/* * Disk Array driver for HP Smart Array SAS controllers * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Questions/Comments/Bugfixes to iss_storagedev@hp.com * */ #ifndef HPSA_H #define HPSA_H #include #define IO_OK 0 #define IO_ERROR 1 struct ctlr_info; struct access_method { void (*submit_command)(struct ctlr_info *h, struct CommandList *c); void (*set_intr_mask)(struct ctlr_info *h, unsigned long val); bool (*intr_pending)(struct ctlr_info *h); unsigned long (*command_completed)(struct ctlr_info *h, u8 q); }; struct hpsa_scsi_dev_t { int devtype; int bus, target, lun; /* as presented to the OS */ unsigned char scsi3addr[8]; /* as presented to the HW */ #define RAID_CTLR_LUNID "\0\0\0\0\0\0\0\0" unsigned char device_id[16]; /* from inquiry pg. 0x83 */ unsigned char vendor[8]; /* bytes 8-15 of inquiry data */ unsigned char model[16]; /* bytes 16-31 of inquiry data */ unsigned char raid_level; /* from inquiry page 0xC1 */ unsigned char volume_offline; /* discovered via TUR or VPD */ u16 queue_depth; /* max queue_depth for this device */ atomic_t ioaccel_cmds_out; /* Only used for physical devices * counts commands sent to physical * device via "ioaccel" path. */ u32 ioaccel_handle; int offload_config; /* I/O accel RAID offload configured */ int offload_enabled; /* I/O accel RAID offload enabled */ int offload_to_be_enabled; int hba_ioaccel_enabled; int offload_to_mirror; /* Send next I/O accelerator RAID * offload request to mirror drive */ struct raid_map_data raid_map; /* I/O accelerator RAID map */ /* * Pointers from logical drive map indices to the phys drives that * make those logical drives. Note, multiple logical drives may * share physical drives. You can have for instance 5 physical * drives with 3 logical drives each using those same 5 physical * disks. We need these pointers for counting i/o's out to physical * devices in order to honor physical device queue depth limits. */ struct hpsa_scsi_dev_t *phys_disk[RAID_MAP_MAX_ENTRIES]; int supports_aborts; #define HPSA_DO_NOT_EXPOSE 0x0 #define HPSA_SG_ATTACH 0x1 #define HPSA_ULD_ATTACH 0x2 #define HPSA_SCSI_ADD (HPSA_SG_ATTACH | HPSA_ULD_ATTACH) u8 expose_state; }; struct reply_queue_buffer { u64 *head; size_t size; u8 wraparound; u32 current_entry; dma_addr_t busaddr; }; #pragma pack(1) struct bmic_controller_parameters { u8 led_flags; u8 enable_command_list_verification; u8 backed_out_write_drives; u16 stripes_for_parity; u8 parity_distribution_mode_flags; u16 max_driver_requests; u16 elevator_trend_count; u8 disable_elevator; u8 force_scan_complete; u8 scsi_transfer_mode; u8 force_narrow; u8 rebuild_priority; u8 expand_priority; u8 host_sdb_asic_fix; u8 pdpi_burst_from_host_disabled; char software_name[64]; char hardware_name[32]; u8 bridge_revision; u8 snapshot_priority; u32 os_specific; u8 post_prompt_timeout; u8 automatic_drive_slamming; u8 reserved1; u8 nvram_flags; #define HBA_MODE_ENABLED_FLAG (1 << 3) u8 cache_nvram_flags; u8 drive_config_flags; u16 reserved2; u8 temp_warning_level; u8 temp_shutdown_level; u8 temp_condition_reset; u8 max_coalesce_commands; u32 max_coalesce_delay; u8 orca_password[4]; u8 access_id[16]; u8 reserved[356]; }; #pragma pack() struct ctlr_info { int ctlr; char devname[8]; char *product_name; struct