/* * Copyright (c) 2011-12 The Chromium OS Authors. * * SPDX-License-Identifier: GPL-2.0+ * * This file is derived from the flashrom project. */ #include #include #include #include #include #include #include #include #include "ich.h" #define SPI_OPCODE_WREN 0x06 #define SPI_OPCODE_FAST_READ 0x0b struct ich_spi_platdata { pci_dev_t dev; /* PCI device number */ int ich_version; /* Controller version, 7 or 9 */ bool use_sbase; /* Use SBASE instead of RCB */ }; struct ich_spi_priv { int ichspi_lock; int locked; int opmenu; int menubytes; void *base; /* Base of register set */ int preop; int optype; int addr; int data; unsigned databytes; int status; int control; int bbar; int bcr; uint32_t *pr; /* only for ich9 */ int speed; /* pointer to speed control */ ulong max_speed; /* Maximum bus speed in MHz */ ulong cur_speed; /* Current bus speed */ struct spi_trans trans; /* current transaction in progress */ }; static u8 ich_readb(struct ich_spi_priv *priv, int reg) { u8 value = readb(priv->base + reg); debug("read %2.2x from %4.4x\n", value, reg); return value; } static u16 ich_readw(struct ich_spi_priv *priv, int reg) { u16 value = readw(priv->base + reg); debug("read %4.4x from %4.4x\n", value, reg); return value; } static u32 ich_readl(struct ich_spi_priv *priv, int reg) { u32 value = readl(priv->base + reg); debug("read %8.8x from %4.4x\n", value, reg); return value; } static void ich_writeb(struct ich_spi_priv *priv, u8 value, int reg) { writeb(value, priv->base + reg); debug("wrote %2.2x to %4.4x\n", value, reg); } static void ich_writew(struct ich_spi_priv *priv, u16 value, int reg) { writew(value, priv->base + reg); debug("wrote %4.4x to %4.4x\n", value, reg); } static void ich_writel(struct ich_spi_priv *priv, u32 value, int reg) { writel(value, priv->base + reg); debug("wrote %8.8x to %4.4x\n", value, reg); } static void write_reg(struct ich_spi_priv *priv, const void *value, int dest_reg, uint32_t size) { memcpy_toio(priv->base + dest_reg, value, size); } static void read_reg(struct ich_spi_priv *priv, int src_reg, void *value, uint32_t size) { memcpy_fromio(value, priv->base + src_reg, size); } static void ich_set_bbar(struct ich_spi_priv *ctlr, uint32_t minaddr) { const uint32_t bbar_mask = 0x00ffff00; uint32_t ichspi_bbar; minaddr &= bbar_mask; ichspi_bbar = ich_readl(ctlr, ctlr->bbar) & ~bbar_mask; ichspi_bbar |= minaddr; ich_writel(ctlr, ichspi_bbar, ctlr->bbar); } /* * Check if this device ID matches one of supported Intel PCH devices. * * Return the ICH version if there is a match, or zero otherwise. */ static int get_ich_version(uint16_t device_id) { if (device_id == PCI_DEVICE_ID_INTEL_TGP_LPC || device_id == PCI_DEVICE_ID_INTEL_ITC_LPC || device_id == PCI_DEVICE_ID_INTEL_QRK_ILB) return 7; if ((device_id >= PCI_DEVICE_ID_INTEL_COUGARPOINT_LPC_MIN && device_id <= PCI_DEVICE_ID_INTEL_COUGARPOINT_LPC_MAX) || (device_id >= PCI_DEVICE_ID_INTEL_PANTHERPOINT_LPC_MIN && device_id <= PCI_DEVICE_ID_INTEL_PANTHERPOINT_LPC_MAX) || device_id == PCI_DEVICE_ID_INTEL_VALLEYVIEW_LPC || device_id == PCI_DEVICE_ID_INTEL_LYNXPOINT_LPC || device_id == PCI_DEVICE_ID_INTEL_WILDCATPOINT_LPC) return 9; return 0; } /* @return 1 if the SPI flash supports the 33MHz speed */ static int ich9_can_do_33mhz(pci_dev_t dev) { u32 fdod, speed; /* Observe SPI Descriptor Component Section 0 */ pci_write_config_dword(dev, 0xb0, 0x1000); /* Extract the Write/Erase SPI Frequency from descriptor */ pci_read_config_dword(dev, 0xb4, &fdod); /* Bits 23:21 have the fast read clock frequency, 0=20MHz, 1=33MHz */ speed = (fdod >> 21) & 7; return speed == 1; } static int ich_find_spi_controller(struct ich_spi_platdata *ich) { int last_bus = pci_last_busno(); int bus; if (last_bus == -1) { debug("No PCI busses?