void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, u32 val) { u32 v = t3_read_reg(adapter, addr) & ~mask; t3_write_reg(adapter, addr, v | val); t3_read_reg(adapter, addr); /* flush */ } /** * t3_read_indirect - read indirectly addressed registers * @adap: the adapter * @addr_reg: register holding the indirect address * @data_reg: register holding the value of the indirect register * @vals: where the read register values are stored * @start_idx: index of first indirect register to read * @nregs: how many indirect registers to read * * Reads registers that are accessed indirectly through an address/data * register pair. */ void t3_read_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, u32 *vals, unsigned int nregs, unsigned int start_idx) { while (nregs--) { t3_write_reg(adap, addr_reg, start_idx); *vals++ = t3_read_reg(adap, data_reg); start_idx++; } } /** * t3_mc7_bd_read - read from MC7 through backdoor accesses * @mc7: identifies MC7 to read from * @start: index of first 64-bit word to read * @n: number of 64-bit words to read * @buf: where to store the read result * * Read n 64-bit words from MC7 starting at word start, using backdoor * accesses. */ int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n, u64 *buf) { static const int shift[] = { 0, 0, 16, 24 }; static const int step[] = { 0, 32, 16, 8 }; unsigned int size64 = mc7->size / 8; /* # of 64-bit words */ struct adapter *adap = mc7->adapter; if (start >= size64 || start + n > size64) return -EINVAL; start *= (8 << mc7->width); while (n--) { int i; u64 val64 = 0; for (i = (1 << mc7->width) - 1; i >= 0; --i) { int attempts = 10; u32 val; t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start); t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0); val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP); while ((val & F_BUSY) && attempts--) val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP); if (val & F_BUSY) return -EIO; val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1); if (mc7->width == 0) { val64 = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA0); val64 |= (u64) val << 32; } else { if (mc7->width > 1) val >>= shift[mc7->width]; val64 |= (u64) val << (step[mc7->width] * i); } start += 8; } *buf++ = val64; } return 0; } /* * Initialize MI1. */ static void mi1_init(struct adapter *adap, const struct adapter_info *ai) { u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1; u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) | V_CLKDIV(clkdiv); if (!(ai->caps & SUPPORTED_10000baseT_Full)) val |= V_ST(1); t3_write_reg(adap, A_MI1_CFG, val); } #define MDIO_ATTEMPTS 10 /* * MI1 read/write operations for direct-addressed PHYs. */ static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr, int reg_addr, unsigned int *valp) { int ret; u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); if (mmd_addr) return -EINVAL; mutex_lock(&adapter->mdio_lock); t3_write_reg(adapter, A_MI1_ADDR, addr); t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2)); ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); if (!ret) *valp = t3_read_reg(adapter, A_MI1_DATA); mutex_unlock(&adapter->mdio_lock); return ret; } static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr, int reg_addr, unsigned int val) { int ret; u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr); if (mmd_addr) return -EINVAL; mutex_lock(&adapter->mdio_lock); t3_write_reg(adapter, A_MI1_ADDR, addr); t3_write_reg(adapter, A_MI1_DATA, val); t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); mutex_unlock(&adapter->mdio_lock); return ret; } static const struct mdio_ops mi1_mdio_ops = { mi1_read, mi1_write }; /* * MI1 read/write operations for indirect-addressed PHYs. */ static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr, int reg_addr, unsigned int *valp) { int ret; u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); mutex_lock(&adapter->mdio_lock); t3_write_reg(adapter, A_MI1_ADDR, addr); t3_write_reg(adapter, A_MI1_DATA, reg_addr); t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); if (!ret) { t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3)); ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); if (!ret) *valp = t3_read_reg(adapter, A_MI1_DATA); } mutex_unlock(&adapter->mdio_lock); return ret; } static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr, int reg_addr, unsigned int val) { int ret; u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr); mutex_lock(&adapter->mdio_lock); t3_write_reg(adapter, A_MI1_ADDR, addr); t3_write_reg(adapter, A_MI1_DATA, reg_addr); t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0)); ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); if (!ret) { t3_write_reg(adapter, A_MI1_DATA, val); t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1)); ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20); } mutex_unlock(&adapter->mdio_lock); return ret; } static const struct mdio_ops mi1_mdio_ext_ops = { mi1_ext_read, mi1_ext_write }; /** * t3_mdio_change_bits - modify the value of a PHY register * @phy: the PHY to operate on * @mmd: the device address * @reg: the register address * @clear: what part of the register value to mask off * @set: what part of the register value to set * * Changes the value of a PHY register by applying a mask to its current * value and ORing the result with a new value. */ int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear, unsigned int set) { int ret; unsigned int val; ret = mdio_read(phy, mmd, reg, &val); if (!ret) { val &= ~clear; ret = mdio_write(phy, mmd, reg, val | set); } return ret; } /** * t3_phy_reset - reset a PHY block * @phy: the PHY to operate on * @mmd: the device address of the PHY block to reset * @wait: how long to wait for the reset to complete in 1ms increments * * Resets a PHY block and optionally waits for the reset to complete. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset * for 10G PHYs. */ int t3_phy_reset(struct cphy *phy, int mmd, int wait) { int err; unsigned int ctl; err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET); if (err || !wait) return err; do { err = mdio_read(phy, mmd, MII_BMCR, &ctl); if (err) return err; ctl &= BMCR_RESET; if (ctl) msleep(1); } while (ctl && --wait); return ctl ? -1 : 0; } /** * t3_phy_advertise - set the PHY advertisement registers for autoneg * @phy: the PHY to operate on * @advert: bitmap of capabilities the PHY should advertise * * Sets a 10/100/1000 PHY's advertisement registers to advertise the * requested capabilities. */ int t3_phy_advertise(struct cphy *phy, unsigned int advert) { int err; unsigned int val = 0; err = mdio_read(phy, 0, MII_CTRL1000, &val); if (err) return err; val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL); if (advert & ADVERTISED_1000baseT_Half) val |= ADVERTISE_1000HALF; if (advert & ADVERTISED_1000baseT_Full) val |= ADVERTISE_1000FULL; err = mdio_write(phy, 0, MII_CTRL1000, val); if (err) return err; val = 1; if (advert & ADVERTISED_10baseT_Half) val |= ADVERTISE_10HALF; if (advert & ADVERTISED_10baseT_Full) val |= ADVERTISE_10FULL; if (advert & ADVERTISED_100baseT_Half) val |= ADVERTISE_100HALF; if (advert & ADVERTISED_100baseT_Full) val |= ADVERTISE_100FULL; if (advert & ADVERTISED_Pause) val |= ADVERTISE_PAUSE_CAP; if (advert & ADVERTISED_Asym_Pause) val |= ADVERTISE_PAUSE_ASYM; return mdio_write(phy, 0, MII_ADVERTISE, val); } /** * t3_set_phy_speed_duplex - force PHY speed and duplex * @phy: the PHY to operate on * @speed: requested PHY speed * @duplex: requested PHY duplex * * Force a 10/100/1000 PHY's speed and duplex. This also disables * auto-negotiation except for GigE, where auto-negotiation is mandatory. */ int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex) { int err; unsigned int ctl; err = mdio_read(phy, 0, MII_BMCR, &ctl); if (err) return err; if (speed >= 0) { ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE); if (speed == SPEED_100) ctl |= BMCR_SPEED100; else if (speed == SPEED_1000) ctl |= BMCR_SPEED1000; } if (duplex >= 0) { ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE); if (duplex == DUPLEX_FULL) ctl |= BMCR_FULLDPLX; } if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */ ctl |= BMCR_ANENABLE; return mdio_write(phy, 0, MII_BMCR, ctl); } static const struct adapter_info t3_adap_info[] = { {2, 0, 0, 0, F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5, SUPPORTED_OFFLOAD, &mi1_mdio_ops, "Chelsio PE9000"}, {2, 0, 0, 0, F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5, SUPPORTED_OFFLOAD, &mi1_mdio_ops, "Chelsio T302"}, {1, 0, 0, 0, F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0, SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD, &mi1_mdio_ext_ops, "Chelsio T310"}, {2, 0, 0, 0, F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0, SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD, &mi1_mdio_ext_ops, "Chelsio T320"}, }; /* * Return the adapter_info structure with a given index. Out-of-range indices * return NULL. */ const struct adapter_info *t3_get_adapter_info(unsigned int id) { return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL; } #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \ SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII) #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI) static const struct port_type_info port_types[] = { {NULL}, {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE, "10GBASE-XR"}, {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ, "10/100/1000BASE-T"}, {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ, "10/100/1000BASE-T"}, {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, {NULL, CAPS_10G, "10GBASE-KX4"}, {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE, "10GBASE-SR"}, {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"}, }; #undef CAPS_1G #undef CAPS_10G #define VPD_ENTRY(name, len) \ u8 name##_kword[2]; u8 name##_len; u8 name##_data[len] /* * Partial EEPROM Vital Product Data structure. Includes only the ID and * VPD-R sections. */ struct t3_vpd { u8 id_tag; u8 id_len[2]; u8 id_data[16]; u8 vpdr_tag; u8 vpdr_len[2]; VPD_ENTRY(pn, 16); /* part number */ VPD_ENTRY(ec, 16); /* EC level */ VPD_ENTRY(sn, 16); /* serial number */ VPD_ENTRY(na, 12); /* MAC address base */ VPD_ENTRY(cclk, 6); /* core clock */ VPD_ENTRY(mclk, 6); /* mem clock */ VPD_ENTRY(uclk, 6); /* uP clk */ VPD_ENTRY(mdc, 6); /* MDIO clk */ VPD_ENTRY(mt, 2); /* mem timing */ VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */ VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */ VPD_ENTRY(port0, 2); /* PHY0 complex */ VPD_ENTRY(port1, 2); /* PHY1 complex */ VPD_ENTRY(port2, 2); /* PHY2 complex */ VPD_ENTRY(port3, 2); /* PHY3 complex */ VPD_ENTRY(rv, 1); /* csum */ u32 pad; /* for multiple-of-4 sizing and alignment */ }; #define EEPROM_MAX_POLL 4 #define EEPROM_STAT_ADDR 0x4000 #define VPD_BASE 0xc00 /** * t3_seeprom_read - read a VPD EEPROM location * @adapter: adapter to read * @addr: EEPROM address * @data: where to store the read data * * Read a 32-bit word from a location in VPD EEPROM using the card's PCI * VPD ROM capability. A zero is written to the flag bit when the * addres is written to the control register. The hardware device will * set the flag to 1 when 4 bytes have been read into the data register. */ int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) { u16 val; int attempts = EEPROM_MAX_POLL; unsigned int base = adapter->params.pci.vpd_cap_addr; if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) return -EINVAL; pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr); do { udelay(10); pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); } while (!