#include "ceph_debug.h" #include #include #include #include #include #include #include #include #include #include #include "super.h" #include "decode.h" /* * Ceph inode operations * * Implement basic inode helpers (get, alloc) and inode ops (getattr, * setattr, etc.), xattr helpers, and helpers for assimilating * metadata returned by the MDS into our cache. * * Also define helpers for doing asynchronous writeback, invalidation, * and truncation for the benefit of those who can't afford to block * (typically because they are in the message handler path). */ static const struct inode_operations ceph_symlink_iops; static void ceph_inode_invalidate_pages(struct work_struct *work); /* * find or create an inode, given the ceph ino number */ struct inode *ceph_get_inode(struct super_block *sb, struct ceph_vino vino) { struct inode *inode; ino_t t = ceph_vino_to_ino(vino); inode = iget5_locked(sb, t, ceph_ino_compare, ceph_set_ino_cb, &vino); if (inode == NULL) return ERR_PTR(-ENOMEM); if (inode->i_state & I_NEW) { dout("get_inode created new inode %p %llx.%llx ino %llx\n", inode, ceph_vinop(inode), (u64)inode->i_ino); unlock_new_inode(inode); } dout("get_inode on %lu=%llx.%llx got %p\n", inode->i_ino, vino.ino, vino.snap, inode); return inode; } /* * get/constuct snapdir inode for a given directory */ struct inode *ceph_get_snapdir(struct inode *parent) { struct ceph_vino vino = { .ino = ceph_ino(parent), .snap = CEPH_SNAPDIR, }; struct inode *inode = ceph_get_inode(parent->i_sb, vino); struct ceph_inode_info *ci = ceph_inode(inode); BUG_ON(!S_ISDIR(parent->i_mode)); if (IS_ERR(inode)) return ERR_PTR(PTR_ERR(inode)); inode->i_mode = parent->i_mode; inode->i_uid = parent->i_uid; inode->i_gid = parent->i_gid; inode->i_op = &ceph_dir_iops; inode->i_fop = &ceph_dir_fops; ci->i_snap_caps = CEPH_CAP_PIN; /* so we can open */ ci->i_rbytes = 0; return inode; } const struct inode_operations ceph_file_iops = { .permission = ceph_permission, .setattr = ceph_setattr, .getattr = ceph_getattr, .setxattr = ceph_setxattr, .getxattr = ceph_getxattr, .listxattr = ceph_listxattr, .removexattr = ceph_removexattr, }; /* * We use a 'frag tree' to keep track of the MDS's directory fragments * for a given inode (usually there is just a single fragment). We * need to know when a child frag is delegated to a new MDS, or when * it is flagged as replicated, so we can direct our requests * accordingly. */ /* * find/create a frag in the tree */ static struct ceph_inode_frag *__get_or_create_frag(struct ceph_inode_info *ci, u32 f) { struct rb_node **p; struct rb_node *parent = NULL; struct ceph_inode_frag *frag; int c; p = &ci->i_fragtree.rb_node; while (*p) { parent = *p; frag = rb_entry(parent, struct ceph_inode_frag, node); c = ceph_frag_compare(f, frag->frag); if (c < 0) p = &(*p)->rb_left; else if (c > 0) p = &(*p)->rb_right; else return frag; } frag = kmalloc(sizeof(*frag), GFP_NOFS); if (!frag) { pr_err("__get_or_create_frag ENOMEM on %p %llx.%llx " "frag %x\n", &ci->vfs_inode, ceph_vinop(&ci->vfs_inode), f); return ERR_PTR(-ENOMEM); } frag->frag = f; frag->split_by = 0; frag->mds = -1; frag->ndist = 0; rb_link_node(&frag->node, parent, p); rb_insert_color(&frag->node, &ci->i_fragtree); dout("get_or_create_frag added %llx.%llx frag %x\n", ceph_vinop(&ci->vfs_inode), f); return frag; } /* * find a specific frag @f */ struct ceph_inode_frag *__ceph_find_frag(struct ceph_inode_info *ci, u32 f) { struct rb_node *n = ci->i_fragtree.rb_node; while (n) { struct ceph_inode_frag *frag = rb_entry(n, struct ceph_inode_frag, node); int c = ceph_frag_compare(f, frag->frag); if (c < 0) n = n->rb_left; else if (c > 0) n = n->rb_right; else return frag; } return NULL; } /* * Choose frag containing the given value @v. If @pfrag is * specified, copy the frag delegation info to the caller if * it is present. */ u32 ceph_choose_frag(struct ceph_inode_info *ci, u32 v, struct ceph_inode_frag *pfrag, int *found) { u32 t = ceph_frag_make(0, 0); struct ceph_inode_frag *frag; unsigned nway, i; u32 n; if (found) *found = 0; mutex_lock(&ci->i_fragtree_mutex); while (1) { WARN_ON(!ceph_frag_contains_value(t, v)); frag = __ceph_find_frag(ci, t); if (!frag) break; /* t is a leaf */ if (frag->split_by == 0) { if (pfrag) memcpy(pfrag, frag, sizeof(*pfrag)); if (found) *found = 1; break; } /* choose child */ nway = 1 << frag->split_by; dout("choose_frag(%x) %x splits by %d (%d ways)\n", v, t, frag->split_by, nway); for (i = 0; i < nway; i++) { n = ceph_frag_make_child(t, frag->split_by, i); if (ceph_frag_contains_value(n, v)) { t = n; break; } } BUG_ON(i == nway); } dout("choose_frag(%x) = %x\n", v, t); mutex_unlock(&ci->i_fragtree_mutex); return t; } /* * Process dirfrag (delegation) info from the mds. Include leaf * fragment in tree ONLY if ndist > 0. Otherwise, only * branches/splits are included in i_fragtree) */ static int ceph_fill_dirfrag(struct inode *inode, struct ceph_mds_reply_dirfrag *dirinfo) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_inode_frag *frag; u32 id = le32_to_cpu(dirinfo->frag); int mds = le32_to_cpu(dirinfo->auth); int ndist = le32_to_cpu(dirinfo->ndist); int i; int err = 0; mutex_lock(&ci->i_fragtree_mutex); if (ndist == 0) { /* no delegation info needed. */ frag = __ceph_find_frag(ci, id); if (!frag) goto out; if (frag->split_by == 0) { /* tree leaf, remove */ dout("fill_dirfrag removed %llx.