pci_dev *pdev; u32 board_id; void __iomem *vaddr; unsigned long paddr; int nr_cmds; /* Number of commands allowed on this controller */ #define HPSA_CMDS_RESERVED_FOR_ABORTS 2 #define HPSA_CMDS_RESERVED_FOR_DRIVER 1 struct CfgTable __iomem *cfgtable; int interrupts_enabled; int max_commands; int last_allocation; atomic_t commands_outstanding; # define PERF_MODE_INT 0 # define DOORBELL_INT 1 # define SIMPLE_MODE_INT 2 # define MEMQ_MODE_INT 3 unsigned int intr[MAX_REPLY_QUEUES]; unsigned int msix_vector; unsigned int msi_vector; int intr_mode; /* either PERF_MODE_INT or SIMPLE_MODE_INT */ struct access_method access; char hba_mode_enabled; /* queue and queue Info */ unsigned int Qdepth; unsigned int maxSG; spinlock_t lock; int maxsgentries; u8 max_cmd_sg_entries; int chainsize; struct SGDescriptor **cmd_sg_list; struct ioaccel2_sg_element **ioaccel2_cmd_sg_list; /* pointers to command and error info pool */ struct CommandList *cmd_pool; dma_addr_t cmd_pool_dhandle; struct io_accel1_cmd *ioaccel_cmd_pool; dma_addr_t ioaccel_cmd_pool_dhandle; struct io_accel2_cmd *ioaccel2_cmd_pool; dma_addr_t ioaccel2_cmd_pool_dhandle; struct ErrorInfo *errinfo_pool; dma_addr_t errinfo_pool_dhandle; unsigned long *cmd_pool_bits; int scan_finished; spinlock_t scan_lock; wait_queue_head_t scan_wait_queue; struct Scsi_Host *scsi_host; spinlock_t devlock; /* to protect hba[ctlr]->dev[]; */ int ndevices; /* number of used elements in .dev[] array. */ struct hpsa_scsi_dev_t *dev[HPSA_MAX_DEVICES]; /* * Performant mode tables. */ u32 trans_support; u32 trans_offset; struct TransTable_struct __iomem *transtable; unsigned long transMethod; /* cap concurrent passthrus at some reasonable maximum */ #define HPSA_MAX_CONCURRENT_PASSTHRUS (10) atomic_t passthru_cmds_avail; /* * Performant mode completion buffers */ size_t reply_queue_size; struct reply_queue_buffer reply_queue[MAX_REPLY_QUEUES]; u8 nreply_queues; u32 *blockFetchTable; u32 *ioaccel1_blockFetchTable; u32 *ioaccel2_blockFetchTable; u32 __iomem *ioaccel2_bft2_regs; unsigned char *hba_inquiry_data; u32 driver_support; u32 fw_support; int ioaccel_support; int ioaccel_maxsg; u64 last_intr_timestamp; u32 last_heartbeat; u64 last_heartbeat_timestamp; u32 heartbeat_sample_interval; atomic_t firmware_flash_in_progress; u32 __percpu *lockup_detected; struct delayed_work monitor_ctlr_work; struct delayed_work rescan_ctlr_work; int remove_in_progress; /* Address of h->q[x] is passed to intr handler to know which queue */ u8 q[MAX_REPLY_QUEUES]; char intrname[MAX_REPLY_QUEUES][16]; /* "hpsa0-msix00" names */ u32 TMFSupportFlags; /* cache what task mgmt funcs are supported. */ #define HPSATMF_BITS_SUPPORTED (1 << 0) #define HPSATMF_PHYS_LUN_RESET (1 << 1) #define HPSATMF_PHYS_NEX_RESET (1 << 2) #define HPSATMF_PHYS_TASK_ABORT (1 << 3) #define HPSATMF_PHYS_TSET_ABORT (1 << 4) #define HPSATMF_PHYS_CLEAR_ACA (1 << 5) #define HPSATMF_PHYS_CLEAR_TSET (1 << 6) #define HPSATMF_PHYS_QRY_TASK (1 << 7) #define HPSATMF_PHYS_QRY_TSET (1 << 8) #define HPSATMF_PHYS_QRY_ASYNC (1 << 9) #define HPSATMF_IOACCEL_ENABLED (1 << 15) #define HPSATMF_MASK_SUPPORTED (1 << 16) #define HPSATMF_LOG_LUN_RESET (1 << 17) #define HPSATMF_LOG_NEX_RESET (1 << 18) #define HPSATMF_LOG_TASK_ABORT (1 << 