/* * RT-Mutexes: simple blocking mutual exclusion locks with PI support * * started by Ingo Molnar and Thomas Gleixner. * * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt * Copyright (C) 2006 Esben Nielsen * * See Documentation/rt-mutex-design.txt for details. */ #include #include #include #include #include "rtmutex_common.h" /* * lock->owner state tracking: * * lock->owner holds the task_struct pointer of the owner. Bit 0 and 1 * are used to keep track of the "owner is pending" and "lock has * waiters" state. * * owner bit1 bit0 * NULL 0 0 lock is free (fast acquire possible) * NULL 0 1 invalid state * NULL 1 0 Transitional State* * NULL 1 1 invalid state * taskpointer 0 0 lock is held (fast release possible) * taskpointer 0 1 task is pending owner * taskpointer 1 0 lock is held and has waiters * taskpointer 1 1 task is pending owner and lock has more waiters * * Pending ownership is assigned to the top (highest priority) * waiter of the lock, when the lock is released. The thread is woken * up and can now take the lock. Until the lock is taken (bit 0 * cleared) a competing higher priority thread can steal the lock * which puts the woken up thread back on the waiters list. * * The fast atomic compare exchange based acquire and release is only * possible when bit 0 and 1 of lock->owner are 0. * * (*) There's a small time where the owner can be NULL and the * "lock has waiters" bit is set. This can happen when grabbing the lock. * To prevent a cmpxchg of the owner releasing the lock, we need to set this * bit before looking at the lock, hence the reason this is a transitional * state. */ static void rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner, unsigned long mask) { unsigned long val = (unsigned long)owner | mask; if (rt_mutex_has_waiters(lock)) val |= RT_MUTEX_HAS_WAITERS; lock->owner = (struct task_struct *)val; } static inline void clear_rt_mutex_waiters(struct rt_mutex *lock) { lock->owner = (struct task_struct *) ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); } static void fixup_rt_mutex_waiters(struct rt_mutex *lock) { if (!rt_mutex_has_waiters(lock)) clear_rt_mutex_waiters(lock); } /* * We can speed up the acquire/release, if the architecture * supports cmpxchg and if there's no debugging state to be set up */ #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES) # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c) static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) { unsigned long owner, *p = (unsigned long *) &lock->owner; do { owner = *p; } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner); } #else # define rt_mutex_cmpxchg(l,c,n) (0) static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) { lock->owner = (struct task_struct *) ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); } #endif /* * Calculate task priority from the waiter list priority * * Return task->normal_prio when the waiter list is empty or when * the waiter is not allowed to do priority boosting */ int rt_mutex_getprio(struct task_struct *task) { if (likely(!task_has_pi_waiters(task))) return task->normal_prio; return min(task_top_pi_waiter(task)->pi_list_entry.prio, task->normal_prio); } /* * Adjust the priority of a task, after its pi_waiters got modified. * * This can be both boosting and unboosting. task->pi_lock must be held. */ static void __rt_mutex_adjust_prio(struct task_struct *task) { int prio = rt_mutex_getprio(task); if (task->prio != prio) rt_mutex_setprio(task, prio); } /* * Adjust task priority (undo boosting). Called from the exit path of * rt_mutex_slowunlock() and rt_mutex_slowlock(). * * (Note: We do this outside of the protection of lock->wait_lock to * allow the lock to be taken while or before we readjust the priority * of task. We do not use the spin_xx_mutex() variants here as we are * outside of the debug path.) */ static void rt_mutex_adjust_prio(struct task_struct *task) { unsigned long