%llx frag %x" " (no ref)\n", ceph_vinop(inode), id); rb_erase(&frag->node, &ci->i_fragtree); kfree(frag); } else { /* tree branch, keep and clear */ dout("fill_dirfrag cleared %llx.%llx frag %x" " referral\n", ceph_vinop(inode), id); frag->mds = -1; frag->ndist = 0; } goto out; } /* find/add this frag to store mds delegation info */ frag = __get_or_create_frag(ci, id); if (IS_ERR(frag)) { /* this is not the end of the world; we can continue with bad/inaccurate delegation info */ pr_err("fill_dirfrag ENOMEM on mds ref %llx.%llx fg %x\n", ceph_vinop(inode), le32_to_cpu(dirinfo->frag)); err = -ENOMEM; goto out; } frag->mds = mds; frag->ndist = min_t(u32, ndist, CEPH_MAX_DIRFRAG_REP); for (i = 0; i < frag->ndist; i++) frag->dist[i] = le32_to_cpu(dirinfo->dist[i]); dout("fill_dirfrag %llx.%llx frag %x ndist=%d\n", ceph_vinop(inode), frag->frag, frag->ndist); out: mutex_unlock(&ci->i_fragtree_mutex); return err; } /* * initialize a newly allocated inode. */ struct inode *ceph_alloc_inode(struct super_block *sb) { struct ceph_inode_info *ci; int i; ci = kmem_cache_alloc(ceph_inode_cachep, GFP_NOFS); if (!ci) return NULL; dout("alloc_inode %p\n", &ci->vfs_inode); ci->i_version = 0; ci->i_time_warp_seq = 0; ci->i_ceph_flags = 0; ci->i_release_count = 0; ci->i_symlink = NULL; ci->i_fragtree = RB_ROOT; mutex_init(&ci->i_fragtree_mutex); ci->i_xattrs.blob = NULL; ci->i_xattrs.prealloc_blob = NULL; ci->i_xattrs.dirty = false; ci->i_xattrs.index = RB_ROOT; ci->i_xattrs.count = 0; ci->i_xattrs.names_size = 0; ci->i_xattrs.vals_size = 0; ci->i_xattrs.version = 0; ci->i_xattrs.index_version = 0; ci->i_caps = RB_ROOT; ci->i_auth_cap = NULL; ci->i_dirty_caps = 0; ci->i_flushing_caps = 0; INIT_LIST_HEAD(&ci->i_dirty_item); INIT_LIST_HEAD(&ci->i_flushing_item); ci->i_cap_flush_seq = 0; ci->i_cap_flush_last_tid = 0; memset(&ci->i_cap_flush_tid, 0, sizeof(ci->i_cap_flush_tid)); init_waitqueue_head(&ci->i_cap_wq); ci->i_hold_caps_min = 0; ci->i_hold_caps_max = 0; INIT_LIST_HEAD(&ci->i_cap_delay_list); ci->i_cap_exporting_mds = 0; ci->i_cap_exporting_mseq = 0; ci->i_cap_exporting_issued = 0; INIT_LIST_HEAD(&ci->i_cap_snaps); ci->i_head_snapc = NULL; ci->i_snap_caps = 0; for (i = 0; i < CEPH_FILE_MODE_NUM; i++) ci->i_nr_by_mode[i] = 0; ci->i_truncate_seq = 0; ci->i_truncate_size = 0; ci->i_truncate_pending = 0; ci->i_max_size = 0; ci->i_reported_size = 0; ci->i_wanted_max_size = 0; ci->i_requested_max_size = 0; ci->i_pin_ref = 0; ci->i_rd_ref = 0; ci->i_rdcache_ref = 0; ci->i_wr_ref = 0; ci->i_wrbuffer_ref = 0; ci->i_wrbuffer_ref_head = 0; ci->i_shared_gen = 0; ci->i_rdcache_gen = 0; ci->i_rdcache_revoking = 0; INIT_LIST_HEAD(&ci->i_unsafe_writes); INIT_LIST_HEAD(&ci->i_unsafe_dirops); spin_lock_init(&ci->i_unsafe_lock); ci->i_snap_realm = NULL; INIT_LIST_HEAD(&ci->i_snap_realm_item); INIT_LIST_HEAD(&ci->i_snap_flush_item); INIT_WORK(&ci->i_wb_work, ceph_inode_writeback); INIT_WORK(&ci->i_pg_inv_work, ceph_inode_invalidate_pages); INIT_WORK(&ci->i_vmtruncate_work, ceph_vmtruncate_work); return &ci->vfs_inode; } void ceph_destroy_inode(struct inode *inode) { struct ceph_inode_info *ci = ceph_inode(inode); struct ceph_inode_frag *frag; struct rb_node *n; dout("destroy_inode %p ino %llx.%llx\n", inode, ceph_vinop(inode)); ceph_queue_caps_release(inode); kfree(ci->i_symlink); while ((n = rb_first(&ci->i_fragtree)) != NULL) { frag = rb_entry(n, struct ceph_inode_frag, node); rb_erase(n, &ci->i_fragtree); kfree(frag); } __ceph_destroy_xattrs(ci); if (ci->i_xattrs.blob) ceph_buffer_put(ci->i_xattrs.blob); if (ci->i_xattrs.prealloc_blob) ceph_buffer_put(ci->i_xattrs.prealloc_blob); kmem_cache_free(ceph_inode_cachep, ci); } /* * Helpers to fill in size, ctime, mtime, and atime. We have to be * careful because either the client or MDS may have more up to date * info, depending on which capabilities are held, and whether * time_warp_seq or truncate_seq have increased. (Ordinarily, mtime * and size are monotonically increasing, except when utimes() or * truncate() increments the corresponding _seq values.) */ int ceph_fill_file_size(struct inode *inode, int issued, u32 truncate_seq, u64 truncate_size, u64 size) { struct ceph_inode_info *ci = ceph_inode(inode); int queue_trunc = 0; if (ceph_seq_cmp(truncate_seq, ci->i_truncate_seq) > 0 || (truncate_seq == ci->i_truncate_seq && size > inode->i_size)) { dout("size %lld -> %llu\n", inode->i_size, size); inode->i_size = size; inode->i_blocks = (size + (1<<9) - 1) >> 9; ci->i_reported_size = size; if (truncate_seq != ci->i_truncate_seq) { dout("truncate_seq %u -> %u\n", ci->i_truncate_seq, truncate_seq); ci->i_truncate_seq = truncate_seq; if (issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_RD| CEPH_CAP_FILE_WR|CEPH_CAP_FILE_BUFFER| CEPH_CAP_FILE_EXCL)) { ci->i_truncate_pending++; queue_trunc = 1; } } } if (ceph_seq_cmp(truncate_seq, ci->i_truncate_seq) >= 0 && ci->i_truncate_size != truncate_size) { dout("truncate_size %lld -> %llu\n", ci->i_truncate_size, truncate_size); ci->i_truncate_size = truncate_size; } return queue_trunc; } void ceph_fill_file_time(struct inode *inode, int issued, u64 time_warp_seq, struct timespec *ctime, struct timespec *mtime, struct timespec *atime) { struct ceph_inode_info *ci = ceph_inode(inode); int warn = 0; if (issued & (CEPH_CAP_FILE_EXCL| CEPH_CAP_FILE_WR| CEPH_CAP_FILE_BUFFER)) { if (timespec_compare(ctime, &inode->i_ctime) > 0) { dout("ctime %ld.