(val & PCI_VPD_ADDR_F) && --attempts); if (!(val & PCI_VPD_ADDR_F)) { CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr); return -EIO; } pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data); *data = le32_to_cpu(*data); return 0; } /** * t3_seeprom_write - write a VPD EEPROM location * @adapter: adapter to write * @addr: EEPROM address * @data: value to write * * Write a 32-bit word to a location in VPD EEPROM using the card's PCI * VPD ROM capability. */ int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data) { u16 val; int attempts = EEPROM_MAX_POLL; unsigned int base = adapter->params.pci.vpd_cap_addr; if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3)) return -EINVAL; pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA, cpu_to_le32(data)); pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR, addr | PCI_VPD_ADDR_F); do { msleep(1); pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val); } while ((val & PCI_VPD_ADDR_F) && --attempts); if (val & PCI_VPD_ADDR_F) { CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr); return -EIO; } return 0; } /** * t3_seeprom_wp - enable/disable EEPROM write protection * @adapter: the adapter * @enable: 1 to enable write protection, 0 to disable it * * Enables or disables write protection on the serial EEPROM. */ int t3_seeprom_wp(struct adapter *adapter, int enable) { return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); } /* * Convert a character holding a hex digit to a number. */ static unsigned int hex2int(unsigned char c) { return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10; } /** * get_vpd_params - read VPD parameters from VPD EEPROM * @adapter: adapter to read * @p: where to store the parameters * * Reads card parameters stored in VPD EEPROM. */ static int get_vpd_params(struct adapter *adapter, struct vpd_params *p) { int i, addr, ret; struct t3_vpd vpd; /* * Card information is normally at VPD_BASE but some early cards had * it at 0. */ ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd); if (ret) return ret; addr = vpd.id_tag == 0x82 ? VPD_BASE : 0; for (i = 0; i < sizeof(vpd); i += 4) { ret = t3_seeprom_read(adapter, addr + i, (u32 *)((u8 *)&vpd + i)); if (ret) return ret; } p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10); p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10); p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10); p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10); p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10); /* Old eeproms didn't have port information */ if (adapter->params.rev == 0 && !vpd.port0_data[0]) { p->port_type[0] = uses_xaui(adapter) ? 1 : 2; p->port_type[1] = uses_xaui(adapter) ? 6 : 2; } else { p->port_type[0] = hex2int(vpd.port0_data[0]); p->port_type[1] = hex2int(vpd.port1_data[0]); p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16); p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16); } for (i = 0; i < 6; i++) p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 + hex2int(vpd.na_data[2 * i + 1]); return 0; } /* serial flash and firmware constants */ enum { SF_ATTEMPTS = 5, /* max retries for SF1 operations */ SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */ SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */ /* flash command opcodes */ SF_PROG_PAGE = 2, /* program page */ SF_WR_DISABLE = 4, /* disable writes */ SF_RD_STATUS = 5, /* read status register */ SF_WR_ENABLE = 6, /* enable writes */ SF_RD_DATA_FAST = 0xb, /* read flash */ SF_ERASE_SECTOR = 0xd8, /* erase sector */ FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */ FW_VERS_ADDR = 0x77ffc /* flash address holding FW version */ }; /** * sf1_read - read data from the serial flash * @adapter: the adapter * @byte_cnt: number of bytes to read * @cont: whether another operation will be chained * @valp: where to store the read data * * Reads up to 4 bytes of data from the serial flash. The location of * the read needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, u32 *valp) { int ret; if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) return -EBUSY; t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); if (!ret) *valp = t3_read_reg(adapter, A_SF_DATA); return ret; } /** * sf1_write - write data to the serial flash * @adapter: the adapter * @byte_cnt: number of bytes to write * @cont: whether another operation will be chained * @val: value to write * * Writes up to 4 bytes of data to the serial flash. The location of * the write needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, u32 val) { if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (t3_read_reg(adapter, A_SF_OP) & F_BUSY) return -EBUSY; t3_write_reg(adapter, A_SF_DATA, val); t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10); } /** * flash_wait_op - wait for a flash operation to complete * @adapter: the adapter * @attempts: max number of polls of the status register * @delay: delay between polls in ms * * Wait for a flash operation to complete by polling the status register. */ static int flash_wait_op(struct adapter *adapter, int attempts, int delay) { int ret; u32 status; while (1) { if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 || (ret = sf1_read(adapter, 1, 0, &status)) != 0) return ret; if (!(status & 1)) return 0; if (--attempts == 0) return -EAGAIN; if (delay) msleep(delay); } } /** * t3_read_flash - read words from serial flash * @adapter: the adapter * @addr: the start address for the read * @nwords: how many 32-bit words to read * @data: where to store the read data * @byte_oriented: whether to store data as bytes or as words * * Read the specified number of 32-bit words from the serial flash. * If @byte_oriented is set the read data is stored as a byte array * (i.e., big-endian), otherwise as 32-bit words in the platform's * natural endianess. */ int t3_read_flash(struct adapter *adapter, unsigned int addr, unsigned int nwords, u32 *data, int byte_oriented) { int ret; if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3)) return -EINVAL; addr = swab32(addr) | SF_RD_DATA_FAST; if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 || (ret = sf1_read(adapter, 1, 1, data)) != 0) return ret; for (; nwords; nwords--, data++) { ret = sf1_read(adapter, 4, nwords > 1, data); if (ret) return ret; if (byte_oriented) *data = htonl(*data); } return 0; } /** * t3_write_flash - write up to a page of data to the serial flash * @adapter: the adapter * @addr: the start address to write * @n: length of data to write * @data: the data to write * * Writes up to a page of data (256 bytes) to the serial flash starting * at the given address. */ static int t3_write_flash(struct adapter *adapter, unsigned int addr, unsigned int n, const u8 *data) { int ret; u32 buf[64]; unsigned int i, c, left, val, offset = addr & 0xff; if (addr + n > SF_SIZE || offset + n > 256) return -EINVAL; val = swab32(addr) | SF_PROG_PAGE; if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || (ret = sf1_write(adapter, 4, 1, val)) != 0) return ret; for (left = n; left; left -= c) { c = min(left, 4U); for (val = 0, i = 0; i < c; ++i) val = (val << 8) + *data++; ret = sf1_write(adapter, c, c != left, val); if (ret) return ret; } if ((ret = flash_wait_op(adapter, 5, 1)) != 0) return ret; /* Read the page to verify the write succeeded */ ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); if (ret) return ret; if (memcmp(data - n, (u8 *) buf + offset, n)) return -EIO; return 0; } enum fw_version_type { FW_VERSION_N3, FW_VERSION_T3 }; /** * t3_get_fw_version - read the firmware version * @adapter: the adapter * @vers: where to place the version * * Reads the FW version from flash. */ int t3_get_fw_version(struct adapter *adapter, u32 *vers) { return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0); } /** * t3_check_fw_version - check if the FW is compatible with this driver * @adapter: the adapter * * Checks if an adapter's FW is compatible with the driver. Returns 0 * if the versions are compatible, a negative error otherwise. */ int t3_check_fw_version(struct adapter *adapter) { int ret; u32 vers; unsigned int type, major, minor; ret = t3_get_fw_version(adapter, &vers); if (ret) return ret; type = G_FW_VERSION_TYPE(vers); major = G_FW_VERSION_MAJOR(vers); minor = G_FW_VERSION_MINOR(vers); if (type == FW_VERSION_T3 && major == 3 && minor == 1) return 0; CH_ERR(adapter, "found wrong FW version(%u.%u), " "driver needs version 3.1\n", major, minor); return -EINVAL; } /** * t3_flash_erase_sectors - erase a range of flash sectors * @adapter: the adapter * @start: the first sector to erase * @end: the last sector to erase * * Erases the sectors in the given range. */ static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end) { while (start <= end) { int ret; if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 || (ret = sf1_write(adapter, 4, 0, SF_ERASE_SECTOR | (start << 8))) != 0 || (ret = flash_wait_op(adapter, 5, 500)) != 0) return ret; start++; } return 0; } /* * t3_load_fw - download firmware * @adapter: the adapter * @fw_data: the firrware image to write * @size: image size * * Write the supplied firmware image to the card's serial flash. * The FW image has the following sections: @size - 8 bytes of code and * data, followed by 4 bytes of FW version, followed by the 32-bit * 1's complement checksum of the whole image. */ int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size) { u32 csum; unsigned int i; const u32 *p = (const u32 *)fw_data; int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16; if (size & 3) return -EINVAL; if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR) return -EFBIG; for (csum = 0, i = 0; i < size / sizeof(csum); i++) csum += ntohl(p[i]); if (csum != 0xffffffff) { CH_ERR(adapter, "corrupted firmware image, checksum %u\n", csum); return -EINVAL; } ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector); if (ret) goto out; size -= 8; /* trim off version and checksum */ for (addr = FW_FLASH_BOOT_ADDR; size;) { unsigned int chunk_size = min(size, 256U); ret = t3_write_flash(adapter, addr, chunk_size, fw_data); if (ret) goto out; addr += chunk_size; fw_data += chunk_size; size -= chunk_size; } ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data); out: if (ret) CH_ERR(adapter, "firmware download failed, error %d\n", ret); return ret; } #define CIM_CTL_BASE 0x2000 /** * t3_cim_ctl_blk_read - read a block from CIM control region * * @adap: the adapter * @addr: the start address within the CIM control region * @n: number of words to read * @valp: where to store the result * * Reads a block of 4-byte words from the CIM control region. */ int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr, unsigned int n, unsigned int *valp) { int ret = 0; if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) return -EBUSY; for ( ; !ret && n--; addr += 4) { t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr); ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 0, 5, 2); if (!ret) *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA); } return ret; } /** * t3_link_changed - handle interface link changes * @adapter: the adapter * @port_id: the port index that changed link state * * Called when a port's link settings change to propagate the new values * to the associated PHY and MAC. After performing the common tasks it * invokes an OS-specific handler. */ void t3_link_changed(struct adapter *adapter, int port_id) { int link_ok, speed, duplex, fc; struct port_info *pi = adap2pinfo(adapter, port_id); struct cphy *phy = &pi->phy; struct cmac *mac = &pi->mac; struct link_config *lc = &pi->link_config; phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); if (link_ok != lc->link_ok && adapter->params.rev > 0 && uses_xaui(adapter)) { if (link_ok) t3b_pcs_reset(mac); t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, link_ok ? F_TXACTENABLE | F_RXEN : 0); } lc->link_ok = link_ok; lc->speed = speed < 0 ? SPEED_INVALID : speed; lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; if (lc->requested_fc & PAUSE_AUTONEG) fc &= lc->requested_fc; else fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) { /* Set MAC speed, duplex, and flow control to match PHY. */ t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc); lc->fc = fc; } t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc); } /** * t3_link_start - apply link configuration to MAC/PHY * @phy: the PHY to setup * @mac: the MAC to setup * @lc: the requested link configuration * * Set up a port's MAC and PHY according to a desired link configuration. * - If the PHY can auto-negotiate first decide what to advertise, then * enable/disable auto-negotiation as desired, and reset. * - If the PHY does not auto-negotiate just reset it. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, * otherwise do it later based on the outcome of auto-negotiation. */ int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc) { unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); lc->link_ok = 0; if (lc->supported & SUPPORTED_Autoneg) { lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause); if (fc) { lc->advertising |= ADVERTISED_Asym_Pause; if (fc & PAUSE_RX) lc->advertising |= ADVERTISED_Pause; } phy->ops->advertise(phy, lc->advertising); if (lc->autoneg == AUTONEG_DISABLE) { lc->speed = lc->requested_speed; lc->duplex = lc->requested_duplex; lc->fc = (unsigned char)fc; t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex, fc); /* Also disables autoneg */ phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex); phy->ops->reset(phy, 0); } else phy->ops->autoneg_enable(phy); } else { t3_mac_set_speed_duplex_fc(mac, -1, -1, fc); lc->fc = (unsigned char)fc; phy->ops->reset(phy, 0); } return 0; } /** * t3_set_vlan_accel - control HW VLAN extraction * @adapter: the adapter * @ports: bitmap of adapter ports to operate on * @on: enable (1) or disable (0) HW VLAN extraction * * Enables or disables HW extraction of VLAN tags for the given port. */ void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on) { t3_set_reg_field(adapter, A_TP_OUT_CONFIG, ports << S_VLANEXTRACTIONENABLE, on ? (ports << S_VLANEXTRACTIONENABLE) : 0); } struct intr_info { unsigned int mask; /* bits to check in interrupt status */ const char *msg; /* message to print or NULL */ short stat_idx; /* stat counter to increment or -1 */ unsigned short fatal:1; /* whether the condition reported is fatal */ }; /** * t3_handle_intr_status - table driven interrupt handler * @adapter: the adapter that generated the interrupt * @reg: the interrupt status register to process * @mask: a mask to apply to the interrupt status * @acts: table of interrupt actions * @stats: statistics counters tracking interrupt occurences * * A table driven interrupt handler that applies a set of masks to an * interrupt status word and performs the corresponding actions if the * interrupts described by the mask have occured. The actions include * optionally printing a warning or alert message, and optionally * incrementing a stat counter. The table is terminated by an entry * specifying mask 0. Returns the number of fatal interrupt conditions. */ static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg, unsigned int mask, const struct intr_info *acts, unsigned long *stats) { int fatal = 0; unsigned int status = t3_read_reg(adapter, reg) & mask; for (; acts->mask; ++acts) { if (!(status & acts->mask)) continue; if (acts->fatal) { fatal++; CH_ALERT(adapter, "%s (0x%x)\n", acts->msg, status & acts->mask); } else if (acts->msg) CH_WARN(adapter, "%s (0x%x)\n", acts->msg, status & acts->mask); if (acts->stat_idx >= 0) stats[acts->stat_idx]++; } if (status) /* clear processed interrupts */ t3_write_reg(adapter, reg, status); return fatal; } #define SGE_INTR_MASK (F_RSPQDISABLED) #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \ F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \ F_NFASRCHFAIL) #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE)) #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \ F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW) #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \ F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \ F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \ F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \ V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \ V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */) #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\ F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \ /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \ V_BISTERR(M_BISTERR) | F_PEXERR) #define ULPRX_INTR_MASK F_PARERR #define ULPTX_INTR_MASK 0 #define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \ F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \ F_ZERO_SWITCH_ERROR) #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \ F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \ F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \ F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT) #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \ V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \ V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR)) #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \ V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \ V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR)) #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \ V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \ V_RXTPPARERRENB(M_RXTPPARERRENB) | \ V_MCAPARERRENB(M_MCAPARERRENB)) #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \ F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \ F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \ F_MPS0 | F_CPL_SWITCH) /* * Interrupt handler for the PCIX1 module. */ static void pci_intr_handler(struct adapter *adapter) { static const struct intr_info pcix1_intr_info[] = { {F_MSTDETPARERR, "PCI master detected parity error", -1, 1}, {F_SIGTARABT, "PCI signaled target abort", -1, 1}, {F_RCVTARABT, "PCI received target abort", -1, 1}, {F_RCVMSTABT, "PCI received master abort", -1, 1}, {F_SIGSYSERR, "PCI signaled system error", -1, 1}, {F_DETPARERR, "PCI detected parity error", -1, 1}, {F_SPLCMPDIS, "PCI split completion discarded", -1, 1}, {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1}, {F_RCVSPLCMPERR, "PCI received split completion error", -1, 1}, {F_DETCORECCERR, "PCI correctable ECC error", STAT_PCI_CORR_ECC, 0}, {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1}, {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1, 1}, {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1, 1}, {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1, 1}, {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity " "error", -1, 1}, {0} }; if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK, pcix1_intr_info, adapter->irq_stats)) t3_fatal_err(adapter); } /* * Interrupt handler for the PCIE module. */ static void pcie_intr_handler(struct adapter *adapter) { static const struct intr_info pcie_intr_info[] = { {F_PEXERR, "PCI PEX error", -1, 1}, {F_UNXSPLCPLERRR, "PCI unexpected split completion DMA read error", -1, 1}, {F_UNXSPLCPLERRC, "PCI unexpected split completion DMA command error", -1, 1}, {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1}, {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1}, {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1}, {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1}, {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR), "PCI MSI-X table/PBA parity error", -1, 1}, {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1}, {0} }; if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK, pcie_intr_info, adapter->irq_stats)) t3_fatal_err(adapter); } /* * TP interrupt handler. */ static void tp_intr_handler(struct adapter *adapter) { static const struct intr_info tp_intr_info[] = { {0xffffff, "TP parity error", -1, 1}, {0x1000000, "TP out of Rx pages", -1, 1}, {0x2000000, "TP out of Tx pages", -1, 1}, {0} }; if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff, tp_intr_info, NULL)) t3_fatal_err(adapter); } /* * CIM interrupt handler. */ static void cim_intr_handler(struct adapter *adapter) { static const struct intr_info cim_intr_info[] = { {F_RSVDSPACEINT, "CIM reserved space write", -1, 1}, {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1}, {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1}, {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1}, {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1}, {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1}, {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1}, {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1}, {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1}, {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1}, {F_BLKRDPLINT, "CIM block read from PL space", -1, 1}, {F_BLKWRPLINT, "CIM block write to PL space", -1, 1}, {0} }; if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff, cim_intr_info, NULL)) t3_fatal_err(adapter); } /* * ULP RX interrupt handler. */ static void ulprx_intr_handler(struct adapter *adapter) { static const struct intr_info ulprx_intr_info[] = { {F_PARERR, "ULP RX parity error", -1, 1}, {0} }; if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff, ulprx_intr_info, NULL)) t3_fatal_err(adapter); } /* * ULP TX interrupt handler. */ static void ulptx_intr_handler(struct adapter *adapter) { static const struct intr_info ulptx_intr_info[] = { {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds", STAT_ULP_CH0_PBL_OOB, 0}, {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds", STAT_ULP_CH1_PBL_OOB, 0}, {0} }; if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff, ulptx_intr_info, adapter->irq_stats)) t3_fatal_err(adapter); } #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \ F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \ F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \ F_ICSPI1_TX_FRAMING_ERROR) #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \ F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \ F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \ F_OESPI1_OFIFO2X_TX_FRAMING_ERROR) /* * PM TX interrupt handler. */ static void pmtx_intr_handler(struct adapter *adapter) { static const struct intr_info pmtx_intr_info[] = { {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1}, {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1}, {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1}, {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR), "PMTX ispi parity error", -1, 1}, {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR), "PMTX ospi parity error", -1, 1}, {0} }; if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff, pmtx_intr_info, NULL)) t3_fatal_err(adapter); } #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \ F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \ F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \ F_IESPI1_TX_FRAMING_ERROR) #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \ F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \ F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \ F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR) /* * PM RX interrupt handler. */ static void pmrx_intr_handler(struct adapter *adapter) { static const struct intr_info pmrx_intr_info[] = { {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1}, {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1}, {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1}, {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR), "PMRX ispi parity error", -1, 1}, {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR), "PMRX ospi parity error", -1, 1}, {0} }; if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff, pmrx_intr_info, NULL)) t3_fatal_err(adapter); } /* * CPL switch interrupt handler. */ static void cplsw_intr_handler(struct adapter *adapter) { static const struct intr_info cplsw_intr_info[] = { /* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */ {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1}, {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1}, {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1}, {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1}, {0} }; if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff, cplsw_intr_info, NULL)) t3_fatal_err(adapter); } /* * MPS interrupt handler. */ static void mps_intr_handler(struct adapter *adapter) { static const struct intr_info mps_intr_info[] = { {0x1ff, "MPS parity error", -1, 1}, {0} }; if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff, mps_intr_info, NULL)) t3_fatal_err(adapter); } #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE) /* * MC7 interrupt handler. */ static void mc7_intr_handler(struct mc7 *mc7) { struct adapter *adapter = mc7->adapter; u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE); if (cause & F_CE) { mc7->stats.corr_err++; CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, " "data 0x%x 0x%x 0x%x\n", mc7->name, t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR), t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0), t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1), t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2)); } if (cause & F_UE) { mc7->stats.uncorr_err++; CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, " "data 0x%x 0x%x 0x%x\n", mc7->name, t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR), t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0), t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1), t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2)); } if (G_PE(cause)) { mc7->stats.parity_err++; CH_ALERT(adapter, "%s MC7 parity error 0x%x\n", mc7->name, G_PE(cause)); } if (cause & F_AE) { u32 addr = 0; if (adapter->params.rev > 0) addr = t3_read_reg(adapter, mc7->offset + A_MC7_ERR_ADDR); mc7->stats.addr_err++; CH_ALERT(adapter, "%s MC7 address error: 0x%x\n", mc7->name, addr); } if (cause & MC7_INTR_FATAL) t3_fatal_err(adapter); t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause); } #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \ V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) /* * XGMAC interrupt handler. */ static int mac_intr_handler(struct adapter *adap, unsigned int idx) { struct cmac *mac = &adap2pinfo(adap, idx)->mac; u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset); if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) { mac->stats.tx_fifo_parity_err++; CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx); } if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) { mac->stats.rx_fifo_parity_err++; CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx); } if (cause & F_TXFIFO_UNDERRUN) mac->stats.tx_fifo_urun++; if (cause & F_RXFIFO_OVERFLOW) mac->stats.rx_fifo_ovfl++; if (cause & V_SERDES_LOS(M_SERDES_LOS)) mac->stats.serdes_signal_loss++; if (cause & F_XAUIPCSCTCERR) mac->stats.xaui_pcs_ctc_err++; if (cause & F_XAUIPCSALIGNCHANGE) mac->stats.xaui_pcs_align_change++; t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause); if (cause & XGM_INTR_FATAL) t3_fatal_err(adap); return cause != 0; } /* * Interrupt handler for PHY events. */ int t3_phy_intr_handler(struct adapter *adapter) { static const int intr_gpio_bits[] = { 8, 0x20 }; u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE); for_each_port(adapter, i) { if (cause & intr_gpio_bits[i]) { struct cphy *phy = &adap2pinfo(adapter, i)->phy; int phy_cause = phy->ops->intr_handler(phy); if (phy_cause & cphy_cause_link_change) t3_link_changed(adapter, i); if (phy_cause & cphy_cause_fifo_error) phy->fifo_errors++; } } t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause); return 0; } /* * T3 slow path (non-data) interrupt handler. */ int t3_slow_intr_handler(struct adapter *adapter) { u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0); cause &= adapter->slow_intr_mask; if (!cause) return 0; if (cause & F_PCIM0) { if (is_pcie(adapter)) pcie_intr_handler(adapter); else pci_intr_handler(adapter); } if (cause & F_SGE3) t3_sge_err_intr_handler(adapter); if (cause & F_MC7_PMRX) mc7_intr_handler(&adapter->pmrx); if (cause & F_MC7_PMTX) mc7_intr_handler(&adapter->pmtx); if (cause & F_MC7_CM) mc7_intr_handler(&adapter->cm); if (cause & F_CIM) cim_intr_handler(adapter); if (cause & F_TP1) tp_intr_handler(adapter); if (cause & F_ULP2_RX) ulprx_intr_handler(adapter); if (cause & F_ULP2_TX) ulptx_intr_handler(adapter); if (cause & F_PM1_RX) pmrx_intr_handler(adapter); if (cause & F_PM1_TX) pmtx_intr_handler(adapter); if (cause & F_CPL_SWITCH) cplsw_intr_handler(adapter); if (cause & F_MPS0) mps_intr_handler(adapter); if (cause & F_MC5A) t3_mc5_intr_handler(&adapter->mc5); if (cause & F_XGMAC0_0) mac_intr_handler(adapter, 0); if (cause & F_XGMAC0_1) mac_intr_handler(adapter, 1); if (cause & F_T3DBG) t3_os_ext_intr_handler(adapter); /* Clear the interrupts just processed. */ t3_write_reg(adapter, A_PL_INT_CAUSE0, cause); t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ return 1; } /** * t3_intr_enable - enable interrupts * @adapter: the adapter whose interrupts should be enabled * * Enable interrupts by setting the interrupt enable registers of the * various HW modules and then enabling the top-level interrupt * concentrator. */ void t3_intr_enable(struct adapter *adapter) { static const struct addr_val_pair intr_en_avp[] = { {A_SG_INT_ENABLE, SGE_INTR_MASK}, {A_MC7_INT_ENABLE, MC7_INTR_MASK}, {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, MC7_INTR_MASK}, {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, MC7_INTR_MASK}, {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK}, {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK}, {A_TP_INT_ENABLE, 0x3bfffff}, {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK}, {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK}, {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK}, {A_MPS_INT_ENABLE, MPS_INTR_MASK}, }; adapter->slow_intr_mask = PL_INTR_MASK; t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0); if (adapter->params.rev > 0) { t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK | F_CIM_OVFL_ERROR); t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 | F_PBL_BOUND_ERR_CH1); } else { t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK); t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK); } t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, adapter_info(adapter)->gpio_intr); t3_write_reg(adapter, A_T3DBG_INT_ENABLE, adapter_info(adapter)->gpio_intr); if (is_pcie(adapter)) t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK); else t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK); t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask); t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ } /** * t3_intr_disable - disable a card's interrupts * @adapter: the adapter whose interrupts should be disabled * * Disable interrupts. We only disable the top-level interrupt * concentrator and the SGE data interrupts. */ void t3_intr_disable(struct adapter *adapter) { t3_write_reg(adapter, A_PL_INT_ENABLE0, 0); t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */ adapter->slow_intr_mask = 0; } /** * t3_intr_clear - clear all interrupts * @adapter: the adapter whose interrupts should be cleared * * Clears all interrupts. */ void t3_intr_clear(struct adapter *adapter) { static const unsigned int cause_reg_addr[] = { A_SG_INT_CAUSE, A_SG_RSPQ_FL_STATUS, A_PCIX_INT_CAUSE, A_MC7_INT_CAUSE, A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR, A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR, A_CIM_HOST_INT_CAUSE, A_TP_INT_CAUSE, A_MC5_DB_INT_CAUSE, A_ULPRX_INT_CAUSE, A_ULPTX_INT_CAUSE, A_CPL_INTR_CAUSE, A_PM1_TX_INT_CAUSE, A_PM1_RX_INT_CAUSE, A_MPS_INT_CAUSE, A_T3DBG_INT_CAUSE, }; unsigned int i; /* Clear PHY and MAC interrupts for each port. */ for_each_port(adapter, i) t3_port_intr_clear(adapter, i); for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i) t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff); t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff); t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */ } /** * t3_port_intr_enable - enable port-specific interrupts * @adapter: associated adapter * @idx: index of port whose interrupts should be enabled * * Enable port-specific (i.e., MAC and PHY) interrupts for the given * adapter port. */ void t3_port_intr_enable(struct adapter *adapter, int idx) { struct cphy *phy = &adap2pinfo(adapter, idx)->phy; t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK); t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ phy->ops->intr_enable(phy); } /** * t3_port_intr_disable - disable port-specific interrupts * @adapter: associated adapter * @idx: index of port whose interrupts should be disabled * * Disable port-specific (i.e., MAC and PHY) interrupts for the given * adapter port. */ void t3_port_intr_disable(struct adapter *adapter, int idx) { struct cphy *phy = &adap2pinfo(adapter, idx)->phy; t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0); t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */ phy->ops->intr_disable(phy); } /** * t3_port_intr_clear - clear port-specific interrupts * @adapter: associated adapter * @idx: index of port whose interrupts to clear * * Clear port-specific (i.e., MAC and PHY) interrupts for the given * adapter port. */ void t3_port_intr_clear(struct adapter *adapter, int idx) { struct cphy *phy = &adap2pinfo(adapter, idx)->phy; t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff); t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */ phy->ops->intr_clear(phy); } /** * t3_sge_write_context - write an SGE context * @adapter: the adapter * @id: the context id * @type: the context type * * Program an SGE context with the values already loaded in the * CONTEXT_DATA? registers. */ static int t3_sge_write_context(struct adapter *adapter, unsigned int id, unsigned int type) { t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff); t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff); t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff); t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff); t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id)); return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, 5, 