flags; raw_spin_lock_irqsave(&task->pi_lock, flags); __rt_mutex_adjust_prio(task); raw_spin_unlock_irqrestore(&task->pi_lock, flags); } /* * Max number of times we'll walk the boosting chain: */ int max_lock_depth = 1024; /* * Adjust the priority chain. Also used for deadlock detection. * Decreases task's usage by one - may thus free the task. * Returns 0 or -EDEADLK. */ static int rt_mutex_adjust_prio_chain(struct task_struct *task, int deadlock_detect, struct rt_mutex *orig_lock, struct rt_mutex_waiter *orig_waiter, struct task_struct *top_task) { struct rt_mutex *lock; struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; int detect_deadlock, ret = 0, depth = 0; unsigned long flags; detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter, deadlock_detect); /* * The (de)boosting is a step by step approach with a lot of * pitfalls. We want this to be preemptible and we want hold a * maximum of two locks per step. So we have to check * carefully whether things change under us. */ again: if (++depth > max_lock_depth) { static int prev_max; /* * Print this only once. If the admin changes the limit, * print a new message when reaching the limit again. */ if (prev_max != max_lock_depth) { prev_max = max_lock_depth; printk(KERN_WARNING "Maximum lock depth %d reached " "task: %s (%d)\n", max_lock_depth, top_task->comm, task_pid_nr(top_task)); } put_task_struct(task); return deadlock_detect ? -EDEADLK : 0; } retry: /* * Task can not go away as we did a get_task() before ! */ raw_spin_lock_irqsave(&task->pi_lock, flags); waiter = task->pi_blocked_on; /* * Check whether the end of the boosting chain has been * reached or the state of the chain has changed while we * dropped the locks. */ if (!waiter || !waiter->task) goto out_unlock_pi; /* * Check the orig_waiter state. After we dropped the locks, * the previous owner of the lock might have released the lock * and made us the pending owner: */ if (orig_waiter && !orig_waiter->task) goto out_unlock_pi; /* * Drop out, when the task has no waiters. Note, * top_waiter can be NULL, when we are in the deboosting * mode! */ if (top_waiter && (!task_has_pi_waiters(task) || top_waiter != task_top_pi_waiter(task))) goto out_unlock_pi; /* * When deadlock detection is off then we check, if further * priority adjustment is necessary. */ if (!detect_deadlock && waiter->list_entry.prio == task->prio) goto out_unlock_pi; lock = waiter->lock; if (!spin_trylock(&lock->wait_lock)) { raw_spin_unlock_irqrestore(&task->pi_lock, flags); cpu_relax(); goto retry; } /* Deadlock detection */ if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock); spin_unlock(&lock->wait_lock); ret = deadlock_detect ? -EDEADLK : 0; goto out_unlock_pi; } top_waiter = rt_mutex_top_waiter(lock); /* Requeue the waiter */ plist_del(&waiter->list_entry, &lock->wait_list); waiter->list_entry.prio = task->prio; plist_add(&waiter->list_entry, &lock->wait_list); /* Release the task */ raw_spin_unlock_irqrestore(&task->pi_lock, flags); put_task_struct(task); /* Grab the next task */ task = rt_mutex_owner(lock); get_task_struct(task); raw_spin_lock_irqsave(&task->pi_lock, flags); if (waiter == rt_mutex_top_waiter(lock)) { /* Boost the owner */ plist_del(&top_waiter->pi_list_entry, &task->pi_waiters); waiter->pi_list_entry.prio = waiter->list_entry.prio; plist_add(&waiter->pi_list_entry, &task->pi_waiters); __rt_mutex_adjust_prio(task); } else if (top_waiter == waiter) { /* Deboost the owner */ plist_del(&waiter->pi_list_entry, &task->pi_waiters); waiter = rt_mutex_top_waiter(lock); waiter->pi_list_entry.prio = waiter->list_entry.prio; plist_add(&waiter->pi_list_entry, &task->pi_waiters); __rt_mutex_adjust_prio(task); } raw_spin_unlock_irqrestore(&task->pi_lock, flags); top_waiter = rt_mutex_top_waiter(lock); spin_unlock(&lock->wait_lock); if (!detect_deadlock && waiter != top_waiter) goto out_put_task; goto again; out_unlock_pi: raw_spin_unlock_irqrestore(&task->pi_lock, flags); out_put_task: put_task_struct(task); return ret; } /* * Optimization: check if we can steal the lock