%09ld -> %ld.%09ld inc w/ cap\n", inode->i_ctime.tv_sec, inode->i_ctime.tv_nsec, ctime->tv_sec, ctime->tv_nsec); inode->i_ctime = *ctime; } if (ceph_seq_cmp(time_warp_seq, ci->i_time_warp_seq) > 0) { /* the MDS did a utimes() */ dout("mtime %ld.%09ld -> %ld.%09ld " "tw %d -> %d\n", inode->i_mtime.tv_sec, inode->i_mtime.tv_nsec, mtime->tv_sec, mtime->tv_nsec, ci->i_time_warp_seq, (int)time_warp_seq); inode->i_mtime = *mtime; inode->i_atime = *atime; ci->i_time_warp_seq = time_warp_seq; } else if (time_warp_seq == ci->i_time_warp_seq) { /* nobody did utimes(); take the max */ if (timespec_compare(mtime, &inode->i_mtime) > 0) { dout("mtime %ld.%09ld -> %ld.%09ld inc\n", inode->i_mtime.tv_sec, inode->i_mtime.tv_nsec, mtime->tv_sec, mtime->tv_nsec); inode->i_mtime = *mtime; } if (timespec_compare(atime, &inode->i_atime) > 0) { dout("atime %ld.%09ld -> %ld.%09ld inc\n", inode->i_atime.tv_sec, inode->i_atime.tv_nsec, atime->tv_sec, atime->tv_nsec); inode->i_atime = *atime; } } else if (issued & CEPH_CAP_FILE_EXCL) { /* we did a utimes(); ignore mds values */ } else { warn = 1; } } else { /* we have no write caps; whatever the MDS says is true */ if (ceph_seq_cmp(time_warp_seq, ci->i_time_warp_seq) >= 0) { inode->i_ctime = *ctime; inode->i_mtime = *mtime; inode->i_atime = *atime; ci->i_time_warp_seq = time_warp_seq; } else { warn = 1; } } if (warn) /* time_warp_seq shouldn't go backwards */ dout("%p mds time_warp_seq %llu < %u\n", inode, time_warp_seq, ci->i_time_warp_seq); } /* * Populate an inode based on info from mds. May be called on new or * existing inodes. */ static int fill_inode(struct inode *inode, struct ceph_mds_reply_info_in *iinfo, struct ceph_mds_reply_dirfrag *dirinfo, struct ceph_mds_session *session, unsigned long ttl_from, int cap_fmode, struct ceph_cap_reservation *caps_reservation) { struct ceph_mds_reply_inode *info = iinfo->in; struct ceph_inode_info *ci = ceph_inode(inode); int i; int issued, implemented; struct timespec mtime, atime, ctime; u32 nsplits; struct ceph_buffer *xattr_blob = NULL; int err = 0; int queue_trunc = 0; dout("fill_inode %p ino %llx.%llx v %llu had %llu\n", inode, ceph_vinop(inode), le64_to_cpu(info->version), ci->i_version); /* * prealloc xattr data, if it looks like we'll need it. only * if len > 4 (meaning there are actually xattrs; the first 4 * bytes are the xattr count). */ if (iinfo->xattr_len > 4) { xattr_blob = ceph_buffer_new(iinfo->xattr_len, GFP_NOFS); if (!xattr_blob) pr_err("fill_inode ENOMEM xattr blob %d bytes\n", iinfo->xattr_len); } spin_lock(&inode->i_lock); /* * provided version will be odd if inode value is projected, * even if stable. skip the update if we have a newer info * (e.g., due to inode info racing form multiple MDSs), or if * we are getting projected (unstable) inode info. */ if (le64_to_cpu(info->version) > 0 && (ci->i_version & ~1) > le64_to_cpu(info->version)) goto no_change; issued = __ceph_caps_issued(ci, &implemented); issued |= implemented | __ceph_caps_dirty(ci); /* update inode */ ci->i_version = le64_to_cpu(info->version); inode->i_version++; inode->i_rdev = le32_to_cpu(info->rdev); if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { inode->i_mode = le32_to_cpu(info->mode); inode->i_uid = le32_to_cpu(info->uid); inode->i_gid = le32_to_cpu(info->gid); dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, inode->i_uid, inode->i_gid); } if ((issued & CEPH_CAP_LINK_EXCL) == 0) inode->i_nlink = le32_to_cpu(info->nlink); /* be careful with mtime, atime, size */ ceph_decode_timespec(&atime, &info->atime); ceph_decode_timespec(&mtime, &info->mtime); ceph_decode_timespec(&ctime, &info->ctime); queue_trunc = ceph_fill_file_size(inode, issued, le32_to_cpu(info->truncate_seq), le64_to_cpu(info->truncate_size), le64_to_cpu(info->size)); ceph_fill_file_time(inode, issued, le32_to_cpu(info->time_warp_seq), &ctime, &mtime, &atime); ci->i_max_size = le64_to_cpu(info->max_size); ci->i_layout = info->layout; inode->i_blkbits = fls(le32_to_cpu(info->layout.fl_stripe_unit)) - 1; /* xattrs */ /* note that if i_xattrs.len <= 4, i_xattrs.data will still be NULL. */ if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && le64_to_cpu(info->xattr_version) > ci->i_xattrs.version) { if (ci->i_xattrs.blob) ceph_buffer_put(ci->i_xattrs.blob); ci->i_xattrs.blob = xattr_blob; if (xattr_blob) memcpy(ci->i_xattrs.blob->vec.iov_base, iinfo->xattr_data, iinfo->xattr_len); ci->i_xattrs.version = le64_to_cpu(info->xattr_version); } inode->i_mapping->a_ops = &ceph_aops; inode->i_mapping->backing_dev_info = &ceph_client(inode->i_sb)->backing_dev_info; switch (inode->i_mode & S_IFMT) { case S_IFIFO: case S_IFBLK: case S_IFCHR: case S_IFSOCK: init_special_inode(inode, inode->i_mode, inode->i_rdev); inode->i_op = &ceph_file_iops; break; case S_IFREG: inode->i_op = &ceph_file_iops; inode->i_fop = &ceph_file_fops; break; case S_IFLNK: inode->i_op = &ceph_symlink_iops; if (!ci->i_symlink) { int symlen = iinfo->symlink_len; char *sym; BUG_ON(symlen != inode->i_size); spin_unlock(&inode->i_lock); err = -ENOMEM; sym = kmalloc(symlen+1, GFP_NOFS); if (!sym) goto out; memcpy(sym, iinfo->symlink, symlen); sym[symlen] = 0; spin_lock(&inode->i_lock); if (!ci->i_symlink) ci->i_symlink = sym; else kfree(sym); /* lost a race */ } break; case S_IFDIR: inode->i_op = &ceph_dir_iops; inode->i_fop = &ceph_dir_fops; ci->i_files = le64_to_cpu(info->files); ci->i_subdirs = le64_to_cpu(info->subdirs); ci->i_rbytes = le64_to_cpu(info->rbytes); ci->i_rfiles = le64_to_cpu(info->rfiles); ci->i_rsubdirs = le64_to_cpu(info->rsubdirs); ceph_decode_timespec(&ci->i_rctime, &info->rctime); /* set dir completion flag? */ if (ci->i_files == 0 && ci->i_subdirs == 0 && ceph_snap(inode) == CEPH_NOSNAP && (le32_to_cpu(info->cap.caps) & CEPH_CAP_FILE_SHARED)) { dout(" marking %p complete (empty)\n", inode); ci->i_ceph_flags |= CEPH_I_COMPLETE; ci->i_max_offset = 2; } /* it may be better to set st_size in getattr instead? */ if (ceph_test_opt(ceph_client(inode->i_sb), RBYTES)) inode->i_size = ci->i_rbytes; break; default: pr_err("fill_inode %llx.%llx BAD mode 0%o\n", ceph_vinop(inode), inode->i_mode); } no_change: spin_unlock(&inode->i_lock); /* queue truncate if we saw i_size decrease */ if (queue_trunc) if (queue_work(ceph_client(inode->i_sb)->trunc_wq, &ci->i_vmtruncate_work)) igrab(inode); /* populate frag tree */ /* FIXME: move me up, if/when version reflects fragtree changes */ nsplits = le32_to_cpu(info->fragtree.nsplits); mutex_lock(&ci->i_fragtree_mutex); for (i = 0; i < nsplits; i++) { u32 id = le32_to_cpu(info->fragtree.splits[i].frag); struct ceph_inode_frag *frag = __get_or_create_frag(ci, id); if (IS_ERR(frag)) continue; frag->split_by = le32_to_cpu(info->fragtree.splits[i].by); dout(" frag %x split by %d\n", frag->frag, frag->split_by); } mutex_unlock(&ci->i_fragtree_mutex); /* were we issued a capability? */ if (info->cap.caps) { if (ceph_snap(inode) == CEPH_NOSNAP) { ceph_add_cap(inode, session, le64_to_cpu(info->cap.cap_id), cap_fmode, le32_to_cpu(info->cap.caps), le32_to_cpu(info->cap.wanted), le32_to_cpu(info->cap.seq), le32_to_cpu(info->cap.mseq), le64_to_cpu(info->cap.realm), info->cap.flags, caps_reservation); } else { spin_lock(&inode->i_lock); dout(" %p got snap_caps %s\n", inode, ceph_cap_string(le32_to_cpu(info->cap.caps))); ci->i_snap_caps |= le32_to_cpu(info->cap.caps); if (cap_fmode >= 0) __ceph_get_fmode(ci, cap_fmode); spin_unlock(&inode->i_lock); } } /* update delegation info? */ if (dirinfo) ceph_fill_dirfrag(inode, dirinfo); err = 0; out: if (xattr_blob) ceph_buffer_put(xattr_blob); return err; } /* * caller should hold session s_mutex. */ static void update_dentry_lease(struct dentry *dentry, struct ceph_mds_reply_lease *lease, struct ceph_mds_session *session, unsigned long from_time) { struct ceph_dentry_info *di = ceph_dentry(dentry); long unsigned duration = le32_to_cpu(lease->duration_ms); long unsigned ttl = from_time + (duration * HZ) / 1000; long unsigned half_ttl = from_time + (duration * HZ / 2) / 1000; struct inode *dir; /* only track leases on regular dentries */ if (dentry->d_op != &ceph_dentry_ops) return; spin_lock(&dentry->d_lock); dout("update_dentry_lease %p mask %d duration %lu ms ttl %lu\n", dentry, le16_to_cpu(lease->mask), duration, ttl); /* make lease_rdcache_gen match directory */ dir = dentry->d_parent->d_inode; di->lease_shared_gen = ceph_inode(dir)->i_shared_gen; if (lease->mask == 0) goto out_unlock; if (di->lease_gen == session->s_cap_gen && time_before(ttl, dentry->d_time)) goto out_unlock; /* we already have a newer lease. */ if (di->lease_session && di->lease_session != session) goto out_unlock; ceph_dentry_lru_touch(dentry); if (!di->lease_session) di->lease_session = ceph_get_mds_session(session); di->lease_gen = session->s_cap_gen; di->lease_seq = le32_to_cpu(lease->seq); di->lease_renew_after = half_ttl; di->lease_renew_from = 0; dentry->d_time = ttl; out_unlock: spin_unlock(&dentry->d_lock); return; } /* * splice a dentry to an inode. * caller must hold directory i_mutex for this to be safe. * * we will only rehash the resulting dentry if @prehash is * true; @prehash will be set to false (for the benefit of * the caller) if we fail. */ static struct dentry *splice_dentry(struct dentry *dn, struct inode *in, bool *prehash) { struct dentry *realdn; /* dn must be unhashed */ if (!d_unhashed(dn)) d_drop(dn); realdn = d_materialise_unique(dn, in); if (IS_ERR(realdn)) { pr_err("splice_dentry error %p inode %p ino %llx.%llx\n", dn, in, ceph_vinop(in)); if (prehash) *prehash = false; /* don't rehash on error */ dn = realdn; /* note realdn contains the error */ goto out; } else if (realdn) { dout("dn %p (%d) spliced with %p (%d) " "inode %p ino %llx.%llx\n", dn, atomic_read(&dn->d_count), realdn, atomic_read(&realdn->d_count), realdn->d_inode, ceph_vinop(realdn->d_inode)); dput(dn); dn = realdn; } else { BUG_ON(!ceph_dentry(dn)); dout("dn %p attached to %p ino %llx.