/* * fs/f2fs/checkpoint.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include "f2fs.h" #include "node.h" #include "segment.h" #include static struct kmem_cache *orphan_entry_slab; static struct kmem_cache *inode_entry_slab; /* * We guarantee no failure on the returned page. */ struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) { struct address_space *mapping = sbi->meta_inode->i_mapping; struct page *page = NULL; repeat: page = grab_cache_page(mapping, index); if (!page) { cond_resched(); goto repeat; } /* We wait writeback only inside grab_meta_page() */ wait_on_page_writeback(page); SetPageUptodate(page); return page; } /* * We guarantee no failure on the returned page. */ struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index) { struct address_space *mapping = sbi->meta_inode->i_mapping; struct page *page; repeat: page = grab_cache_page(mapping, index); if (!page) { cond_resched(); goto repeat; } if (PageUptodate(page)) goto out; if (f2fs_readpage(sbi, page, index, READ_SYNC)) goto repeat; lock_page(page); if (page->mapping != mapping) { f2fs_put_page(page, 1); goto repeat; } out: mark_page_accessed(page); return page; } static int f2fs_write_meta_page(struct page *page, struct writeback_control *wbc) { struct inode *inode = page->mapping->host; struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); /* Should not write any meta pages, if any IO error was occurred */ if (wbc->for_reclaim || is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) { dec_page_count(sbi, F2FS_DIRTY_META); wbc->pages_skipped++; set_page_dirty(page); return AOP_WRITEPAGE_ACTIVATE; } wait_on_page_writeback(page); write_meta_page(sbi, page); dec_page_count(sbi, F2FS_DIRTY_META); unlock_page(page); return 0; } static int f2fs_write_meta_pages(struct address_space *mapping, struct writeback_control *wbc) { struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); struct block_device *bdev = sbi->sb->s_bdev; long written; if (wbc->for_kupdate) return 0; if (get_pages(sbi, F2FS_DIRTY_META) == 0) return 0; /* if mounting is failed, skip writing node pages */ mutex_lock(&sbi->cp_mutex); written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev)); mutex_unlock(&sbi->cp_mutex); wbc->nr_to_write -= written; return 0; } long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, long nr_to_write) { struct address_space *mapping = sbi->meta_inode->i_mapping; pgoff_t index = 0, end = LONG_MAX; struct pagevec pvec; long nwritten = 0; struct writeback_control wbc = { .for_reclaim = 0, }; pagevec_init(&pvec, 0); while (index <= end) { int i, nr_pages; nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY, min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); if (nr_pages == 0) break; for (i = 0; i < nr_pages; i++) { struct page *page = pvec.pages[i]; lock_page(page); BUG_ON(page->mapping != mapping); BUG_ON(!PageDirty(page)); clear_page_dirty_for_io(page); if (f2fs_write_meta_page(page, &wbc)) { unlock_page(page); break; } if (nwritten++ >= nr_to_write) break; } pagevec_release(&pvec); cond_resched(); } if (nwritten) f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX); return nwritten; } static int f2fs_set_meta_page_dirty(struct page *page) { struct address_space *mapping = page->mapping; struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb); SetPageUptodate(page); if (!PageDirty(page)) { __set_page_dirty_nobuffers(page); inc_page_count(sbi, F2FS_DIRTY_META); return 1; } return 0; } const struct address_space_operations f2fs_meta_aops = { .writepage = f2fs_write_meta_page, .writepages = f2fs_write_meta_pages, .set_page_dirty = f2fs_set_meta_page_dirty, }; int check_orphan_space(struct f2fs_sb_info *sbi) { unsigned int max_orphans; int err = 0; /* * considering 512 blocks in a segment 5 blocks are needed for cp * and log segment summaries. Remaining blocks are used to keep * orphan entries with the limitation one