from the * assigned pending owner [which might not have taken the * lock yet]: */ static inline int try_to_steal_lock(struct rt_mutex *lock, struct task_struct *task) { struct task_struct *pendowner = rt_mutex_owner(lock); struct rt_mutex_waiter *next; unsigned long flags; if (!rt_mutex_owner_pending(lock)) return 0; if (pendowner == task) return 1; raw_spin_lock_irqsave(&pendowner->pi_lock, flags); if (task->prio >= pendowner->prio) { raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags); return 0; } /* * Check if a waiter is enqueued on the pending owners * pi_waiters list. Remove it and readjust pending owners * priority. */ if (likely(!rt_mutex_has_waiters(lock))) { raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags); return 1; } /* No chain handling, pending owner is not blocked on anything: */ next = rt_mutex_top_waiter(lock); plist_del(&next->pi_list_entry, &pendowner->pi_waiters); __rt_mutex_adjust_prio(pendowner); raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags); /* * We are going to steal the lock and a waiter was * enqueued on the pending owners pi_waiters queue. So * we have to enqueue this waiter into * task->pi_waiters list. This covers the case, * where task is boosted because it holds another * lock and gets unboosted because the booster is * interrupted, so we would delay a waiter with higher * priority as task->normal_prio. * * Note: in the rare case of a SCHED_OTHER task changing * its priority and thus stealing the lock, next->task * might be task: */ if (likely(next->task != task)) { raw_spin_lock_irqsave(&task->pi_lock, flags); plist_add(&next->pi_list_entry, &task->pi_waiters); __rt_mutex_adjust_prio(task); raw_spin_unlock_irqrestore(&task->pi_lock, flags); } return 1; } /* * Try to take an rt-mutex * * This fails * - when the lock has a real owner * - when a different pending owner exists and has higher priority than current * * Must be called with lock->wait_lock held. */ static int try_to_take_rt_mutex(struct rt_mutex *lock) { /* * We have to be careful here if the atomic speedups are * enabled, such that, when * - no other waiter is on the lock * - the lock has been released since we did the cmpxchg * the lock can be released or taken while we are doing the * checks and marking the lock with RT_MUTEX_HAS_WAITERS. * * The atomic acquire/release aware variant of * mark_rt_mutex_waiters uses a cmpxchg loop. After setting * the WAITERS bit, the atomic release / acquire can not * happen anymore and lock->wait_lock protects us from the * non-atomic case. * * Note, that this might set lock->owner = * RT_MUTEX_HAS_WAITERS in the case the lock is not contended * any more. This is fixed up when we take the ownership. * This is the transitional state explained at the top of this file. */ mark_rt_mutex_waiters(lock); if (rt_mutex_owner(lock) && !try_to_steal_lock(lock, current)) return 0; /* We got the lock. */ debug_rt_mutex_lock(lock); rt_mutex_set_owner(lock, current, 0); rt_mutex_deadlock_account_lock(lock, current); return 1; } /* * Task blocks on lock. * * Prepare waiter and propagate pi chain * * This must be called with lock->wait_lock held. */ static int task_blocks_on_rt_mutex(struct rt_mutex *lock, struct rt_mutex_waiter *waiter, struct task_struct *task, int detect_deadlock) { struct task_struct *owner = rt_mutex_owner(lock); struct rt_mutex_waiter *top_waiter = waiter; unsigned long flags; int chain_walk = 0, res; raw_spin_lock_irqsave(&task->pi_lock, flags); __rt_mutex_adjust_prio(task); waiter->task = task; waiter->lock = lock; plist_node_init(&waiter->list_entry, task->prio); plist_node_init(&waiter->pi_list_entry, task->prio); /* Get the top priority waiter on the lock */ if (rt_mutex_has_waiters(lock)) top_waiter = rt_mutex_top_waiter(lock); plist_add(&waiter->list_entry, &lock->wait_list); task->pi_blocked_on = waiter; raw_spin_unlock_irqrestore(&task->pi_lock, flags); if (waiter == rt_mutex_top_waiter(lock)) { raw_spin_lock_irqsave(&owner->pi_lock, flags); plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters); plist_add(&waiter->pi_list_entry, &owner->pi_waiters); __rt_mutex_adjust_prio(owner); if (owner->pi_blocked_on) chain_walk = 1; raw_spin_unlock_irqrestore(&owner->pi_lock, flags); } else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock)) chain_walk = 1; if (!chain_walk) return 0; /* * The owner can't disappear while holding a lock, * so the owner struct is protected by wait_lock. * Gets dropped in rt_mutex_adjust_prio_chain()! */ get_task_struct(owner); spin_unlock(&lock->wait_lock); res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter, task); spin_lock(&lock->wait_lock); return res; } /* * Wake up the next waiter on the lock. * * Remove the top waiter from the current tasks waiter list and from * the lock waiter list. Set it as pending owner. Then wake it up. * * Called with lock->wait_lock held. */ static void wakeup_next_waiter(struct rt_mutex *lock) { struct rt_mutex_waiter *waiter; struct task_struct *pendowner; unsigned long flags; raw_spin_lock_irqsave(¤t->pi_lock, flags); waiter = rt_mutex_top_waiter(lock); plist_del(&waiter->list_entry, &lock->wait_list); /* * Remove it from current->pi_waiters. We do not adjust a * possible priority boost right now. We execute wakeup in the * boosted mode and go back to normal after releasing * lock->wait_lock. */ plist_del(&waiter->pi_list_entry, ¤t->pi_waiters); pendowner = waiter->task; waiter->task = NULL; rt_mutex_set_owner(lock, pendowner, RT_MUTEX_OWNER_PENDING); raw_spin_unlock_irqrestore(¤t->pi_lock, flags); /* * Clear the pi_blocked_on variable and enqueue a possible * waiter into the pi_waiters list of the pending owner. This * prevents that in case the pending owner gets unboosted a * waiter with higher priority than pending-owner->normal_prio * is blocked on the unboosted (pending) owner. */ raw_spin_lock_irqsave(&pendowner->pi_lock, flags); WARN_ON(!pendowner->pi_blocked_on); WARN_ON(pendowner->pi_blocked_on != waiter); WARN_ON(pendowner->pi_blocked_on->lock != lock); pendowner->pi_blocked_on = NULL; if (rt_mutex_has_waiters(lock)) { struct rt_mutex_waiter *next; next = rt_mutex_top_waiter(lock); plist_add(&next->pi_list_entry, &pendowner->pi_waiters); } raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags); wake_up_process(pendowner); } /* * Remove a waiter from a lock * * Must be called with lock->wait_lock held */ static void remove_waiter(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) { int first = (waiter == rt_mutex_top_waiter(lock)); struct task_struct *owner = rt_mutex_owner(lock); unsigned long flags; int chain_walk = 0; raw_spin_lock_irqsave(¤t->pi_lock, flags); plist_del(&waiter->list_entry, &lock->wait_list); waiter->task = NULL; current->pi_blocked_on = NULL; raw_spin_unlock_irqrestore(¤t->pi_lock, flags); if (first && owner != current) { raw_spin_lock_irqsave(&owner->pi_lock, flags); plist_del(&waiter->pi_list_entry, &owner->pi_waiters); if (rt_mutex_has_waiters(lock)) { struct rt_mutex_waiter *next; next = rt_mutex_top_waiter(lock); plist_add(&next->pi_list_entry, &owner->pi_waiters); } __rt_mutex_adjust_prio(owner); if (owner->pi_blocked_on) chain_walk = 1; raw_spin_unlock_irqrestore(&owner->pi_lock, flags); } WARN_ON(!plist_node_empty(&waiter->pi_list_entry)); if (!chain_walk) return; /* gets dropped in rt_mutex_adjust_prio_chain()! */ get_task_struct(owner); spin_unlock(&lock->wait_lock); rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current); spin_lock(&lock->wait_lock); } /* * Recheck the pi chain, in case we got a priority setting * * Called from sched_setscheduler */ void rt_mutex_adjust_pi(struct task_struct *task) { struct rt_mutex_waiter *waiter; unsigned long flags; raw_spin_lock_irqsave(&task->pi_lock, flags); waiter = task->pi_blocked_on; if (!waiter || waiter->list_entry.prio == task->prio) { raw_spin_unlock_irqrestore(&task->pi_lock, flags); return; } raw_spin_unlock_irqrestore(&task->pi_lock, flags); /* gets dropped in