%llx\n", dn, dn->d_inode, ceph_vinop(dn->d_inode)); } if ((!prehash || *prehash) && d_unhashed(dn)) d_rehash(dn); out: return dn; } /* * Set dentry's directory position based on the current dir's max, and * order it in d_subdirs, so that dcache_readdir behaves. */ static void ceph_set_dentry_offset(struct dentry *dn) { struct dentry *dir = dn->d_parent; struct inode *inode = dn->d_parent->d_inode; struct ceph_dentry_info *di; BUG_ON(!inode); di = ceph_dentry(dn); spin_lock(&inode->i_lock); di->offset = ceph_inode(inode)->i_max_offset++; spin_unlock(&inode->i_lock); spin_lock(&dcache_lock); spin_lock(&dn->d_lock); list_move_tail(&dir->d_subdirs, &dn->d_u.d_child); dout("set_dentry_offset %p %lld (%p %p)\n", dn, di->offset, dn->d_u.d_child.prev, dn->d_u.d_child.next); spin_unlock(&dn->d_lock); spin_unlock(&dcache_lock); } /* * Incorporate results into the local cache. This is either just * one inode, or a directory, dentry, and possibly linked-to inode (e.g., * after a lookup). * * A reply may contain * a directory inode along with a dentry. * and/or a target inode * * Called with snap_rwsem (read). */ int ceph_fill_trace(struct super_block *sb, struct ceph_mds_request *req, struct ceph_mds_session *session) { struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; struct inode *in = NULL; struct ceph_mds_reply_inode *ininfo; struct ceph_vino vino; int i = 0; int err = 0; dout("fill_trace %p is_dentry %d is_target %d\n", req, rinfo->head->is_dentry, rinfo->head->is_target); #if 0 /* * Debugging hook: * * If we resend completed ops to a recovering mds, we get no * trace. Since that is very rare, pretend this is the case * to ensure the 'no trace' handlers in the callers behave. * * Fill in inodes unconditionally to avoid breaking cap * invariants. */ if (rinfo->head->op & CEPH_MDS_OP_WRITE) { pr_info("fill_trace faking empty trace on %lld %s\n", req->r_tid, ceph_mds_op_name(rinfo->head->op)); if (rinfo->head->is_dentry) { rinfo->head->is_dentry = 0; err = fill_inode(req->r_locked_dir, &rinfo->diri, rinfo->dirfrag, session, req->r_request_started, -1); } if (rinfo->head->is_target) { rinfo->head->is_target = 0; ininfo = rinfo->targeti.in; vino.ino = le64_to_cpu(ininfo->ino); vino.snap = le64_to_cpu(ininfo->snapid); in = ceph_get_inode(sb, vino); err = fill_inode(in, &rinfo->targeti, NULL, session, req->r_request_started, req->r_fmode); iput(in); } } #endif if (!rinfo->head->is_target && !rinfo->head->is_dentry) { dout("fill_trace reply is empty!\n"); if (rinfo->head->result == 0 && req->r_locked_dir) { struct ceph_inode_info *ci = ceph_inode(req->r_locked_dir); dout(" clearing %p complete (empty trace)\n", req->r_locked_dir); ci->i_ceph_flags &= ~CEPH_I_COMPLETE; ci->i_release_count++; } return 0; } if (rinfo->head->is_dentry) { struct inode *dir = req->r_locked_dir; err = fill_inode(dir, &rinfo->diri, rinfo->dirfrag, session, req->r_request_started, -1, &req->r_caps_reservation); if (err < 0) return err; } if (rinfo->head->is_dentry && !req->r_aborted) { /* * lookup link rename : null -> possibly existing inode * mknod symlink mkdir : null -> new inode * unlink : linked -> null */ struct inode *dir = req->r_locked_dir; struct dentry *dn = req->r_dentry; bool have_dir_cap, have_lease; BUG_ON(!dn); BUG_ON(!dir); BUG_ON(dn->d_parent->d_inode != dir); BUG_ON(ceph_ino(dir) != le64_to_cpu(rinfo->diri.in->ino)); BUG_ON(ceph_snap(dir) != le64_to_cpu(rinfo->diri.in->snapid)); /* do we have a lease on the whole dir? */ have_dir_cap = (le32_to_cpu(rinfo->diri.in->cap.caps) & CEPH_CAP_FILE_SHARED); /* do we have a dn lease? */ have_lease = have_dir_cap || (le16_to_cpu(rinfo->dlease->mask) & CEPH_LOCK_DN); if (!have_lease) dout("fill_trace no dentry lease or dir cap\n"); /* rename? */ if (req->r_old_dentry && req->r_op == CEPH_MDS_OP_RENAME) { dout(" src %p '%.*s' dst %p '%.*s'\n", req->r_old_dentry, req->r_old_dentry->d_name.len, req->r_old_dentry->d_name.name, dn, dn->d_name.len, dn->d_name.name); dout("fill_trace doing d_move %p -> %p\n", req->r_old_dentry, dn); d_move(req->r_old_dentry, dn); dout(" src %p '%.*s' dst %p '%.*s'\n", req->r_old_dentry, req->r_old_dentry->d_name.len, req->r_old_dentry->d_name.name, dn, dn->d_name.len, dn->d_name.name); /* ensure target dentry is invalidated, despite rehashing bug in vfs_rename_dir */ dn->d_time = jiffies; ceph_dentry(dn)->lease_shared_gen = 0; /* take overwritten dentry's readdir offset */ ceph_dentry(req->r_old_dentry)->offset = ceph_dentry(dn)->offset; dn = req->r_old_dentry; /* use old_dentry */ in = dn->d_inode; } /* null dentry? */ if (!rinfo->head->is_target) { dout("fill_trace null dentry\n"); if (dn->d_inode) { dout("d_delete %p\n", dn); d_delete(dn); } else { dout("d_instantiate %p NULL\n", dn); d_instantiate(dn, NULL); if (have_lease && d_unhashed(dn)) d_rehash(dn); update_dentry_lease(dn, rinfo->dlease, session, req->r_request_started); } goto done; } /* attach proper inode */ ininfo = rinfo->targeti.in; vino.ino = le64_to_cpu(ininfo->ino); vino.snap = le64_to_cpu(ininfo->snapid); if (!dn->d_inode) { in = ceph_get_inode(sb, vino); if (IS_ERR(in)) { pr_err("fill_trace bad get_inode " "%llx.%llx\n", vino.ino, vino.snap); err = PTR_ERR(in); d_delete(dn); goto done; } dn = splice_dentry(dn, in, &have_lease); if (IS_ERR(dn)) { err = PTR_ERR(dn); goto done; } req->r_dentry = dn; /* may have spliced */ ceph_set_dentry_offset(dn); igrab(in); } else if (ceph_ino(in) == vino.ino && ceph_snap(in) == vino.snap) { igrab(in); } else { dout(" %p links to %p %llx.%llx, not %llx.