reserved segment * for cp pack we can have max 1020*507 orphan entries */ max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK; mutex_lock(&sbi->orphan_inode_mutex); if (sbi->n_orphans >= max_orphans) err = -ENOSPC; mutex_unlock(&sbi->orphan_inode_mutex); return err; } void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) { struct list_head *head, *this; struct orphan_inode_entry *new = NULL, *orphan = NULL; mutex_lock(&sbi->orphan_inode_mutex); head = &sbi->orphan_inode_list; list_for_each(this, head) { orphan = list_entry(this, struct orphan_inode_entry, list); if (orphan->ino == ino) goto out; if (orphan->ino > ino) break; orphan = NULL; } retry: new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC); if (!new) { cond_resched(); goto retry; } new->ino = ino; /* add new_oentry into list which is sorted by inode number */ if (orphan) list_add(&new->list, this->prev); else list_add_tail(&new->list, head); sbi->n_orphans++; out: mutex_unlock(&sbi->orphan_inode_mutex); } void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) { struct list_head *this, *next, *head; struct orphan_inode_entry *orphan; mutex_lock(&sbi->orphan_inode_mutex); head = &sbi->orphan_inode_list; list_for_each_safe(this, next, head) { orphan = list_entry(this, struct orphan_inode_entry, list); if (orphan->ino == ino) { list_del(&orphan->list); kmem_cache_free(orphan_entry_slab, orphan); sbi->n_orphans--; break; } } mutex_unlock(&sbi->orphan_inode_mutex); } static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino) { struct inode *inode = f2fs_iget(sbi->sb, ino); BUG_ON(IS_ERR(inode)); clear_nlink(inode); /* truncate all the data during iput */ iput(inode); } int recover_orphan_inodes(struct f2fs_sb_info *sbi) { block_t start_blk, orphan_blkaddr, i, j; if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG)) return 0; sbi->por_doing = 1; start_blk = __start_cp_addr(sbi) + 1; orphan_blkaddr = __start_sum_addr(sbi) - 1; for (i = 0; i < orphan_blkaddr; i++) { struct page *page = get_meta_page(sbi, start_blk + i); struct f2fs_orphan_block *orphan_blk; orphan_blk = (struct f2fs_orphan_block *)page_address(page); for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) { nid_t ino = le32_to_cpu(orphan_blk->ino[j]); recover_orphan_inode(sbi, ino); } f2fs_put_page(page, 1); } /* clear Orphan Flag */ clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG); sbi->por_doing = 0; return 0; } static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk) { struct list_head *head, *this, *next; struct f2fs_orphan_block *orphan_blk = NULL; struct page *page = NULL; unsigned int nentries = 0; unsigned short index = 1; unsigned short orphan_blocks; orphan_blocks = (unsigned short)((sbi->n_orphans + (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK); mutex_lock(&sbi->orphan_inode_mutex); head = &sbi->orphan_inode_list; /* loop for each orphan inode entry and write them in Jornal block */ list_for_each_safe(this, next, head) { struct orphan_inode_entry *orphan; orphan = list_entry(this, struct orphan_inode_entry, list); if (nentries == F2FS_ORPHANS_PER_BLOCK) { /* * an orphan block is full of 1020 entries, * then we need to flush current orphan blocks * and bring another one in memory */ orphan_blk->blk_addr = cpu_to_le16(index); orphan_blk->blk_count = cpu_to_le16(orphan_blocks); orphan_blk->entry_count = cpu_to_le32(nentries); set_page_dirty(page); f2fs_put_page(page, 1); index++; start_blk++; nentries = 0; page = NULL; } if (page) goto page_exist; page = grab_meta_page(sbi, start_blk); orphan_blk = (struct f2fs_orphan_block *)page_address(page); memset(orphan_blk, 0, sizeof(*orphan_blk)); page_exist: orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino); } if (!page) goto end; orphan_blk->blk_addr = cpu_to_le16(index); orphan_blk->blk_count = cpu_to_le16(orphan_blocks); orphan_blk->entry_count = cpu_to_le32(nentries); set_page_dirty(page); f2fs_put_page(page, 