rt_mutex_adjust_prio_chain()! */ get_task_struct(task); rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task); } /** * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop * @lock: the rt_mutex to take * @state: the state the task should block in (TASK_INTERRUPTIBLE * or TASK_UNINTERRUPTIBLE) * @timeout: the pre-initialized and started timer, or NULL for none * @waiter: the pre-initialized rt_mutex_waiter * @detect_deadlock: passed to task_blocks_on_rt_mutex * * lock->wait_lock must be held by the caller. */ static int __sched __rt_mutex_slowlock(struct rt_mutex *lock, int state, struct hrtimer_sleeper *timeout, struct rt_mutex_waiter *waiter, int detect_deadlock) { int ret = 0; for (;;) { /* Try to acquire the lock: */ if (try_to_take_rt_mutex(lock)) break; /* * TASK_INTERRUPTIBLE checks for signals and * timeout. Ignored otherwise. */ if (unlikely(state == TASK_INTERRUPTIBLE)) { /* Signal pending? */ if (signal_pending(current)) ret = -EINTR; if (timeout && !timeout->task) ret = -ETIMEDOUT; if (ret) break; } /* * waiter->task is NULL the first time we come here and * when we have been woken up by the previous owner * but the lock got stolen by a higher prio task. */ if (!waiter->task) { ret = task_blocks_on_rt_mutex(lock, waiter, current, detect_deadlock); /* * If we got woken up by the owner then start loop * all over without going into schedule to try * to get the lock now: */ if (unlikely(!waiter->task)) { /* * Reset the return value. We might * have returned with -EDEADLK and the * owner released the lock while we * were walking the pi chain. */ ret = 0; continue; } if (unlikely(ret)) break; } spin_unlock(&lock->wait_lock); debug_rt_mutex_print_deadlock(waiter); if (waiter->task) schedule_rt_mutex(lock); spin_lock(&lock->wait_lock); set_current_state(state); } return ret; } /* * Slow path lock function: */ static int __sched rt_mutex_slowlock(struct rt_mutex *lock, int state, struct hrtimer_sleeper *timeout, int detect_deadlock) { struct rt_mutex_waiter waiter; int ret = 0; debug_rt_mutex_init_waiter(&waiter); waiter.task = NULL; spin_lock(&lock->wait_lock); /* Try to acquire the lock again: */ if (try_to_take_rt_mutex(lock)) { spin_unlock(&lock->wait_lock); return 0; } set_current_state(state); /* Setup the timer, when timeout != NULL */ if (unlikely(timeout)) { hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); if (!hrtimer_active(&timeout->timer)) timeout->task = NULL; } ret = __rt_mutex_slowlock(lock, state, timeout, &waiter, detect_deadlock); set_current_state(TASK_RUNNING); if (unlikely(waiter.task)) remove_waiter(lock, &waiter); /* * try_to_take_rt_mutex() sets the waiter bit * unconditionally. We might have to fix that up. */ fixup_rt_mutex_waiters(lock); spin_unlock(&lock->wait_lock); /* Remove pending timer: */ if (unlikely(timeout)) hrtimer_cancel(&timeout->timer); /* * Readjust priority, when we did not get the lock. We might * have been the pending owner and boosted. Since we did not * take the lock, the PI boost has to go. */ if (unlikely(ret)) rt_mutex_adjust_prio(current); debug_rt_mutex_free_waiter(&waiter); return ret; } /* * Slow path try-lock function: */ static inline int rt_mutex_slowtrylock(struct rt_mutex *lock) { int ret = 0; spin_lock(&lock->wait_lock); if (likely(rt_mutex_owner(lock) != current)) { ret = try_to_take_rt_mutex(lock); /* * try_to_take_rt_mutex() sets the lock waiters * bit unconditionally. Clean this up. */ fixup_rt_mutex_waiters(lock); } spin_unlock(&lock->wait_lock); return ret; } /* * Slow path to release a rt-mutex: */ static void __sched rt_mutex_slowunlock(struct rt_mutex *lock) { spin_lock(&lock->wait_lock); debug_rt_mutex_unlock(lock); rt_mutex_deadlock_account_unlock(current); if (!rt_mutex_has_waiters(lock)) { lock->owner = NULL; spin_unlock(&lock->wait_lock); return; } wakeup_next_waiter(lock); spin_unlock(&lock->wait_lock); /* Undo pi boosting if necessary: */ rt_mutex_adjust_prio(current); } /* * debug aware fast / slowpath lock,trylock,unlock * * The