1); } /** * t3_sge_init_ecntxt - initialize an SGE egress context * @adapter: the adapter to configure * @id: the context id * @gts_enable: whether to enable GTS for the context * @type: the egress context type * @respq: associated response queue * @base_addr: base address of queue * @size: number of queue entries * @token: uP token * @gen: initial generation value for the context * @cidx: consumer pointer * * Initialize an SGE egress context and make it ready for use. If the * platform allows concurrent context operations, the caller is * responsible for appropriate locking. */ int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable, enum sge_context_type type, int respq, u64 base_addr, unsigned int size, unsigned int token, int gen, unsigned int cidx) { unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM; if (base_addr & 0xfff) /* must be 4K aligned */ return -EINVAL; if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) return -EBUSY; base_addr >>= 12; t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) | V_EC_CREDITS(credits) | V_EC_GTS(gts_enable)); t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) | V_EC_BASE_LO(base_addr & 0xffff)); base_addr >>= 16; t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr); base_addr >>= 32; t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) | V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) | F_EC_VALID); return t3_sge_write_context(adapter, id, F_EGRESS); } /** * t3_sge_init_flcntxt - initialize an SGE free-buffer list context * @adapter: the adapter to configure * @id: the context id * @gts_enable: whether to enable GTS for the context * @base_addr: base address of queue * @size: number of queue entries * @bsize: size of each buffer for this queue * @cong_thres: threshold to signal congestion to upstream producers * @gen: initial generation value for the context * @cidx: consumer pointer * * Initialize an SGE free list context and make it ready for use. The * caller is responsible for ensuring only one context operation occurs * at a time. */ int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id, int gts_enable, u64 base_addr, unsigned int size, unsigned int bsize, unsigned int cong_thres, int gen, unsigned int cidx) { if (base_addr & 0xfff) /* must be 4K aligned */ return -EINVAL; if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) return -EBUSY; base_addr >>= 12; t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr); base_addr >>= 32; t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_FL_BASE_HI((u32) base_addr) | V_FL_INDEX_LO(cidx & M_FL_INDEX_LO)); t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) | V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) | V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO)); t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) | V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable)); return t3_sge_write_context(adapter, id, F_FREELIST); } /** * t3_sge_init_rspcntxt - initialize an SGE response queue context * @adapter: the adapter to configure * @id: the context id * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ * @base_addr: base address of queue * @size: number of queue entries * @fl_thres: threshold for selecting the normal or jumbo free list * @gen: initial generation value for the context * @cidx: consumer pointer * * Initialize an SGE response queue context and make it ready for use. * The caller is responsible for ensuring only one context operation * occurs at a time. */ int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id, int irq_vec_idx, u64 base_addr, unsigned int size, unsigned int fl_thres, int gen, unsigned int cidx) { unsigned int intr = 0; if (base_addr & 0xfff) /* must be 4K aligned */ return -EINVAL; if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) return -EBUSY; base_addr >>= 12; t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) | V_CQ_INDEX(cidx)); t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); base_addr >>= 32; if (irq_vec_idx >= 0) intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN; t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen)); t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres); return t3_sge_write_context(adapter, id, F_RESPONSEQ); } /** * t3_sge_init_cqcntxt - initialize an SGE completion queue context * @adapter: the adapter to configure * @id: the context id * @base_addr: base address of queue * @size: number of queue entries * @rspq: response queue for async notifications * @ovfl_mode: CQ overflow mode * @credits: completion queue credits * @credit_thres: the credit threshold * * Initialize an SGE completion queue context and make it ready for use. * The caller is responsible for ensuring only one context operation * occurs at a time. */ int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr, unsigned int size, int rspq, int ovfl_mode, unsigned int credits, unsigned int credit_thres) { if (base_addr & 0xfff) /* must be 4K aligned */ return -EINVAL; if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) return -EBUSY; base_addr >>= 12; t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size)); t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr); base_addr >>= 32; t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) | V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode)); t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) | V_CQ_CREDIT_THRES(credit_thres)); return t3_sge_write_context(adapter, id, F_CQ); } /** * t3_sge_enable_ecntxt - enable/disable an SGE egress context * @adapter: the adapter * @id: the egress context id * @enable: enable (1) or disable (0) the context * * Enable or disable an SGE egress context. The caller is responsible for * ensuring only one context operation occurs at a time. */ int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable) { if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) return -EBUSY; t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID); t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable)); t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id)); return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, 5, 1); } /** * t3_sge_disable_fl - disable an SGE free-buffer list * @adapter: the adapter * @id: the free list context id * * Disable an SGE free-buffer list. The caller is responsible for * ensuring only one context operation occurs at a time. */ int t3_sge_disable_fl(struct adapter *adapter, unsigned int id) { if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) return -EBUSY; t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0); t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE)); t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0); t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id)); return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, 5, 1); } /** * t3_sge_disable_rspcntxt - disable an SGE response queue * @adapter: the adapter * @id: the response queue context id * * Disable an SGE response queue. The caller is responsible for * ensuring only one context operation occurs at a time. */ int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id) { if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) return -EBUSY; t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id)); return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, 5, 1); } /** * t3_sge_disable_cqcntxt - disable an SGE completion queue * @adapter: the adapter * @id: the completion queue context id * * Disable an SGE completion queue. The caller is responsible for * ensuring only one context operation occurs at a time. */ int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id) { if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) return -EBUSY; t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE)); t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0); t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0); t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0); t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0); t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id)); return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, 5, 1); } /** * t3_sge_cqcntxt_op - perform an operation on a completion queue context * @adapter: the adapter * @id: the context id * @op: the operation to perform * * Perform the selected operation on an SGE completion queue context. * The caller is responsible for ensuring only one context operation * occurs at a time. */ int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op, unsigned int credits) { u32 val; if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) return -EBUSY; t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16); t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) | V_CONTEXT(id) | F_CQ); if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, 5, 1, &val)) return -EIO; if (op >= 2 && op < 7) { if (adapter->params.rev > 0) return G_CQ_INDEX(val); t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id)); if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, 5, 1)) return -EIO; return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0)); } return 0; } /** * t3_sge_read_context - read an SGE context * @type: the context type * @adapter: the adapter * @id: the context id * @data: holds the retrieved context * * Read an SGE egress context. The caller is responsible for ensuring * only one context operation occurs at a time. */ static int t3_sge_read_context(unsigned int type, struct adapter *adapter, unsigned int id, u32 data[4]) { if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY) return -EBUSY; t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id)); if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0, 5, 1)) return -EIO; data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0); data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1); data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2); data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3); return 0; } /** * t3_sge_read_ecntxt - read an SGE egress context * @adapter: the adapter * @id: the context id * @data: holds the retrieved context * * Read an SGE egress context. The caller is responsible for ensuring * only one context operation occurs at a time. */ int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4]) { if (id >= 65536) return -EINVAL; return t3_sge_read_context(F_EGRESS, adapter, id, data); } /** * t3_sge_read_cq - read an SGE CQ context * @adapter: the adapter * @id: the context id * @data: holds the retrieved context * * Read an SGE CQ context. The caller is responsible for ensuring * only one context operation occurs at a time. */ int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4]) { if (id >= 65536) return -EINVAL; return t3_sge_read_context(F_CQ, adapter, id, data); } /** * t3_sge_read_fl - read an SGE free-list context * @adapter: the adapter * @id: the context id * @data: holds the retrieved context * * Read an SGE free-list context. The caller is responsible for ensuring * only one context operation occurs at a time. */ int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4]) { if (id >= SGE_QSETS * 2) return -EINVAL; return t3_sge_read_context(F_FREELIST, adapter, id, data); } /** * t3_sge_read_rspq - read an SGE response queue context * @adapter: the adapter * @id: the context id * @data: holds the retrieved context * * Read an SGE response queue context. The caller is responsible for * ensuring only one context operation occurs