%llx\n", dn, in, ceph_ino(in), ceph_snap(in), vino.ino, vino.snap); have_lease = false; in = NULL; } if (have_lease) update_dentry_lease(dn, rinfo->dlease, session, req->r_request_started); dout(" final dn %p\n", dn); i++; } else if (req->r_op == CEPH_MDS_OP_LOOKUPSNAP || req->r_op == CEPH_MDS_OP_MKSNAP) { struct dentry *dn = req->r_dentry; /* fill out a snapdir LOOKUPSNAP dentry */ BUG_ON(!dn); BUG_ON(!req->r_locked_dir); BUG_ON(ceph_snap(req->r_locked_dir) != CEPH_SNAPDIR); ininfo = rinfo->targeti.in; vino.ino = le64_to_cpu(ininfo->ino); vino.snap = le64_to_cpu(ininfo->snapid); in = ceph_get_inode(sb, vino); if (IS_ERR(in)) { pr_err("fill_inode get_inode badness %llx.%llx\n", vino.ino, vino.snap); err = PTR_ERR(in); d_delete(dn); goto done; } dout(" linking snapped dir %p to dn %p\n", in, dn); dn = splice_dentry(dn, in, NULL); if (IS_ERR(dn)) { err = PTR_ERR(dn); goto done; } ceph_set_dentry_offset(dn); req->r_dentry = dn; /* may have spliced */ igrab(in); rinfo->head->is_dentry = 1; /* fool notrace handlers */ } if (rinfo->head->is_target) { vino.ino = le64_to_cpu(rinfo->targeti.in->ino); vino.snap = le64_to_cpu(rinfo->targeti.in->snapid); if (in == NULL || ceph_ino(in) != vino.ino || ceph_snap(in) != vino.snap) { in = ceph_get_inode(sb, vino); if (IS_ERR(in)) { err = PTR_ERR(in); goto done; } } req->r_target_inode = in; err = fill_inode(in, &rinfo->targeti, NULL, session, req->r_request_started, (le32_to_cpu(rinfo->head->result) == 0) ? req->r_fmode : -1, &req->r_caps_reservation); if (err < 0) { pr_err("fill_inode badness %p %llx.%llx\n", in, ceph_vinop(in)); goto done; } } done: dout("fill_trace done err=%d\n", err); return err; } /* * Prepopulate our cache with readdir results, leases, etc. */ int ceph_readdir_prepopulate(struct ceph_mds_request *req, struct ceph_mds_session *session) { struct dentry *parent = req->r_dentry; struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info; struct qstr dname; struct dentry *dn; struct inode *in; int err = 0, i; struct inode *snapdir = NULL; struct ceph_mds_request_head *rhead = req->r_request->front.iov_base; u64 frag = le32_to_cpu(rhead->args.readdir.frag); struct ceph_dentry_info *di; if (le32_to_cpu(rinfo->head->op) == CEPH_MDS_OP_LSSNAP) { snapdir = ceph_get_snapdir(parent->d_inode); parent = d_find_alias(snapdir); dout("readdir_prepopulate %d items under SNAPDIR dn %p\n", rinfo->dir_nr, parent); } else { dout("readdir_prepopulate %d items under dn %p\n", rinfo->dir_nr, parent); if (rinfo->dir_dir) ceph_fill_dirfrag(parent->d_inode, rinfo->dir_dir); } for (i = 0; i < rinfo->dir_nr; i++) { struct ceph_vino vino; dname.name = rinfo->dir_dname[i]; dname.len = rinfo->dir_dname_len[i]; dname.hash = full_name_hash(dname.name, dname.len); vino.ino = le64_to_cpu(rinfo->dir_in[i].in->ino); vino.snap = le64_to_cpu(rinfo->dir_in[i].in->snapid); retry_lookup: dn = d_lookup(parent, &dname); dout("d_lookup on parent=%p name=%.*s got %p\n", parent, dname.len, dname.name, dn); if (!dn) { dn = d_alloc(parent, &dname); dout("d_alloc %p '%.*s' = %p\n", parent, dname.len, dname.name, dn); if (dn == NULL) { dout("d_alloc badness\n"); err = -ENOMEM; goto out; } err = ceph_init_dentry(dn); if (err < 0) goto out; } else if (dn->d_inode && (ceph_ino(dn->d_inode) != vino.ino || ceph_snap(dn->d_inode) != vino.snap)) { dout(" dn %p points to wrong inode %p\n", dn, dn->d_inode); d_delete(dn); dput(dn); goto retry_lookup; } else { /* reorder parent's d_subdirs */ spin_lock(&dcache_lock); spin_lock(&dn->d_lock); list_move(&dn->d_u.d_child, &parent->d_subdirs); spin_unlock(&dn->d_lock); spin_unlock(&dcache_lock); } di = dn->d_fsdata; di->offset = ceph_make_fpos(frag, i + req->r_readdir_offset); /* inode */ if (dn->d_inode) { in = dn->d_inode; } else { in = ceph_get_inode(parent->d_sb, vino); if (in == NULL) { dout("new_inode badness\n"); d_delete(dn); dput(dn); err = -ENOMEM; goto out; } dn = splice_dentry(dn, in, NULL); } if (fill_inode(in, &rinfo->dir_in[i], NULL, session, req->r_request_started, -1, &req->r_caps_reservation) < 0) { pr_err("fill_inode badness on %p\n", in); dput(dn); continue; } update_dentry_lease(dn, rinfo->dir_dlease[i], req->r_session, req->r_request_started); dput(dn); } req->r_did_prepopulate = true; out: if (snapdir) { iput(snapdir); dput(parent); } dout("readdir_prepopulate done\n"); return err; } int ceph_inode_set_size(struct inode *inode, loff_t size) { struct ceph_inode_info *ci = ceph_inode(inode); int ret = 0; spin_lock(&inode->i_lock); dout("set_size %p %llu -> %llu\n", inode, inode->i_size, size); inode->i_size = size; inode->i_blocks = (size + (1 << 9) - 1) >> 9; /* tell the MDS if we are approaching max_size */ if ((size << 1) >= ci->i_max_size && (ci->i_reported_size << 1) < ci->i_max_size) ret = 1; spin_unlock(&inode->i_lock); return ret; } /* * Write back inode data in a worker thread. (This can't be done * in the message handler context.) */ void ceph_inode_writeback(struct work_struct *work) { struct ceph_inode_info *ci = container_of(work, struct ceph_inode_info, i_wb_work); struct inode *inode = &ci->vfs_inode; dout("writeback %p\n", inode); filemap_fdatawrite(&inode->i_data); iput(inode); } /* * Invalidate inode pages in a worker thread. (This can't be done * in the message handler context.) */ static void ceph_inode_invalidate_pages(struct work_struct *work) { struct ceph_inode_info *ci = container_of(work, struct