1); end: mutex_unlock(&sbi->orphan_inode_mutex); } static struct page *validate_checkpoint(struct f2fs_sb_info *sbi, block_t cp_addr, unsigned long long *version) { struct page *cp_page_1, *cp_page_2 = NULL; unsigned long blk_size = sbi->blocksize; struct f2fs_checkpoint *cp_block; unsigned long long cur_version = 0, pre_version = 0; unsigned int crc = 0; size_t crc_offset; /* Read the 1st cp block in this CP pack */ cp_page_1 = get_meta_page(sbi, cp_addr); /* get the version number */ cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1); crc_offset = le32_to_cpu(cp_block->checksum_offset); if (crc_offset >= blk_size) goto invalid_cp1; crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); if (!f2fs_crc_valid(crc, cp_block, crc_offset)) goto invalid_cp1; pre_version = le64_to_cpu(cp_block->checkpoint_ver); /* Read the 2nd cp block in this CP pack */ cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1; cp_page_2 = get_meta_page(sbi, cp_addr); cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2); crc_offset = le32_to_cpu(cp_block->checksum_offset); if (crc_offset >= blk_size) goto invalid_cp2; crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset); if (!f2fs_crc_valid(crc, cp_block, crc_offset)) goto invalid_cp2; cur_version = le64_to_cpu(cp_block->checkpoint_ver); if (cur_version == pre_version) { *version = cur_version; f2fs_put_page(cp_page_2, 1); return cp_page_1; } invalid_cp2: f2fs_put_page(cp_page_2, 1); invalid_cp1: f2fs_put_page(cp_page_1, 1); return NULL; } int get_valid_checkpoint(struct f2fs_sb_info *sbi) { struct f2fs_checkpoint *cp_block; struct f2fs_super_block *fsb = sbi->raw_super; struct page *cp1, *cp2, *cur_page; unsigned long blk_size = sbi->blocksize; unsigned long long cp1_version = 0, cp2_version = 0; unsigned long long cp_start_blk_no; sbi->ckpt = kzalloc(blk_size, GFP_KERNEL); if (!sbi->ckpt) return -ENOMEM; /* * Finding out valid cp block involves read both * sets( cp pack1 and cp pack 2) */ cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr); cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version); /* The second checkpoint pack should start at the next segment */ cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg); cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version); if (cp1 && cp2) { if (ver_after(cp2_version, cp1_version)) cur_page = cp2; else cur_page = cp1; } else if (cp1) { cur_page = cp1; } else if (cp2) { cur_page = cp2; } else { goto fail_no_cp; } cp_block = (struct f2fs_checkpoint *)page_address(cur_page); memcpy(sbi->ckpt, cp_block, blk_size); f2fs_put_page(cp1, 1); f2fs_put_page(cp2, 1); return 0; fail_no_cp: kfree(sbi->ckpt); return -EINVAL; } void set_dirty_dir_page(struct inode *inode, struct page *page) { struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); struct list_head *head = &sbi->dir_inode_list; struct dir_inode_entry *new; struct list_head *this; if (!S_ISDIR(inode->i_mode)) return; retry: new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS); if (!new) { cond_resched(); goto retry; } new->inode = inode; INIT_LIST_HEAD(&new->list); spin_lock(&sbi->dir_inode_lock); list_for_each(this, head) { struct dir_inode_entry *entry; entry = list_entry(this, struct dir_inode_entry, list); if (entry->inode == inode) { kmem_cache_free(inode_entry_slab, new); goto out; } } list_add_tail(&new->list, head); #ifdef CONFIG_F2FS_STAT_FS sbi->n_dirty_dirs++; #endif BUG_ON(!S_ISDIR(inode->i_mode)); out: inc_page_count(sbi, F2FS_DIRTY_DENTS); inode_inc_dirty_dents(inode); SetPagePrivate(page); spin_unlock(&sbi->dir_inode_lock); } void remove_dirty_dir_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); struct list_head *head = &sbi->dir_inode_list; struct list_head *this; if (!S_ISDIR(inode->i_mode)) return; spin_lock(&sbi->dir_inode_lock); if (atomic_read(&F2FS_I(inode)->dirty_dents)) { spin_unlock(&sbi->dir_inode_lock); return; } list_for_each(this, head) { struct