at a time. */ int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4]) { if (id >= SGE_QSETS) return -EINVAL; return t3_sge_read_context(F_RESPONSEQ, adapter, id, data); } /** * t3_config_rss - configure Rx packet steering * @adapter: the adapter * @rss_config: RSS settings (written to TP_RSS_CONFIG) * @cpus: values for the CPU lookup table (0xff terminated) * @rspq: values for the response queue lookup table (0xffff terminated) * * Programs the receive packet steering logic. @cpus and @rspq provide * the values for the CPU and response queue lookup tables. If they * provide fewer values than the size of the tables the supplied values * are used repeatedly until the tables are fully populated. */ void t3_config_rss(struct adapter *adapter, unsigned int rss_config, const u8 * cpus, const u16 *rspq) { int i, j, cpu_idx = 0, q_idx = 0; if (cpus) for (i = 0; i < RSS_TABLE_SIZE; ++i) { u32 val = i << 16; for (j = 0; j < 2; ++j) { val |= (cpus[cpu_idx++] & 0x3f) << (8 * j); if (cpus[cpu_idx] == 0xff) cpu_idx = 0; } t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val); } if (rspq) for (i = 0; i < RSS_TABLE_SIZE; ++i) { t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, (i << 16) | rspq[q_idx++]); if (rspq[q_idx] == 0xffff) q_idx = 0; } t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config); } /** * t3_read_rss - read the contents of the RSS tables * @adapter: the adapter * @lkup: holds the contents of the RSS lookup table * @map: holds the contents of the RSS map table * * Reads the contents of the receive packet steering tables. */ int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map) { int i; u32 val; if (lkup) for (i = 0; i < RSS_TABLE_SIZE; ++i) { t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, 0xffff0000 | i); val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE); if (!(val & 0x80000000)) return -EAGAIN; *lkup++ = val; *lkup++ = (val >> 8); } if (map) for (i = 0; i < RSS_TABLE_SIZE; ++i) { t3_write_reg(adapter, A_TP_RSS_MAP_TABLE, 0xffff0000 | i); val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE); if (!(val & 0x80000000)) return -EAGAIN; *map++ = val; } return 0; } /** * t3_tp_set_offload_mode - put TP in NIC/offload mode * @adap: the adapter * @enable: 1 to select offload mode, 0 for regular NIC * * Switches TP to NIC/offload mode. */ void t3_tp_set_offload_mode(struct adapter *adap, int enable) { if (is_offload(adap) || !enable) t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE, V_NICMODE(!enable)); } /** * pm_num_pages - calculate the number of pages of the payload memory * @mem_size: the size of the payload memory * @pg_size: the size of each payload memory page * * Calculate the number of pages, each of the given size, that fit in a * memory of the specified size, respecting the HW requirement that the * number of pages must be a multiple of 24. */ static inline unsigned int pm_num_pages(unsigned int mem_size, unsigned int pg_size) { unsigned int n = mem_size / pg_size; return n - n % 24; } #define mem_region(adap, start, size, reg) \ t3_write_reg((adap), A_ ## reg, (start)); \ start += size /* * partition_mem - partition memory and configure TP memory settings * @adap: the adapter * @p: the TP parameters * * Partitions context and payload memory and configures TP's memory * registers. */ static void partition_mem(struct adapter *adap, const struct tp_params *p) { unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5); unsigned int timers = 0, timers_shift = 22; if (adap->params.rev > 0) { if (tids <= 16 * 1024) { timers = 1; timers_shift = 16; } else if (tids <= 64 * 1024) { timers = 2; timers_shift = 18; } else if (tids <= 256 * 1024) { timers = 3; timers_shift = 20; } } t3_write_reg(adap, A_TP_PMM_SIZE, p->chan_rx_size | (p->chan_tx_size >> 16)); t3_write_reg(adap, A_TP_PMM_TX_BASE, 0); t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size); t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs); t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX), V_TXDATAACKIDX(fls(p->tx_pg_size) - 12)); t3_write_reg(adap, A_TP_PMM_RX_BASE, 0); t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size); t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs); pstructs = p->rx_num_pgs + p->tx_num_pgs; /* Add a bit of headroom and make multiple of 24 */ pstructs += 48; pstructs -= pstructs % 24; t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs); m = tids * TCB_SIZE; mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR); mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR); t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m); m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22); mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE); mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE); mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE); mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE); m = (m + 4095) & ~0xfff; t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m); t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m); tids = (p->cm_size - m - (3 << 20)) / 3072 - 32; m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - adap->params.mc5.nfilters - adap->params.mc5.nroutes; if (tids < m) adap->params.mc5.nservers += m - tids; } static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr, u32 val) { t3_write_reg(adap, A_TP_PIO_ADDR, addr); t3_write_reg(adap, A_TP_PIO_DATA, val); } static void tp_config(struct adapter *adap, const struct tp_params *p) { t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU | F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD | F_TCPCHECKSUMOFFLOAD | V_IPTTL(64)); t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) | F_MTUENABLE | V_WINDOWSCALEMODE(1) | V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1)); t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) | V_AUTOSTATE2(1) | V_AUTOSTATE1(0) | V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) | F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1)); t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE, F_IPV6ENABLE | F_NICMODE); t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814); t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105); t3_set_reg_field(adap, A_TP_PARA_REG6, adap->params.rev > 0 ? F_ENABLEESND : F_T3A_ENABLEESND, 0); t3_set_reg_field(adap, A_TP_PC_CONFIG, F_ENABLEEPCMDAFULL | F_ENABLEOCSPIFULL, F_TXDEFERENABLE | F_HEARBEATDACK | F_TXCONGESTIONMODE | F_RXCONGESTIONMODE); t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 0); if (adap->params.rev > 0) { tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE); t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO, F_TXPACEAUTO); t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID); t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT); } else t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED); t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0x12121212); t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0x12121212); t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0x1212); } /* Desired TP timer resolution in usec */ #define TP_TMR_RES 50 /* TCP timer values in ms */ #define TP_DACK_TIMER 50 #define TP_RTO_MIN 250 /** * tp_set_timers - set TP timing parameters * @adap: the adapter to set * @core_clk: the core clock frequency in Hz * * Set TP's timing parameters, such as the various timer resolutions and * the TCP timer values. */ static void tp_set_timers(struct adapter *adap, unsigned int core_clk) { unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1; unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */ unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */ unsigned int tps = core_clk >> tre; t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) | V_DELAYEDACKRESOLUTION(dack_re) | V_TIMESTAMPRESOLUTION(tstamp_re)); t3_write_reg(adap, A_TP_DACK_TIMER, (core_clk >> dack_re) / (1000 / TP_DACK_TIMER)); t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100); t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504); t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908); t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c); t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) | V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) | V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) | V_KEEPALIVEMAX(9)); #define SECONDS * tps t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS); t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN)); t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS); t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS); t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS); t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS); t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS); t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS); t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS); #undef SECONDS } /** * t3_tp_set_coalescing_size - set receive coalescing size * @adap: the adapter * @size: the receive coalescing size * @psh: whether a set PSH bit should deliver coalesced data * * Set the receive coalescing size and PSH bit handling. */ int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh) { u32 val; if (size > MAX_RX_COALESCING_LEN) return -EINVAL; val = t3_read_reg(adap, A_TP_PARA_REG3); val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN); if (size) { val |= F_RXCOALESCEENABLE; if (psh) val |= F_RXCOALESCEPSHEN; t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) | V_MAXRXDATA(MAX_RX_COALESCING_LEN)); } t3_write_reg(adap, A_TP_PARA_REG3, val); return 0; } /** * t3_tp_set_max_rxsize - set the max receive size * @adap: the adapter * @size: the max receive size * * Set TP's max receive size. This is the limit that applies when * receive coalescing is disabled. */ void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size) { t3_write_reg(adap, A_TP_PARA_REG7, V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size)); } static void __devinit init_mtus(unsigned short mtus[]) { /* * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so * it can accomodate max size TCP/IP headers when SACK and timestamps * are enabled and still have at least 8 bytes of payload. */ mtus[0] = 88; mtus[1] = 256; mtus[2] = 512; mtus[3] = 576; mtus[4] = 808; mtus[5] = 1024; mtus[6] = 1280; mtus[7] = 1492; mtus[8] = 1500; mtus[9] = 2002; mtus[10] = 2048; mtus[11] = 4096; mtus[12] = 4352; mtus[13] = 8192; mtus[14] = 9000; mtus[15] = 9600; } /* * Initial congestion control parameters. */ static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b) { a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; a[9] = 2; a[10] = 3; a[11] = 4; a[12] = 5; a[13] = 6; a[14] = 7; a[15] = 8; a[16] = 9; a[17] = 10; a[18] = 14; a[19] = 17; a[20] = 21; a[21] = 25; a[22] = 30; a[23] = 35; a[24] = 45; a[25] = 60; a[26] = 80; a[27] = 100; a[28] = 200; a[29] = 300; a[30] = 400; a[31] = 500; b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; b[9] = b[10] = 1; b[11] = b[12] = 2; b[13] = b[14] = b[15] = b[16] = 3; b[17] = b[18] = b[19] = b[20] = b[21] = 4; b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; b[28] = b[29] = 6; b[30] = b[31] = 7; } /* The minimum additive increment value for the congestion control table */ #define CC_MIN_INCR 2U /** * t3_load_mtus - write the MTU and congestion control HW tables * @adap: the adapter * @mtus: the unrestricted values for the MTU table * @alphs: the values for the congestion control alpha parameter * @beta: the values for the congestion control beta parameter * @mtu_cap: the maximum permitted effective MTU * * Write the MTU table with the supplied MTUs capping each at &mtu_cap. * Update the high-speed congestion control table with the supplied alpha, * beta, and MTUs. */ void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS], unsigned short alpha[NCCTRL_WIN], unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap) { static const unsigned int avg_pkts[NCCTRL_WIN] = { 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 28672, 40960, 57344, 81920, 114688, 163840, 229376 }; unsigned int i, w; for (i = 0; i < NMTUS; ++i) { unsigned int mtu = min(mtus[i], mtu_cap); unsigned int log2 = fls(mtu); if (!