atomic acquire/release ops are compiled away, when either the * architecture does not support cmpxchg or when debugging is enabled. */ static inline int rt_mutex_fastlock(struct rt_mutex *lock, int state, int detect_deadlock, int (*slowfn)(struct rt_mutex *lock, int state, struct hrtimer_sleeper *timeout, int detect_deadlock)) { if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) { rt_mutex_deadlock_account_lock(lock, current); return 0; } else return slowfn(lock, state, NULL, detect_deadlock); } static inline int rt_mutex_timed_fastlock(struct rt_mutex *lock, int state, struct hrtimer_sleeper *timeout, int detect_deadlock, int (*slowfn)(struct rt_mutex *lock, int state, struct hrtimer_sleeper *timeout, int detect_deadlock)) { if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) { rt_mutex_deadlock_account_lock(lock, current); return 0; } else return slowfn(lock, state, timeout, detect_deadlock); } static inline int rt_mutex_fasttrylock(struct rt_mutex *lock, int (*slowfn)(struct rt_mutex *lock)) { if (likely(rt_mutex_cmpxchg(lock, NULL, current))) { rt_mutex_deadlock_account_lock(lock, current); return 1; } return slowfn(lock); } static inline void rt_mutex_fastunlock(struct rt_mutex *lock, void (*slowfn)(struct rt_mutex *lock)) { if (likely(rt_mutex_cmpxchg(lock, current, NULL))) rt_mutex_deadlock_account_unlock(current); else slowfn(lock); } /** * rt_mutex_lock - lock a rt_mutex * * @lock: the rt_mutex to be locked */ void __sched rt_mutex_lock(struct rt_mutex *lock) { might_sleep(); rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock); } EXPORT_SYMBOL_GPL(rt_mutex_lock); /** * rt_mutex_lock_interruptible - lock a rt_mutex interruptible * * @lock: the rt_mutex to be locked * @detect_deadlock: deadlock detection on/off * * Returns: * 0 on success * -EINTR when interrupted by a signal * -EDEADLK when the lock would deadlock (when deadlock detection is on) */ int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock, int detect_deadlock) { might_sleep(); return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, detect_deadlock, rt_mutex_slowlock); } EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); /** * rt_mutex_timed_lock - lock a rt_mutex interruptible * the timeout structure is provided * by the caller * * @lock: the rt_mutex to be locked * @timeout: timeout structure or NULL (no timeout) * @detect_deadlock: deadlock detection on/off * * Returns: * 0 on success * -EINTR when interrupted by a signal * -ETIMEDOUT when the timeout expired * -EDEADLK when the lock would deadlock (when deadlock detection is on) */ int rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout, int detect_deadlock) { might_sleep(); return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, detect_deadlock, rt_mutex_slowlock); } EXPORT_SYMBOL_GPL(rt_mutex_timed_lock); /** * rt_mutex_trylock - try to lock a rt_mutex * * @lock: the rt_mutex to be locked * * Returns 1 on success and 0 on contention */ int __sched rt_mutex_trylock(struct rt_mutex *lock) { return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock); } EXPORT_SYMBOL_GPL(rt_mutex_trylock); /** * rt_mutex_unlock - unlock a rt_mutex * * @lock: the rt_mutex to be unlocked */ void __sched rt_mutex_unlock(struct rt_mutex *lock) { rt_mutex_fastunlock(lock, rt_mutex_slowunlock); } EXPORT_SYMBOL_GPL(rt_mutex_unlock); /** * rt_mutex_destroy - mark a mutex unusable * @lock: the mutex to be destroyed * * This function marks the mutex uninitialized, and any subsequent * use of the mutex is forbidden. The mutex must not be locked when * this function is called. */ void rt_mutex_destroy(struct rt_mutex *lock) { WARN_ON(rt_mutex_is_locked(lock)); #ifdef CONFIG_DEBUG_RT_MUTEXES lock->magic = NULL; #endif } EXPORT_SYMBOL_GPL(rt_mutex_destroy); /** * __rt_mutex_init - initialize the rt lock * * @lock: the rt lock to be initialized * * Initialize the rt lock to unlocked state. * * Initializing of a locked rt lock is not allowed */ void __rt_mutex_init(struct rt_mutex *lock, const char *name) { lock->owner = NULL; spin_lock_init(&lock->wait_lock); plist_head_init(&lock->wait_list, &lock->wait_lock); debug_rt_mutex_init(lock, name); } EXPORT_SYMBOL_GPL(__rt_mutex_init); /** * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a * proxy owner * * @lock: the rt_mutex to be locked * @proxy_owner:the task to set as owner * * No locking. Caller has to do serializing itself * Special API call for PI-futex support */ void rt_mutex_init_proxy_locked(struct rt_mutex *lock, struct task_struct *proxy_owner) { __rt_mutex_init(lock, NULL); debug_rt_mutex_proxy_lock(lock, proxy_owner); rt_mutex_set_owner(lock, proxy_owner, 0); rt_mutex_deadlock_account_lock(lock, proxy_owner); } /** * rt_mutex_proxy_unlock - release a lock on behalf of owner * * @lock: the rt_mutex to be locked * * No locking. Caller has to do serializing itself * Special API call for PI-futex support */ void rt_mutex_proxy_unlock(struct rt_mutex *lock, struct task_struct *proxy_owner) { debug_rt_mutex_proxy_unlock(lock); rt_mutex_set_owner(lock, NULL, 0); rt_mutex_deadlock_account_unlock(proxy_owner); } /** * rt_mutex_start_proxy_lock() - Start lock acquisition for another task * @lock: the rt_mutex to take * @waiter: the pre-initialized rt_mutex_waiter * @task: the task to prepare * @detect_deadlock: perform deadlock detection (1) or not (0) * * Returns: * 0 - task blocked on lock * 1 - acquired the lock for task, caller should wake it up * <0 - error * * Special API call for FUTEX_REQUEUE_PI support. */ int rt_mutex_start_proxy_lock(struct rt_mutex *lock, struct rt_mutex_waiter *waiter, struct task_struct *task, int detect_deadlock) { int ret; spin_lock(&lock->wait_lock); mark_rt_mutex_waiters(lock); if (!rt_mutex_owner(lock) || try_to_steal_lock(lock, task)) { /* We got the lock for task. */ debug_rt_mutex_lock(lock); rt_mutex_set_owner(lock, task, 0); spin_unlock(&lock->wait_lock); rt_mutex_deadlock_account_lock(lock, task); return 1; } ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock); if (ret && !waiter->task) { /* * Reset the return value. We might have * returned with -EDEADLK and the owner * released the lock while we were walking the * pi chain. Let the waiter sort it out. */ ret = 0; } spin_unlock(&lock->wait_lock); debug_rt_mutex_print_deadlock(waiter); return ret; } /** * rt_mutex_next_owner - return the next owner of the lock * * @lock: the rt lock query * * Returns the next owner of the lock or NULL * * Caller has to serialize against other accessors to the lock * itself. * * Special API call for PI-futex support */ struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock) { if (!rt_mutex_has_waiters(lock)) return NULL; return rt_mutex_top_waiter(lock)->task; } /** * rt_mutex_finish_proxy_lock() - Complete lock acquisition * @lock: the rt_mutex we were woken on * @to: the timeout, null if none. hrtimer should already have * been started. * @waiter: the pre-initialized rt_mutex_waiter * @detect_deadlock: perform deadlock detection (1) or not (0) * * Complete the lock acquisition started our behalf by another thread. * * Returns: * 0 - success * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK * * Special API call for PI-futex requeue support */ int rt_mutex_finish_proxy_lock(struct rt_mutex *lock, struct hrtimer_sleeper *to, struct rt_mutex_waiter *waiter, int detect_deadlock) { int ret; spin_lock(&lock->wait_lock); set_current_state(TASK_INTERRUPTIBLE); ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter, detect_deadlock); set_current_state(TASK_RUNNING); if (unlikely(waiter->task)) remove_waiter(lock, waiter); /* * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might * have to fix that up. */ fixup_rt_mutex_waiters(lock); spin_unlock(&lock->wait_lock); /* * Readjust priority, when we did not get the lock. We might have been * the pending owner and boosted. Since we did not take the lock, the * PI boost has to go. */ if (unlikely(ret)) rt_mutex_adjust_prio(current); return ret; }