/* * Copyright (C) 2012-2015 Panasonic Corporation * Copyright (C) 2015-2017 Socionext Inc. * Author: Masahiro Yamada * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include "sg-regs.h" #include "soc-info.h" #define pr_warn(fmt, args...) printf(fmt, ##args) #define pr_err(fmt, args...) printf(fmt, ##args) DECLARE_GLOBAL_DATA_PTR; struct uniphier_memif_data { unsigned int soc_id; unsigned long sparse_ch1_base; int have_ch2; }; static const struct uniphier_memif_data uniphier_memif_data[] = { { .soc_id = UNIPHIER_SLD3_ID, .sparse_ch1_base = 0xc0000000, /* * In fact, SLD3 has DRAM ch2, but the memory regions for ch1 * and ch2 overlap, and host cannot get access to them at the * same time. Hide the ch2 from U-Boot. */ }, { .soc_id = UNIPHIER_LD4_ID, .sparse_ch1_base = 0xc0000000, }, { .soc_id = UNIPHIER_PRO4_ID, .sparse_ch1_base = 0xa0000000, }, { .soc_id = UNIPHIER_SLD8_ID, .sparse_ch1_base = 0xc0000000, }, { .soc_id = UNIPHIER_PRO5_ID, .sparse_ch1_base = 0xc0000000, }, { .soc_id = UNIPHIER_PXS2_ID, .sparse_ch1_base = 0xc0000000, .have_ch2 = 1, }, { .soc_id = UNIPHIER_LD6B_ID, .sparse_ch1_base = 0xc0000000, .have_ch2 = 1, }, { .soc_id = UNIPHIER_LD11_ID, .sparse_ch1_base = 0xc0000000, }, { .soc_id = UNIPHIER_LD20_ID, .sparse_ch1_base = 0xc0000000, .have_ch2 = 1, }, { .soc_id = UNIPHIER_PXS3_ID, .sparse_ch1_base = 0xc0000000, .have_ch2 = 1, }, }; UNIPHIER_DEFINE_SOCDATA_FUNC(uniphier_get_memif_data, uniphier_memif_data) struct uniphier_dram_map { unsigned long base; unsigned long size; }; static int uniphier_memconf_decode(struct uniphier_dram_map *dram_map) { const struct uniphier_memif_data *data; unsigned long size; u32 val; data = uniphier_get_memif_data(); if (!data) { pr_err("unsupported SoC\n"); return -EINVAL; } val = readl(SG_MEMCONF); /* set up ch0 */ dram_map[0].base = CONFIG_SYS_SDRAM_BASE; switch (val & SG_MEMCONF_CH0_SZ_MASK) { case SG_MEMCONF_CH0_SZ_64M: size = SZ_64M; break; case SG_MEMCONF_CH0_SZ_128M: size = SZ_128M; break; case SG_MEMCONF_CH0_SZ_256M: size = SZ_256M; break; case SG_MEMCONF_CH0_SZ_512M: size = SZ_512M; break; case SG_MEMCONF_CH0_SZ_1G: size = SZ_1G; break; default: pr_err("error: invalid value is set to MEMCONF ch0 size\n"); return -EINVAL; } if ((val & SG_MEMCONF_CH0_NUM_MASK) == SG_MEMCONF_CH0_NUM_2) size *= 2; dram_map[0].size = size; /* set up ch1 */ dram_map[1].base = dram_map[0].base + size; if (val & SG_MEMCONF_SPARSEMEM) { if (dram_map[1].base > data->sparse_ch1_base) { pr_warn("Sparse mem is enabled, but ch0 and ch1 overlap\n"); pr_warn("Only ch0 is available\n"); dram_map[1].base = 0; return 0; } dram_map[1].base = data->sparse_ch1_base; } switch (val & SG_MEMCONF_CH1_SZ_MASK) { case SG_MEMCONF_CH1_SZ_64M: size = SZ_64M; break; case SG_MEMCONF_CH1_SZ_128M: size = SZ_128M; break; case SG_MEMCONF_CH1_SZ_256M: size = SZ_256M; break; case SG_MEMCONF_CH1_SZ_512M: size = SZ_512M; break; case SG_MEMCONF_CH1_SZ_1G: size = SZ_1G; break; default: pr_err("error: invalid value is set to MEMCONF ch1 size\n"); return -EINVAL; } if ((val & SG_MEMCONF_CH1_NUM_MASK) == SG_MEMCONF_CH1_NUM_2) size *= 2; dram_map[1].size = size; if (!data->have_ch2 || val & SG_MEMCONF_CH2_DISABLE) return 0; /* set up ch2 */ dram_map[2].base = dram_map[1].base + size; switch (val & SG_MEMCONF_CH2_SZ_MASK) { case SG_MEMCONF_CH2_SZ_64M: size = SZ_64M; break; case SG_MEMCONF_CH2_SZ_128M: size = SZ_128M; break; case SG_MEMCONF_CH2_SZ_256M: size = SZ_256M; break; case SG_MEMCONF_CH2_SZ_512M: size = SZ_512M; break; case SG_MEMCONF_CH2_SZ_1G: size = SZ_1G; break; default: pr_err("error: invalid value is set to MEMCONF ch2 size\n"); return -EINVAL; } if ((val & SG_MEMCONF_CH2_NUM_MASK) == SG_MEMCONF_CH2_NUM_2) size *= 2; dram_map[2].size = size; return 0; } int dram_init(void) { struct uniphier_dram_map dram_map[3] = {}; int ret, i; gd->ram_size = 0; ret = uniphier_memconf_decode(dram_map); if (ret) return ret; for (i = 0; i < ARRAY_SIZE(dram_map); i++) { if (!dram_map[i].size) break; /* * U-Boot relocates itself to the tail of the memory region, * but it does not expect sparse memory. We use the first * contiguous chunk here. */ if (i > 0 && dram_map[i - 1].base + dram_map[i - 1].size < dram_map[i].base) break; gd->ram_size += dram_map[i].size; } return 0; } int dram_init_banksize(void) { struct uniphier_dram_map dram_map[3] = {}; int i; uniphier_memconf_decode(dram_map); for (i = 0; i < ARRAY_SIZE(dram_map); i++) { if (i >= ARRAY_SIZE(gd->bd->bi_dram)) break; gd->bd->bi_dram[i].start = dram_map[i].base; gd->bd->bi_dram[i].size = dram_map[i].size; } return 0; } #ifdef CONFIG_OF_BOARD_SETUP /* * The DRAM PHY requires 64 byte scratch area in each DRAM channel * for its dynamic PHY training feature. */ int ft_board_setup(void *fdt, bd_t *bd) { unsigned long rsv_addr; const unsigned long rsv_size = 64; int i, ret; if (uniphier_get_soc_id() != UNIPHIER_LD20_ID) return 0; for (i = 0; i < ARRAY_SIZE(gd->bd->bi_dram); i++) { if (!gd->bd->bi_dram[i].size) continue; rsv_addr = gd->bd->bi_dram[i].start + gd->bd->bi_dram[i].size; rsv_addr -= rsv_size; ret = fdt_add_mem_rsv(fdt, rsv_addr, rsv_size); if (ret) return -ENOSPC; printf(" Reserved memory region for DRAM PHY training: addr=%lx size=%lx\n", rsv_addr, rsv_size); } return 0; } #endif