dir_inode_entry *entry; entry = list_entry(this, struct dir_inode_entry, list); if (entry->inode == inode) { list_del(&entry->list); kmem_cache_free(inode_entry_slab, entry); #ifdef CONFIG_F2FS_STAT_FS sbi->n_dirty_dirs--; #endif break; } } spin_unlock(&sbi->dir_inode_lock); /* Only from the recovery routine */ if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) { clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT); iput(inode); } } struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino) { struct list_head *head = &sbi->dir_inode_list; struct list_head *this; struct inode *inode = NULL; spin_lock(&sbi->dir_inode_lock); list_for_each(this, head) { struct dir_inode_entry *entry; entry = list_entry(this, struct dir_inode_entry, list); if (entry->inode->i_ino == ino) { inode = entry->inode; break; } } spin_unlock(&sbi->dir_inode_lock); return inode; } void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi) { struct list_head *head = &sbi->dir_inode_list; struct dir_inode_entry *entry; struct inode *inode; retry: spin_lock(&sbi->dir_inode_lock); if (list_empty(head)) { spin_unlock(&sbi->dir_inode_lock); return; } entry = list_entry(head->next, struct dir_inode_entry, list); inode = igrab(entry->inode); spin_unlock(&sbi->dir_inode_lock); if (inode) { filemap_flush(inode->i_mapping); iput(inode); } else { /* * We should submit bio, since it exists several * wribacking dentry pages in the freeing inode. */ f2fs_submit_bio(sbi, DATA, true); } goto retry; } /* * Freeze all the FS-operations for checkpoint. */ static void block_operations(struct f2fs_sb_info *sbi) { struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = LONG_MAX, .for_reclaim = 0, }; struct blk_plug plug; blk_start_plug(&plug); retry_flush_dents: mutex_lock_all(sbi); /* write all the dirty dentry pages */ if (get_pages(sbi, F2FS_DIRTY_DENTS)) { mutex_unlock_all(sbi); sync_dirty_dir_inodes(sbi); goto retry_flush_dents; } /* * POR: we should ensure that there is no dirty node pages * until finishing nat/sit flush. */ retry_flush_nodes: mutex_lock(&sbi->node_write); if (get_pages(sbi, F2FS_DIRTY_NODES)) { mutex_unlock(&sbi->node_write); sync_node_pages(sbi, 0, &wbc); goto retry_flush_nodes; } blk_finish_plug(&plug); } static void unblock_operations(struct f2fs_sb_info *sbi) { mutex_unlock(&sbi->node_write); mutex_unlock_all(sbi); } static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); nid_t last_nid = 0; block_t start_blk; struct page *cp_page; unsigned int data_sum_blocks, orphan_blocks; unsigned int crc32 = 0; void *kaddr; int i; /* Flush all the NAT/SIT pages */ while (get_pages(sbi, F2FS_DIRTY_META)) sync_meta_pages(sbi, META, LONG_MAX); next_free_nid(sbi, &last_nid); /* * modify checkpoint * version number is already updated */ ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi)); ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi)); ckpt->free_segment_count = cpu_to_le32(free_segments(sbi)); for (i = 0; i < 3; i++) { ckpt->cur_node_segno[i] = cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE)); ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE)); ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg_alloc_type(sbi, i + CURSEG_HOT_NODE); } for (i = 0; i < 3; i++) { ckpt->cur_data_segno[i] = cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA)); ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA)); ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg_alloc_type(sbi, i + CURSEG_HOT_DATA); } ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi)); ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi)); ckpt->next_free_nid = cpu_to_le32(last_nid); /* 2 cp + n data seg summary + orphan inode blocks */ data_sum_blocks = npages_for_summary_flush(sbi); if (data_sum_blocks < 3) set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); else clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG); orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1) / F2FS_ORPHANS_PER_BLOCK; ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks); if (is_umount) { set_ckpt_flags(ckpt, CP_UMOUNT_FLAG); ckpt->cp_pack_total_block_count = cpu_to_le32(2 + data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE); } else { clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG); ckpt->cp_pack_total_block_count = cpu_to_le32(2 + data_sum_blocks + orphan_blocks); } if (sbi->n_orphans) set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); else clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG); /* update SIT/NAT bitmap */ get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP)); get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP)); crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset)); *(__le32 *)((unsigned char *)ckpt + le32_to_cpu(ckpt->checksum_offset)) = cpu_to_le32(crc32); start_blk = __start_cp_addr(sbi); /* write out checkpoint buffer at block 0 */ cp_page = grab_meta_page(sbi, start_blk++); kaddr = page_address(cp_page); memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); set_page_dirty(cp_page); f2fs_put_page(cp_page, 1); if (sbi->n_orphans) { write_orphan_inodes(sbi, start_blk); start_blk += orphan_blocks; } write_data_summaries(sbi, start_blk); start_blk += data_sum_blocks; if (is_umount) { write_node_summaries(sbi, start_blk); start_blk += NR_CURSEG_NODE_TYPE; } /* writeout checkpoint block */ cp_page = grab_meta_page(sbi, start_blk); kaddr = page_address(cp_page); memcpy(kaddr, ckpt, (1 << sbi->log_blocksize)); set_page_dirty(cp_page); f2fs_put_page(cp_page, 1); /* wait for previous submitted node/meta pages writeback */ while (get_pages(sbi, F2FS_WRITEBACK)) congestion_wait(BLK_RW_ASYNC, HZ / 50); filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX); filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX); /* update user_block_counts */ sbi->last_valid_block_count = sbi->total_valid_block_count; sbi->alloc_valid_block_count = 0; /* Here, we only have one bio having CP pack */ sync_meta_pages(sbi, META_FLUSH, LONG_MAX); if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) { clear_prefree_segments(sbi); F2FS_RESET_SB_DIRT(sbi); } } /* * We guarantee that this checkpoint procedure should not fail. */ void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); unsigned long long ckpt_ver; trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops"); mutex_lock(&sbi->cp_mutex); block_operations(sbi); trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops"); f2fs_submit_bio(sbi, DATA, true); f2fs_submit_bio(sbi, NODE, true); f2fs_submit_bio(sbi, META, true); /* * update checkpoint pack index * Increase the version number so that * SIT entries and seg summaries are written at correct place */ ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver); ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver); /* write cached NAT/SIT entries to NAT/SIT area */ flush_nat_entries(sbi); flush_sit_entries(sbi); /* unlock all the fs_lock[] in do_checkpoint() */ do_checkpoint(sbi, is_umount); unblock_operations(sbi); mutex_unlock(&sbi->cp_mutex); trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint"); } void init_orphan_info(struct f2fs_sb_info *sbi) { mutex_init(&sbi->orphan_inode_mutex); INIT_LIST_HEAD(&sbi->orphan_inode_list); sbi->n_orphans = 0; } int __init create_checkpoint_caches(void) { orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry", sizeof(struct orphan_inode_entry), NULL); if (unlikely(!orphan_entry_slab)) return -ENOMEM; inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry", sizeof(struct dir_inode_entry), NULL); if (unlikely(!inode_entry_slab)) { kmem_cache_destroy(orphan_entry_slab); return -ENOMEM; } return 0; } void destroy_checkpoint_caches(void) { kmem_cache_destroy(orphan_entry_slab); kmem_cache_destroy(inode_entry_slab); }