ceph_inode_info, i_pg_inv_work); struct inode *inode = &ci->vfs_inode; u32 orig_gen; int check = 0; spin_lock(&inode->i_lock); dout("invalidate_pages %p gen %d revoking %d\n", inode, ci->i_rdcache_gen, ci->i_rdcache_revoking); if (ci->i_rdcache_gen == 0 || ci->i_rdcache_revoking != ci->i_rdcache_gen) { BUG_ON(ci->i_rdcache_revoking > ci->i_rdcache_gen); /* nevermind! */ ci->i_rdcache_revoking = 0; spin_unlock(&inode->i_lock); goto out; } orig_gen = ci->i_rdcache_gen; spin_unlock(&inode->i_lock); truncate_inode_pages(&inode->i_data, 0); spin_lock(&inode->i_lock); if (orig_gen == ci->i_rdcache_gen) { dout("invalidate_pages %p gen %d successful\n", inode, ci->i_rdcache_gen); ci->i_rdcache_gen = 0; ci->i_rdcache_revoking = 0; check = 1; } else { dout("invalidate_pages %p gen %d raced, gen now %d\n", inode, orig_gen, ci->i_rdcache_gen); } spin_unlock(&inode->i_lock); if (check) ceph_check_caps(ci, 0, NULL); out: iput(inode); } /* * called by trunc_wq; take i_mutex ourselves * * We also truncate in a separate thread as well. */ void ceph_vmtruncate_work(struct work_struct *work) { struct ceph_inode_info *ci = container_of(work, struct ceph_inode_info, i_vmtruncate_work); struct inode *inode = &ci->vfs_inode; dout("vmtruncate_work %p\n", inode); mutex_lock(&inode->i_mutex); __ceph_do_pending_vmtruncate(inode); mutex_unlock(&inode->i_mutex); iput(inode); } /* * called with i_mutex held. * * Make sure any pending truncation is applied before doing anything * that may depend on it. */ void __ceph_do_pending_vmtruncate(struct inode *inode) { struct ceph_inode_info *ci = ceph_inode(inode); u64 to; int wrbuffer_refs, wake = 0; retry: spin_lock(&inode->i_lock); if (ci->i_truncate_pending == 0) { dout("__do_pending_vmtruncate %p none pending\n", inode); spin_unlock(&inode->i_lock); return; } /* * make sure any dirty snapped pages are flushed before we * possibly truncate them.. so write AND block! */ if (ci->i_wrbuffer_ref_head < ci->i_wrbuffer_ref) { dout("__do_pending_vmtruncate %p flushing snaps first\n", inode); spin_unlock(&inode->i_lock); filemap_write_and_wait_range(&inode->i_data, 0, inode->i_sb->s_maxbytes); goto retry; } to = ci->i_truncate_size; wrbuffer_refs = ci->i_wrbuffer_ref; dout("__do_pending_vmtruncate %p (%d) to %lld\n", inode, ci->i_truncate_pending, to); spin_unlock(&inode->i_lock); truncate_inode_pages(inode->i_mapping, to); spin_lock(&inode->i_lock); ci->i_truncate_pending--; if (ci->i_truncate_pending == 0) wake = 1; spin_unlock(&inode->i_lock); if (wrbuffer_refs == 0) ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); if (wake) wake_up(&ci->i_cap_wq); } /* * symlinks */ static void *ceph_sym_follow_link(struct dentry *dentry, struct nameidata *nd) { struct ceph_inode_info *ci = ceph_inode(dentry->d_inode); nd_set_link(nd, ci->i_symlink); return NULL; } static const struct inode_operations ceph_symlink_iops = { .readlink = generic_readlink, .follow_link = ceph_sym_follow_link, }; /* * setattr */ int ceph_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = dentry->d_inode; struct ceph_inode_info *ci = ceph_inode(inode); struct inode *parent_inode = dentry->d_parent->d_inode; const unsigned int ia_valid = attr->ia_valid; struct ceph_mds_request *req; struct ceph_mds_client *mdsc = &ceph_client(dentry->d_sb)->mdsc; int issued; int release = 0, dirtied = 0; int mask = 0; int err = 0; int queue_trunc = 0; if (ceph_snap(inode) != CEPH_NOSNAP) return -EROFS; __ceph_do_pending_vmtruncate(inode); err = inode_change_ok(inode, attr); if (err != 0) return err; req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_SETATTR, USE_AUTH_MDS); if (IS_ERR(req)) return PTR_ERR(req); spin_lock(&inode->i_lock); issued = __ceph_caps_issued(ci, NULL); dout("setattr %p issued %s\n", inode, ceph_cap_string(issued)); if (ia_valid & ATTR_UID) { dout("setattr %p uid %d -> %d\n", inode, inode->i_uid, attr->ia_uid); if (issued & CEPH_CAP_AUTH_EXCL) { inode->i_uid = attr->ia_uid; dirtied |= CEPH_CAP_AUTH_EXCL; } else if ((issued & CEPH_CAP_AUTH_SHARED) == 0 || attr->ia_uid != inode->i_uid) { req->r_args.setattr.uid = cpu_to_le32(attr->ia_uid); mask |= CEPH_SETATTR_UID; release |= CEPH_CAP_AUTH_SHARED; } } if (ia_valid & ATTR_GID) { dout("setattr %p gid %d -> %d\n", inode, inode->i_gid, attr->ia_gid); if (issued & CEPH_CAP_AUTH_EXCL) { inode->i_gid = attr->ia_gid; dirtied |= CEPH_CAP_AUTH_EXCL; } else if ((issued & CEPH_CAP_AUTH_SHARED) == 0 || attr->ia_gid != inode->i_gid) { req->r_args.setattr.gid = cpu_to_le32(attr->ia_gid); mask |= CEPH_SETATTR_GID; release |= CEPH_CAP_AUTH_SHARED; } } if (ia_valid & ATTR_MODE) { dout("setattr %p mode 0%o -> 0%o\n", inode, inode->i_mode, attr->ia_mode); if (issued & CEPH_CAP_AUTH_EXCL) { inode->i_mode = attr->ia_mode; dirtied |= CEPH_CAP_AUTH_EXCL; } else if ((issued & CEPH_CAP_AUTH_SHARED) == 0 || attr->ia_mode != inode->i_mode) { req->r_args.setattr.mode = cpu_to_le32(attr->ia_mode); mask |= CEPH_SETATTR_MODE; release |= CEPH_CAP_AUTH_SHARED; } } if (ia_valid & ATTR_ATIME) { dout("setattr %p atime %ld.%ld -> %ld.