19) #define HPSATMF_LOG_TSET_ABORT (1 << 20) #define HPSATMF_LOG_CLEAR_ACA (1 << 21) #define HPSATMF_LOG_CLEAR_TSET (1 << 22) #define HPSATMF_LOG_QRY_TASK (1 << 23) #define HPSATMF_LOG_QRY_TSET (1 << 24) #define HPSATMF_LOG_QRY_ASYNC (1 << 25) u32 events; #define CTLR_STATE_CHANGE_EVENT (1 << 0) #define CTLR_ENCLOSURE_HOT_PLUG_EVENT (1 << 1) #define CTLR_STATE_CHANGE_EVENT_PHYSICAL_DRV (1 << 4) #define CTLR_STATE_CHANGE_EVENT_LOGICAL_DRV (1 << 5) #define CTLR_STATE_CHANGE_EVENT_REDUNDANT_CNTRL (1 << 6) #define CTLR_STATE_CHANGE_EVENT_AIO_ENABLED_DISABLED (1 << 30) #define CTLR_STATE_CHANGE_EVENT_AIO_CONFIG_CHANGE (1 << 31) #define RESCAN_REQUIRED_EVENT_BITS \ (CTLR_ENCLOSURE_HOT_PLUG_EVENT | \ CTLR_STATE_CHANGE_EVENT_PHYSICAL_DRV | \ CTLR_STATE_CHANGE_EVENT_LOGICAL_DRV | \ CTLR_STATE_CHANGE_EVENT_AIO_ENABLED_DISABLED | \ CTLR_STATE_CHANGE_EVENT_AIO_CONFIG_CHANGE) spinlock_t offline_device_lock; struct list_head offline_device_list; int acciopath_status; int raid_offload_debug; int needs_abort_tags_swizzled; struct workqueue_struct *resubmit_wq; struct workqueue_struct *rescan_ctlr_wq; atomic_t abort_cmds_available; wait_queue_head_t abort_cmd_wait_queue; wait_queue_head_t abort_sync_wait_queue; }; struct offline_device_entry { unsigned char scsi3addr[8]; struct list_head offline_list; }; #define HPSA_ABORT_MSG 0 #define HPSA_DEVICE_RESET_MSG 1 #define HPSA_RESET_TYPE_CONTROLLER 0x00 #define HPSA_RESET_TYPE_BUS 0x01 #define HPSA_RESET_TYPE_TARGET 0x03 #define HPSA_RESET_TYPE_LUN 0x04 #define HPSA_MSG_SEND_RETRY_LIMIT 10 #define HPSA_MSG_SEND_RETRY_INTERVAL_MSECS (10000) /* Maximum time in seconds driver will wait for command completions * when polling before giving up. */ #define HPSA_MAX_POLL_TIME_SECS (20) /* During SCSI error recovery, HPSA_TUR_RETRY_LIMIT defines * how many times to retry TEST UNIT READY on a device * while waiting for it to become ready before giving up. * HPSA_MAX_WAIT_INTERVAL_SECS is the max wait interval * between sending TURs while waiting for a device * to become ready. */ #define HPSA_TUR_RETRY_LIMIT (20) #define HPSA_MAX_WAIT_INTERVAL_SECS (30) /* HPSA_BOARD_READY_WAIT_SECS is how long to wait for a board * to become ready, in seconds, before giving up on it. * HPSA_BOARD_READY_POLL_INTERVAL_MSECS * is how long to wait * between polling the board to see if it is ready, in * milliseconds. HPSA_BOARD_READY_POLL_INTERVAL and * HPSA_BOARD_READY_ITERATIONS are derived from those. */ #define HPSA_BOARD_READY_WAIT_SECS (120) #define HPSA_BOARD_NOT_READY_WAIT_SECS (100) #define HPSA_BOARD_READY_POLL_INTERVAL_MSECS (100) #define HPSA_BOARD_READY_POLL_INTERVAL \ ((HPSA_BOARD_READY_POLL_INTERVAL_MSECS * HZ) / 1000) #define HPSA_BOARD_READY_ITERATIONS \ ((HPSA_BOARD_READY_WAIT_SECS * 1000) / \ HPSA_BOARD_READY_POLL_INTERVAL_MSECS) #define HPSA_BOARD_NOT_READY_ITERATIONS \ ((HPSA_BOARD_NOT_READY_WAIT_SECS * 1000) / \ HPSA_BOARD_READY_POLL_INTERVAL_MSECS) #define HPSA_POST_RESET_PAUSE_MSECS (3000) #define HPSA_POST_RESET_NOOP_RETRIES (12) /* Defining the diffent access_menthods */ /* * Memory mapped FIFO interface (SMART 53xx cards) */ #define SA5_DOORBELL 0x20 #define SA5_REQUEST_PORT_OFFSET 0x40 #define SA5_REQUEST_PORT64_LO_OFFSET 0xC0 #define SA5_REQUEST_PORT64_HI_OFFSET 0xC4 #define SA5_REPLY_INTR_MASK_OFFSET 0x34 #define SA5_REPLY_PORT_OFFSET 0x44 #define SA5_INTR_STATUS 0x30 #define SA5_SCRATCHPAD_OFFSET 0xB0 #define SA5_CTCFG_OFFSET 0xB4 #define SA5_CTMEM_OFFSET 0xB8 #define SA5_INTR_OFF 0x08 #define SA5B_INTR_OFF 0x04 #define SA5_INTR_PENDING 0x08 #define SA5B_INTR_PENDING 0x04 #define FIFO_EMPTY 0xffffffff #define HPSA_FIRMWARE_READY 0xffff0000 /* value in scratchpad register */ #define HPSA_ERROR_BIT 0x02 /* Performant mode flags */ #define SA5_PERF_INTR_PENDING 0x04 #define SA5_PERF_INTR_OFF 0x05 #define SA5_OUTDB_STATUS_PERF_BIT 0x01 #define SA5_OUTDB_CLEAR_PERF_BIT 0x01 #define SA5_OUTDB_CLEAR 0xA0 #define SA5_OUTDB_CLEAR_PERF_BIT 0x01 #define SA5_OUTDB_STATUS 0x9C #define HPSA_INTR_ON 1 #define HPSA_INTR_OFF 0 /* * Inbound Post Queue offsets for IO Accelerator Mode 2 */ #define IOACCEL2_INBOUND_POSTQ_32 0x48 #define IOACCEL2_INBOUND_POSTQ_64_LOW 0xd0 #define IOACCEL2_INBOUND_POSTQ_64_HI 0xd4 /* Send the command to the hardware */ static void SA5_submit_command(struct ctlr_info *h, struct CommandList *c) { writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); (void) readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); } static void SA5_submit_command_no_read(struct ctlr_info *h, struct CommandList *c) { writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); } static void SA5_submit_command_ioaccel2(struct ctlr_info *h, struct CommandList *c) { writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); } /* * This card is the opposite of the other cards. * 0 turns interrupts on... * 0x08 turns them off... */ static void SA5_intr_mask(struct ctlr_info *h, unsigned long val) { if (val) { /* Turn interrupts on */ h->interrupts_enabled = 1; writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); (void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); } else { /* Turn them off */ h->interrupts_enabled = 0; writel(SA5_INTR_OFF, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); (void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); } } static void SA5_performant_intr_mask(struct ctlr_info *h, unsigned long val) { if (val) { /* turn on interrupts */ h->interrupts_enabled = 1; writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); (void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); } else { h->interrupts_enabled = 0; writel(SA5_PERF_INTR_OFF, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); (void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); } } static unsigned long SA5_performant_completed(struct ctlr_info *h, u8 q) { struct reply_queue_buffer *rq = &h->reply_queue[q]; unsigned long register_value = FIFO_EMPTY; /* msi auto clears the interrupt pending bit. */ if (unlikely(!(h->msi_vector || h->msix_vector))) { /* flush the controller write of the reply queue by reading * outbound doorbell status register. */ (void) readl(h->vaddr + SA5_OUTDB_STATUS); writel(SA5_OUTDB_CLEAR_PERF_BIT, h->vaddr + SA5_OUTDB_CLEAR); /* Do a read in order to flush the write to the controller * (as per spec.) */ (void) readl(h->vaddr + SA5_OUTDB_STATUS); } if ((((u32) rq->head[rq->current_entry]) & 1) == rq->wraparound) { register_value = rq->head[rq->current_entry]; rq->current_entry++; atomic_dec(&h->commands_outstanding); } else { register_value = FIFO_EMPTY; } /* Check for wraparound */ if (rq->current_entry == h->max_commands) { rq->current_entry = 0; rq->wraparound ^= 1; } return register_value; } /* * returns value read from hardware. * returns FIFO_EMPTY if there is nothing to read */ static unsigned long SA5_completed(struct ctlr_info *h, __attribute__((unused)) u8 q) { unsigned long register_value = readl(h->vaddr + SA5_REPLY_PORT_OFFSET); if (register_value != FIFO_EMPTY) atomic_dec(&h->commands_outstanding); #ifdef HPSA_DEBUG if (register_value != FIFO_EMPTY) dev_dbg(&h->pdev->dev, "Read %lx back from board\n", register_value); else dev_dbg(&h->pdev->dev, "FIFO Empty read\n"); #endif return register_value; } /* * Returns true if an interrupt is pending.. */ static bool SA5_intr_pending(struct ctlr_info *h) { unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS); return register_value & SA5_INTR_PENDING; } static bool SA5_performant_intr_pending(struct ctlr_info *h) { unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS); if (!register_value) return false; /* Read outbound doorbell to flush */ register_value = readl(h->vaddr + SA5_OUTDB_STATUS); return register_value & SA5_OUTDB_STATUS_PERF_BIT; } #define SA5_IOACCEL_MODE1_INTR_STATUS_CMP_BIT 0x100 static bool SA5_ioaccel_mode1_intr_pending(struct ctlr_info *h) { unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS); return (register_value & SA5_IOACCEL_MODE1_INTR_STATUS_CMP_BIT) ? true : false; } #define IOACCEL_MODE1_REPLY_QUEUE_INDEX 0x1A0 #define IOACCEL_MODE1_PRODUCER_INDEX 0x1B8 #define IOACCEL_MODE1_CONSUMER_INDEX 0x1BC #define IOACCEL_MODE1_REPLY_UNUSED 0xFFFFFFFFFFFFFFFFULL static unsigned long SA5_ioaccel_mode1_completed(struct ctlr_info *h, u8 q) { u64 register_value; struct reply_queue_buffer *rq = &h->reply_queue[q]; BUG_ON(q >= h->nreply_queues); register_value = rq->head[rq->current_entry]; if (register_value != IOACCEL_MODE1_REPLY_UNUSED) { rq->head[rq->current_entry] = IOACCEL_MODE1_REPLY_UNUSED; if (++rq->current_entry == rq->size) rq->current_entry = 0; /* * @todo * * Don't really need to write the new index after each command, * but with current driver design this is easiest. */ wmb(); writel((q << 24) | rq->current_entry, h->vaddr + IOACCEL_MODE1_CONSUMER_INDEX); atomic_dec(&h->commands_outstanding); } return (unsigned long) register_value; } static struct access_method SA5_access = { SA5_submit_command, SA5_intr_mask, SA5_intr_pending, SA5_completed, }; static struct access_method SA5_ioaccel_mode1_access = { SA5_submit_command, SA5_performant_intr_mask, SA5_ioaccel_mode1_intr_pending, SA5_ioaccel_mode1_completed, }; static struct access_method SA5_ioaccel_mode2_access = { SA5_submit_command_ioaccel2, SA5_performant_intr_mask, SA5_performant_intr_pending, SA5_performant_completed, }; static struct access_method SA5_performant_access = { SA5_submit_command, SA5_performant_intr_mask, SA5_performant_intr_pending, SA5_performant_completed, }; static struct access_method SA5_performant_access_no_read = { SA5_submit_command_no_read, SA5_performant_intr_mask, SA5_performant_intr_pending, SA5_performant_completed, }; struct board_type { u32 board_id; char *product_name; struct access_method *access; }; #endif /* HPSA_H */