(mtu & ((1 << log2) >> 2))) /* round */ log2--; t3_write_reg(adap, A_TP_MTU_TABLE, (i << 24) | (log2 << 16) | mtu); for (w = 0; w < NCCTRL_WIN; ++w) { unsigned int inc; inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], CC_MIN_INCR); t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | (w << 16) | (beta[w] << 13) | inc); } } } /** * t3_read_hw_mtus - returns the values in the HW MTU table * @adap: the adapter * @mtus: where to store the HW MTU values * * Reads the HW MTU table. */ void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS]) { int i; for (i = 0; i < NMTUS; ++i) { unsigned int val; t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i); val = t3_read_reg(adap, A_TP_MTU_TABLE); mtus[i] = val & 0x3fff; } } /** * t3_get_cong_cntl_tab - reads the congestion control table * @adap: the adapter * @incr: where to store the alpha values * * Reads the additive increments programmed into the HW congestion * control table. */ void t3_get_cong_cntl_tab(struct adapter *adap, unsigned short incr[NMTUS][NCCTRL_WIN]) { unsigned int mtu, w; for (mtu = 0; mtu < NMTUS; ++mtu) for (w = 0; w < NCCTRL_WIN; ++w) { t3_write_reg(adap, A_TP_CCTRL_TABLE, 0xffff0000 | (mtu << 5) | w); incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) & 0x1fff; } } /** * t3_tp_get_mib_stats - read TP's MIB counters * @adap: the adapter * @tps: holds the returned counter values * * Returns the values of TP's MIB counters. */ void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps) { t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps, sizeof(*tps) / sizeof(u32), 0); } #define ulp_region(adap, name, start, len) \ t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \ t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \ (start) + (len) - 1); \ start += len #define ulptx_region(adap, name, start, len) \ t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \ t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \ (start) + (len) - 1) static void ulp_config(struct adapter *adap, const struct tp_params *p) { unsigned int m = p->chan_rx_size; ulp_region(adap, ISCSI, m, p->chan_rx_size / 8); ulp_region(adap, TDDP, m, p->chan_rx_size / 8); ulptx_region(adap, TPT, m, p->chan_rx_size / 4); ulp_region(adap, STAG, m, p->chan_rx_size / 4); ulp_region(adap, RQ, m, p->chan_rx_size / 4); ulptx_region(adap, PBL, m, p->chan_rx_size / 4); ulp_region(adap, PBL, m, p->chan_rx_size / 4); t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff); } void t3_config_trace_filter(struct adapter *adapter, const struct trace_params *tp, int filter_index, int invert, int enable) { u32 addr, key[4], mask[4]; key[0] = tp->sport | (tp->sip << 16); key[1] = (tp->sip >> 16) | (tp->dport << 16); key[2] = tp->dip; key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20); mask[0] = tp->sport_mask | (tp->sip_mask << 16); mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16); mask[2] = tp->dip_mask; mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20); if (invert) key[3] |= (1 << 29); if (enable) key[3] |= (1 << 28); addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0; tp_wr_indirect(adapter, addr++, key[0]); tp_wr_indirect(adapter, addr++, mask[0]); tp_wr_indirect(adapter, addr++, key[1]); tp_wr_indirect(adapter, addr++, mask[1]); tp_wr_indirect(adapter, addr++, key[2]); tp_wr_indirect(adapter, addr++, mask[2]); tp_wr_indirect(adapter, addr++, key[3]); tp_wr_indirect(adapter, addr, mask[3]); t3_read_reg(adapter, A_TP_PIO_DATA); } /** * t3_config_sched - configure a HW traffic scheduler * @adap: the adapter * @kbps: target rate in Kbps * @sched: the scheduler index * * Configure a HW scheduler for the target rate */ int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched) { unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; unsigned int clk = adap->params.vpd.cclk * 1000; unsigned int selected_cpt = 0, selected_bpt = 0; if (kbps > 0) { kbps *= 125; /* -> bytes */ for (cpt = 1; cpt <= 255; cpt++) { tps = clk / cpt; bpt = (kbps + tps / 2) / tps; if (bpt > 0 && bpt <= 255) { v = bpt * tps; delta = v >= kbps ? v - kbps : kbps - v; if (delta <= mindelta) { mindelta = delta; selected_cpt = cpt; selected_bpt = bpt; } } else if (selected_cpt) break; } if (!selected_cpt) return -EINVAL; } t3_write_reg(adap, A_TP_TM_PIO_ADDR, A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); v = t3_read_reg(adap, A_TP_TM_PIO_DATA); if (sched & 1) v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); else v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); t3_write_reg(adap, A_TP_TM_PIO_DATA, v); return 0; } static int tp_init(struct adapter *adap, const struct tp_params *p) { int busy = 0; tp_config(adap, p); t3_set_vlan_accel(adap, 3, 0); if (is_offload(adap)) { tp_set_timers(adap, adap->params.vpd.cclk * 1000); t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE); busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE, 0, 1000, 5); if (busy) CH_ERR(adap, "TP initialization timed out\n"); } if (!busy) t3_write_reg(adap, A_TP_RESET, F_TPRESET); return busy; } int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask) { if (port_mask & ~((1 << adap->params.nports) - 1)) return -EINVAL; t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE, port_mask << S_PORT0ACTIVE); return 0; } /* * Perform the bits of HW initialization that are dependent on the number * of available ports. */ static void init_hw_for_avail_ports(struct adapter *adap, int nports) { int i; if (nports == 1) { t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0); t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0); t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN | F_PORT0ACTIVE | F_ENFORCEPKT); t3_write_reg(adap, A_PM1_TX_CFG, 0xc000c000); } else { t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN); t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB); t3_write_reg(adap, A_ULPTX_DMA_WEIGHT, V_D1_WEIGHT(16) | V_D0_WEIGHT(16)); t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN | F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE | F_ENFORCEPKT); t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000); t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE); t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, V_TX_MOD_QUEUE_REQ_MAP(0xaa)); for (i = 0; i < 16; i++) t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE, (i << 16) | 0x1010); } } static int calibrate_xgm(struct adapter *adapter) { if (uses_xaui(adapter)) { unsigned int v, i; for (i = 0; i < 5; ++i) { t3_write_reg(adapter, A_XGM_XAUI_IMP, 0); t3_read_reg(adapter, A_XGM_XAUI_IMP); msleep(1); v = t3_read_reg(adapter, A_XGM_XAUI_IMP); if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) { t3_write_reg(adapter, A_XGM_XAUI_IMP, V_XAUIIMP(G_CALIMP(v) >> 2)); return 0; } } CH_ERR(adapter, "MAC calibration failed\n"); return -1; } else { t3_write_reg(adapter, A_XGM_RGMII_IMP, V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, F_XGM_IMPSETUPDATE); } return 0; } static void calibrate_xgm_t3b(struct adapter *adapter) { if (!uses_xaui(adapter)) { t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET | F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3)); t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0); t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_XGM_IMPSETUPDATE); t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE, 0); t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0); t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE); } } struct mc7_timing_params { unsigned char ActToPreDly; unsigned char ActToRdWrDly; unsigned char PreCyc; unsigned char RefCyc[5]; unsigned char BkCyc; unsigned char WrToRdDly; unsigned char RdToWrDly; }; /* * Write a value to a register and check that the write completed. These * writes normally complete in a cycle or two, so one read should suffice. * The very first read exists to flush the posted write to the device. */ static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val) { t3_write_reg(adapter, addr, val); t3_read_reg(adapter, addr); /* flush */ if (!(t3_read_reg(adapter, addr) & F_BUSY)) return 0; CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr); return -EIO; } static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type) { static const unsigned int mc7_mode[] = { 0x632, 0x642, 0x652, 0x432, 0x442 }; static const struct mc7_timing_params mc7_timings[] = { {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4}, {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4}, {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4}, {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4}, {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4} }; u32 val; unsigned int width, density, slow, attempts; struct adapter *adapter = mc7->adapter; const struct mc7_timing_params *p = &mc7_timings[mem_type]; val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); slow = val & F_SLOW; width = G_WIDTH(val); density = G_DEN(val); t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN); val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ msleep(1); if (!slow) { t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN); t3_read_reg(adapter, mc7->offset + A_MC7_CAL); msleep(1); if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) & (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) { CH_ERR(adapter, "%s MC7 calibration timed out\n", mc7->name); goto out_fail; } } t3_write_reg(adapter, mc7->offset + A_MC7_PARM, V_ACTTOPREDLY(p->ActToPreDly) | V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) | V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) | V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly)); t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_CLKEN | F_TERM150); t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */ if (!slow) t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB, F_DLLENB); udelay(1); val = slow ? 