%ld\n", inode, inode->i_atime.tv_sec, inode->i_atime.tv_nsec, attr->ia_atime.tv_sec, attr->ia_atime.tv_nsec); if (issued & CEPH_CAP_FILE_EXCL) { ci->i_time_warp_seq++; inode->i_atime = attr->ia_atime; dirtied |= CEPH_CAP_FILE_EXCL; } else if ((issued & CEPH_CAP_FILE_WR) && timespec_compare(&inode->i_atime, &attr->ia_atime) < 0) { inode->i_atime = attr->ia_atime; dirtied |= CEPH_CAP_FILE_WR; } else if ((issued & CEPH_CAP_FILE_SHARED) == 0 || !timespec_equal(&inode->i_atime, &attr->ia_atime)) { ceph_encode_timespec(&req->r_args.setattr.atime, &attr->ia_atime); mask |= CEPH_SETATTR_ATIME; release |= CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_RD | CEPH_CAP_FILE_WR; } } if (ia_valid & ATTR_MTIME) { dout("setattr %p mtime %ld.%ld -> %ld.%ld\n", inode, inode->i_mtime.tv_sec, inode->i_mtime.tv_nsec, attr->ia_mtime.tv_sec, attr->ia_mtime.tv_nsec); if (issued & CEPH_CAP_FILE_EXCL) { ci->i_time_warp_seq++; inode->i_mtime = attr->ia_mtime; dirtied |= CEPH_CAP_FILE_EXCL; } else if ((issued & CEPH_CAP_FILE_WR) && timespec_compare(&inode->i_mtime, &attr->ia_mtime) < 0) { inode->i_mtime = attr->ia_mtime; dirtied |= CEPH_CAP_FILE_WR; } else if ((issued & CEPH_CAP_FILE_SHARED) == 0 || !timespec_equal(&inode->i_mtime, &attr->ia_mtime)) { ceph_encode_timespec(&req->r_args.setattr.mtime, &attr->ia_mtime); mask |= CEPH_SETATTR_MTIME; release |= CEPH_CAP_FILE_SHARED | CEPH_CAP_FILE_RD | CEPH_CAP_FILE_WR; } } if (ia_valid & ATTR_SIZE) { dout("setattr %p size %lld -> %lld\n", inode, inode->i_size, attr->ia_size); if (attr->ia_size > inode->i_sb->s_maxbytes) { err = -EINVAL; goto out; } if ((issued & CEPH_CAP_FILE_EXCL) && attr->ia_size > inode->i_size) { inode->i_size = attr->ia_size; if (attr->ia_size < inode->i_size) { ci->i_truncate_size = attr->ia_size; ci->i_truncate_pending++; queue_trunc = 1; } inode->i_blocks = (attr->ia_size + (1 << 9) - 1) >> 9; inode->i_ctime = attr->ia_ctime; ci->i_reported_size = attr->ia_size; dirtied |= CEPH_CAP_FILE_EXCL; } else if ((issued & CEPH_CAP_FILE_SHARED) == 0 || attr->ia_size != inode->i_size) { req->r_args.setattr.size = cpu_to_le64(attr->ia_size); req->r_args.setattr.old_size = cpu_to_le64(inode->i_size); mask |= CEPH_SETATTR_SIZE; release |= CEPH_CAP_FILE_SHARED | CEPH_CAP_FILE_RD | CEPH_CAP_FILE_WR; } } /* these do nothing */ if (ia_valid & ATTR_CTIME) { bool only = (ia_valid & (ATTR_SIZE|ATTR_MTIME|ATTR_ATIME| ATTR_MODE|ATTR_UID|ATTR_GID)) == 0; dout("setattr %p ctime %ld.%ld -> %ld.%ld (%s)\n", inode, inode->i_ctime.tv_sec, inode->i_ctime.tv_nsec, attr->ia_ctime.tv_sec, attr->ia_ctime.tv_nsec, only ? "ctime only" : "ignored"); inode->i_ctime = attr->ia_ctime; if (only) { /* * if kernel wants to dirty ctime but nothing else, * we need to choose a cap to dirty under, or do * a almost-no-op setattr */ if (issued & CEPH_CAP_AUTH_EXCL) dirtied |= CEPH_CAP_AUTH_EXCL; else if (issued & CEPH_CAP_FILE_EXCL) dirtied |= CEPH_CAP_FILE_EXCL; else if (issued & CEPH_CAP_XATTR_EXCL) dirtied |= CEPH_CAP_XATTR_EXCL; else mask |= CEPH_SETATTR_CTIME; } } if (ia_valid & ATTR_FILE) dout("setattr %p ATTR_FILE ... hrm!\n", inode); if (dirtied) { __ceph_mark_dirty_caps(ci, dirtied); inode->i_ctime = CURRENT_TIME; } release &= issued; spin_unlock(&inode->i_lock); if (queue_trunc) __ceph_do_pending_vmtruncate(inode); if (mask) { req->r_inode = igrab(inode); req->r_inode_drop = release; req->r_args.setattr.mask = cpu_to_le32(mask); req->r_num_caps = 1; err = ceph_mdsc_do_request(mdsc, parent_inode, req); } dout("setattr %p result=%d (%s locally, %d remote)\n", inode, err, ceph_cap_string(dirtied), mask); ceph_mdsc_put_request(req); __ceph_do_pending_vmtruncate(inode); return err; out: spin_unlock(&inode->i_lock); ceph_mdsc_put_request(req); return err; } /* * Verify that we have a lease on the given mask. If not, * do a getattr against an mds. */ int ceph_do_getattr(struct inode *inode, int mask) { struct ceph_client *client = ceph_sb_to_client(inode->i_sb); struct ceph_mds_client *mdsc = &client->mdsc; struct ceph_mds_request *req; int err; if (ceph_snap(inode) == CEPH_SNAPDIR) { dout("do_getattr inode %p SNAPDIR\n", inode); return 0; } dout("do_getattr inode %p mask %s\n", inode, ceph_cap_string(mask)); if (ceph_caps_issued_mask(ceph_inode(inode), mask, 1)) return 0; req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, USE_ANY_MDS); if (IS_ERR(req)) return PTR_ERR(req); req->r_inode = igrab(inode); req->r_num_caps = 1; req->r_args.getattr.mask = cpu_to_le32(mask); err = ceph_mdsc_do_request(mdsc, NULL, req); ceph_mdsc_put_request(req); dout("do_getattr result=%d\n", err); return err; } /* * Check inode permissions. We verify we have a valid value for * the AUTH cap, then call the generic handler. */ int ceph_permission(struct inode *inode, int mask) { int err = ceph_do_getattr(inode, CEPH_CAP_AUTH_SHARED); if (!err) err = generic_permission(inode, mask, NULL); return err; } /* * Get all attributes. Hopefully somedata we'll have a statlite() * and can limit the fields we require to be accurate. */ int ceph_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat) { struct inode *inode = dentry->d_inode; struct ceph_inode_info *ci = ceph_inode(inode); int err; err = ceph_do_getattr(inode, CEPH_STAT_CAP_INODE_ALL); if (!err) { generic_fillattr(inode, stat); stat->ino = inode->i_ino; if (ceph_snap(inode) != CEPH_NOSNAP) stat->dev = ceph_snap(inode); else stat->dev = 0; if (S_ISDIR(inode->i_mode)) { stat->size = ci->i_rbytes; stat->blocks = 0; stat->blksize = 65536; } } return err; }