3 : 6; if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) || wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) || wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) goto out_fail; if (!slow) { t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100); t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0); udelay(5); } if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) || wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) || wrreg_wait(adapter, mc7->offset + A_MC7_MODE, mc7_mode[mem_type]) || wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) || wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val)) goto out_fail; /* clock value is in KHz */ mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */ mc7_clock /= 1000000; /* KHz->MHz, ns->us */ t3_write_reg(adapter, mc7->offset + A_MC7_REF, F_PERREFEN | V_PREREFDIV(mc7_clock)); t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */ t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN); t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0); t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0); t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END, (mc7->size << width) - 1); t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1)); t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */ attempts = 50; do { msleep(250); val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); } while ((val & F_BUSY) && --attempts); if (val & F_BUSY) { CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name); goto out_fail; } /* Enable normal memory accesses. */ t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY); return 0; out_fail: return -1; } static void config_pcie(struct adapter *adap) { static const u16 ack_lat[4][6] = { {237, 416, 559, 1071, 2095, 4143}, {128, 217, 289, 545, 1057, 2081}, {73, 118, 154, 282, 538, 1050}, {67, 107, 86, 150, 278, 534} }; static const u16 rpl_tmr[4][6] = { {711, 1248, 1677, 3213, 6285, 12429}, {384, 651, 867, 1635, 3171, 6243}, {219, 354, 462, 846, 1614, 3150}, {201, 321, 258, 450, 834, 1602} }; u16 val; unsigned int log2_width, pldsize; unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt; pci_read_config_word(adap->pdev, adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL, &val); pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5; pci_read_config_word(adap->pdev, adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL, &val); fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0)); fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx : G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE)); log2_width = fls(adap->params.pci.width) - 1; acklat = ack_lat[log2_width][pldsize]; if (val & 1) /* check LOsEnable */ acklat += fst_trn_tx * 4; rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4; if (adap->params.rev == 0) t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_T3A_ACKLAT(M_T3A_ACKLAT), V_T3A_ACKLAT(acklat)); else t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT), V_ACKLAT(acklat)); t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT), V_REPLAYLMT(rpllmt)); t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff); t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN); } /* * Initialize and configure T3 HW modules. This performs the * initialization steps that need to be done once after a card is reset. * MAC and PHY initialization is handled separarely whenever a port is enabled. * * fw_params are passed to FW and their value is platform dependent. Only the * top 8 bits are available for use, the rest must be 0. */ int t3_init_hw(struct adapter *adapter, u32 fw_params) { int err = -EIO, attempts = 100; const struct vpd_params *vpd = &adapter->params.vpd; if (adapter->params.rev > 0) calibrate_xgm_t3b(adapter); else if (calibrate_xgm(adapter)) goto out_err; if (vpd->mclk) { partition_mem(adapter, &adapter->params.tp); if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) || mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) || mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) || t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers, adapter->params.mc5.nfilters, adapter->params.mc5.nroutes)) goto out_err; } if (tp_init(adapter, &adapter->params.tp)) goto out_err; t3_tp_set_coalescing_size(adapter, min(adapter->params.sge.max_pkt_size, MAX_RX_COALESCING_LEN), 1); t3_tp_set_max_rxsize(adapter, min(adapter->params.sge.max_pkt_size, 16384U)); ulp_config(adapter, &adapter->params.tp); if (is_pcie(adapter)) config_pcie(adapter); else t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN); t3_write_reg(adapter, A_PM1_RX_CFG, 0xf000f000); init_hw_for_avail_ports(adapter, adapter->params.nports); t3_sge_init(adapter, &adapter->params.sge); t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params); t3_write_reg(adapter, A_CIM_BOOT_CFG, V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2)); t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */ do { /* wait for uP to initialize */ msleep(20); } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts); if (!attempts) goto out_err; err = 0; out_err: return err; } /** * get_pci_mode - determine a card's PCI mode * @adapter: the adapter * @p: where to store the PCI settings * * Determines a card's PCI mode and associated parameters, such as speed * and width. */ static void __devinit get_pci_mode(struct adapter *adapter, struct pci_params *p) { static unsigned short speed_map[] = { 33, 66, 100, 133 }; u32 pci_mode, pcie_cap; pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); if (pcie_cap) { u16 val; p->variant = PCI_VARIANT_PCIE; p->pcie_cap_addr = pcie_cap; pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA, &val); p->width = (val >> 4) & 0x3f; return; } pci_mode = t3_read_reg(adapter, A_PCIX_MODE); p->speed = speed_map[G_PCLKRANGE(pci_mode)]; p->width = (pci_mode & F_64BIT) ? 64 : 32; pci_mode = G_PCIXINITPAT(pci_mode); if (pci_mode == 0) p->variant = PCI_VARIANT_PCI; else if (pci_mode < 4) p->variant = PCI_VARIANT_PCIX_MODE1_PARITY; else if (pci_mode < 8) p->variant = PCI_VARIANT_PCIX_MODE1_ECC; else p->variant = PCI_VARIANT_PCIX_266_MODE2; } /** * init_link_config - initialize a link's SW state * @lc: structure holding the link state * @ai: information about the current card * * Initializes the SW state maintained for each link, including the link's * capabilities and default speed/duplex/flow-control/autonegotiation * settings. */ static void __devinit init_link_config(struct link_config *lc, unsigned int caps) { lc->supported = caps; lc->requested_speed = lc->speed = SPEED_INVALID; lc->requested_duplex = lc->duplex = DUPLEX_INVALID; lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; if (lc->supported & SUPPORTED_Autoneg) { lc->advertising = lc->supported; lc->autoneg = AUTONEG_ENABLE; lc->requested_fc |= PAUSE_AUTONEG; } else { lc->advertising = 0; lc->autoneg = AUTONEG_DISABLE; } } /** * mc7_calc_size - calculate MC7 memory size * @cfg: the MC7 configuration * * Calculates the size of an MC7 memory in bytes from the value of its * configuration register. */ static unsigned int __devinit mc7_calc_size(u32 cfg) { unsigned int width = G_WIDTH(cfg); unsigned int banks = !!(cfg & F_BKS) + 1; unsigned int org = !!(cfg & F_ORG) + 1; unsigned int density = G_DEN(cfg); unsigned int MBs = ((256 << density) * banks) / (org << width); return MBs << 20; } static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7, unsigned int base_addr, const char *name) { u32 cfg; mc7->adapter = adapter; mc7->name = name; mc7->offset = base_addr - MC7_PMRX_BASE_ADDR; cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); mc7->size = mc7_calc_size(cfg); mc7->width = G_WIDTH(cfg); } void mac_prep(struct cmac *mac, struct adapter *adapter, int index) { mac->adapter = adapter; mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index; mac->nucast = 1; if (adapter->params.rev == 0 && uses_xaui(adapter)) { t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset, is_10G(adapter) ? 0x2901c04 : 0x2301c04); t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset, F_ENRGMII, 0); } } void early_hw_init(struct adapter *adapter, const struct adapter_info *ai) { u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2); mi1_init(adapter, ai); t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */ V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1)); t3_write_reg(adapter, A_T3DBG_GPIO_EN, ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL); if (adapter->params.rev == 0 || !uses_xaui(adapter)) val |= F_ENRGMII; /* Enable MAC clocks so we can access the registers */ t3_write_reg(adapter, A_XGM_PORT_CFG, val); t3_read_reg(adapter, A_XGM_PORT_CFG); val |= F_CLKDIVRESET_; t3_write_reg(adapter, A_XGM_PORT_CFG, val); t3_read_reg(adapter, A_XGM_PORT_CFG); t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val); t3_read_reg(adapter, A_XGM_PORT_CFG); } /* * Reset the adapter. PCIe cards lose their config space during reset, PCI-X * ones don't. */ int t3_reset_adapter(struct adapter *adapter) { int i; uint16_t devid = 0; if (is_pcie(adapter)) pci_save_state(adapter->pdev); t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE); /* * Delay. Give Some time to device to reset fully. * XXX The delay time should be modified. */ for (i = 0; i < 10; i++) { msleep(50); pci_read_config_word(adapter->pdev, 0x00, &devid); if (devid == 0x1425) break; } if (devid != 0x1425) return -1; if (is_pcie(adapter)) pci_restore_state(adapter->pdev); return 0; } /* * Initialize adapter SW state for the various HW modules, set initial values * for some adapter tunables, take PHYs out of reset, and initialize the MDIO * interface. */ int __devinit t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai, int reset) { int ret; unsigned int i, j = 0; get_pci_mode(adapter, &adapter->params.pci); adapter->params.info = ai; adapter->params.nports = ai->nports; adapter->params.rev = t3_read_reg(adapter, A_PL_REV); adapter->params.linkpoll_period = 0; adapter->params.stats_update_period = is_10G(adapter) ? MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10); adapter->params.pci.vpd_cap_addr = pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD); ret = get_vpd_params(adapter, &adapter->params.vpd); if (ret < 0) return ret; if (reset && t3_reset_adapter(adapter)) return -1; t3_sge_prep(adapter, &adapter->params.sge); if (adapter->params.vpd.mclk) { struct tp_params *p = &adapter->params.tp; mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX"); mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX"); mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM"); p->nchan = ai->nports; p->pmrx_size = t3_mc7_size(&adapter->pmrx); p->pmtx_size = t3_mc7_size(&adapter->pmtx); p->cm_size = t3_mc7_size(&adapter->cm); p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */ p->chan_tx_size = p->pmtx_size / p->nchan; p->rx_pg_size = 64 * 1024; p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024; p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size); p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size); p->ntimer_qs = p->cm_size >= (128 << 20) || adapter->params.rev > 0 ? 12 : 6; adapter->params.mc5.nservers = DEFAULT_NSERVERS; adapter->params.mc5.nfilters = adapter->params.rev > 0 ? DEFAULT_NFILTERS : 0; adapter->params.mc5.nroutes = 0; t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT); init_mtus(adapter->params.mtus); init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); } early_hw_init(adapter, ai); for_each_port(adapter, i) { u8 hw_addr[6]; struct port_info *p = adap2pinfo(adapter, i); while (!adapter->params.vpd.port_type[j]) ++j; p->port_type = &port_types[adapter->params.vpd.port_type[j]]; p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j, ai->mdio_ops); mac_prep(&p->mac, adapter, j); ++j; /* * The VPD EEPROM stores the base Ethernet address for the * card. A port's address is derived from the base by adding * the port's index to the base's low octet. */ memcpy(hw_addr, adapter->params.vpd.eth_base, 5); hw_addr[5] = adapter->params.vpd.eth_base[5] + i; memcpy(adapter->port[i]->dev_addr, hw_addr, ETH_ALEN); memcpy(adapter->port[i]->perm_addr, hw_addr, ETH_ALEN); init_link_config(&p->link_config, p->port_type->caps); p->phy.ops->power_down(&p->phy, 1); if (!(p->port_type->caps & SUPPORTED_IRQ)) adapter->params.linkpoll_period = 10; } return 0; } void t3_led_ready(struct adapter *adapter) { t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, F_GPIO0_OUT_VAL); }