\n"); return -ENODEV; } for (bus = 0; bus <= last_bus; bus++) { uint16_t vendor_id, device_id; uint32_t ids; pci_dev_t dev; dev = PCI_BDF(bus, 31, 0); pci_read_config_dword(dev, 0, &ids); vendor_id = ids; device_id = ids >> 16; if (vendor_id == PCI_VENDOR_ID_INTEL) { ich->dev = dev; ich->ich_version = get_ich_version(device_id); if (device_id == PCI_DEVICE_ID_INTEL_VALLEYVIEW_LPC) ich->use_sbase = true; return ich->ich_version == 0 ? -ENODEV : 0; } } debug("ICH SPI: No ICH found.\n"); return -ENODEV; } static int ich_init_controller(struct ich_spi_platdata *plat, struct ich_spi_priv *ctlr) { uint8_t *rcrb; /* Root Complex Register Block */ uint32_t rcba; /* Root Complex Base Address */ uint32_t sbase_addr; uint8_t *sbase; pci_read_config_dword(plat->dev, 0xf0, &rcba); /* Bits 31-14 are the base address, 13-1 are reserved, 0 is enable. */ rcrb = (uint8_t *)(rcba & 0xffffc000); /* SBASE is similar */ pci_read_config_dword(plat->dev, 0x54, &sbase_addr); sbase = (uint8_t *)(sbase_addr & 0xfffffe00); if (plat->ich_version == 7) { struct ich7_spi_regs *ich7_spi; ich7_spi = (struct ich7_spi_regs *)(rcrb + 0x3020); ctlr->ichspi_lock = readw(&ich7_spi->spis) & SPIS_LOCK; ctlr->opmenu = offsetof(struct ich7_spi_regs, opmenu); ctlr->menubytes = sizeof(ich7_spi->opmenu); ctlr->optype = offsetof(struct ich7_spi_regs, optype); ctlr->addr = offsetof(struct ich7_spi_regs, spia); ctlr->data = offsetof(struct ich7_spi_regs, spid); ctlr->databytes = sizeof(ich7_spi->spid); ctlr->status = offsetof(struct ich7_spi_regs, spis); ctlr->control = offsetof(struct ich7_spi_regs, spic); ctlr->bbar = offsetof(struct ich7_spi_regs, bbar); ctlr->preop = offsetof(struct ich7_spi_regs, preop); ctlr->base = ich7_spi; } else if (plat->ich_version == 9) { struct ich9_spi_regs *ich9_spi; if (plat->use_sbase) ich9_spi = (struct ich9_spi_regs *)sbase; else ich9_spi = (struct ich9_spi_regs *)(rcrb + 0x3800); ctlr->ichspi_lock = readw(&ich9_spi->hsfs) & HSFS_FLOCKDN; ctlr->opmenu = offsetof(struct ich9_spi_regs, opmenu); ctlr->menubytes = sizeof(ich9_spi->opmenu); ctlr->optype = offsetof(struct ich9_spi_regs, optype); ctlr->addr = offsetof(struct ich9_spi_regs, faddr); ctlr->data = offsetof(struct ich9_spi_regs, fdata); ctlr->databytes = sizeof(ich9_spi->fdata); ctlr->status = offsetof(struct ich9_spi_regs, ssfs); ctlr->control = offsetof(struct ich9_spi_regs, ssfc); ctlr->speed = ctlr->control + 2; ctlr->bbar = offsetof(struct ich9_spi_regs, bbar); ctlr->preop = offsetof(struct ich9_spi_regs, preop); ctlr->bcr = offsetof(struct ich9_spi_regs, bcr); ctlr->pr = &ich9_spi->pr[0]; ctlr->base = ich9_spi; } else { debug("ICH SPI: Unrecognised ICH version %d\n", plat->ich_version); return -EINVAL; } /* Work out the maximum speed we can support */ ctlr->max_speed = 20000000; if (plat->ich_version == 9 && ich9_can_do_33mhz(plat->dev)) ctlr->max_speed = 33000000; debug("ICH SPI: Version %d detected at %p, speed %ld\n", plat->ich_version, ctlr->base, ctlr->max_speed); ich_set_bbar(ctlr, 0); return 0; } static inline void spi_use_out(struct spi_trans *trans, unsigned bytes) { trans->out += bytes; trans->bytesout -= bytes; } static inline void spi_use_in(struct spi_trans *trans, unsigned bytes) { trans->in += bytes; trans->bytesin -= bytes; } static void spi_setup_type(struct spi_trans *trans, int data_bytes) { trans->type = 0xFF; /* Try to guess spi type from read/write sizes. */ if (trans->bytesin == 0) { if (trans->bytesout + data_bytes > 4) /* * If bytesin = 0 and bytesout > 4, we presume this is * a write data operation, which is accompanied by an * address. */ trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS; else trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS; return; } if (trans->bytesout == 1) { /* and bytesin is > 0 */ trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS; return; } if (trans->bytesout == 4) /* and bytesin is > 0 */ trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS; /* Fast read command is called with 5 bytes instead of 4 */ if (trans->out[0] == SPI_OPCODE_FAST_READ && trans->bytesout == 5) { trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS; --trans->bytesout; } } static int spi_setup_opcode(struct ich_spi_priv *ctlr, struct spi_trans *trans) { uint16_t optypes; uint8_t opmenu[ctlr->menubytes]; trans->opcode = trans->out[0]; spi_use_out(trans, 1); if (!ctlr->ichspi_lock) { /* The lock is off, so just use index 0. */ ich_writeb(ctlr, trans->opcode, ctlr->opmenu); optypes = ich_readw(ctlr, ctlr->optype); optypes = (optypes & 0xfffc) | (trans->type & 0x3); ich_writew(ctlr, optypes, ctlr->optype); return 0; } else { /* The lock is on. See if what we need is on the menu. */ uint8_t optype; uint16_t opcode_index; /* Write Enable is handled as atomic prefix */ if (trans->opcode == SPI_OPCODE_WREN) return 0; read_reg(ctlr, ctlr->opmenu, opmenu, sizeof(opmenu)); for (opcode_index = 0; opcode_index < ctlr->menubytes; opcode_index++) { if (opmenu[opcode_index] == trans->opcode) break; } if (opcode_index == ctlr->menubytes) { printf("ICH SPI: Opcode %x not found\n", trans->opcode); return -EINVAL; } optypes = ich_readw(ctlr, ctlr->optype); optype = (optypes >> (opcode_index * 2)) & 0x3; if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS && optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS && trans->bytesout >= 3) { /* We guessed wrong earlier. Fix it up. */ trans->type = optype; } if (optype != trans->type) { printf("ICH SPI: Transaction doesn't fit type %d\n", optype); return -ENOSPC; } return opcode_index; } } static int spi_setup_offset(struct spi_trans *trans) { /* Separate the SPI address and data. */ switch (trans->type) { case SPI_OPCODE_TYPE_READ_NO_ADDRESS: case SPI_OPCODE_TYPE_WRITE_NO_ADDRESS: return 0; case SPI_OPCODE_TYPE_READ_WITH_ADDRESS: case SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS: trans->offset = ((uint32_t)trans->out[0] << 16) | ((uint32_t)trans->out[1] << 8) | ((uint32_t)trans->out[2] << 0); spi_use_out(trans, 3); return 1; default: printf("Unrecognized SPI transaction type %#x\n", trans->type); return -EPROTO; } } /* * Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set * below is true) or 0. In case the wait was for the bit(s) to set - write * those bits back, which would cause resetting them. * * Return the last read status value on success or -1 on failure. */ static int ich_status_poll(struct ich_spi_priv *ctlr, u16 bitmask, int wait_til_set) { int timeout = 600000; /* This will result in 6s */ u16 status = 0; while (timeout--) { status = ich_readw(ctlr, ctlr->status); if (wait_til_set ^ ((status & bitmask) == 0)) { if (wait_til_set) { ich_writew(ctlr, status & bitmask, ctlr->status); } return status; } udelay(10); } printf("ICH SPI: SCIP timeout, read %x, expected %x\n", status, bitmask); return -ETIMEDOUT; } static int ich_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev_get_parent(dev); struct ich_spi_platdata *plat = dev_get_platdata(bus); struct ich_spi_priv *ctlr = dev_get_priv(bus); uint16_t control; int16_t opcode_index; int with_address; int status; int bytes = bitlen / 8; struct spi_trans *trans = &ctlr->trans; unsigned type = flags & (SPI_XFER_BEGIN | SPI_XFER_END); int using_cmd = 0; int ret; /* We don't support writing partial bytes */ if (bitlen % 8) { debug("ICH SPI: Accessing partial bytes not supported\n"); return -EPROTONOSUPPORT; } /* An empty end transaction can be ignored */ if (type == SPI_XFER_END && !dout && !din) return 0; if (type & SPI_XFER_BEGIN) memset(trans, '\0', sizeof(*trans)); /* Dp we need to come back later to finish it? */ if (dout && type == SPI_XFER_BEGIN) { if (bytes > ICH_MAX_CMD_LEN) { debug("ICH SPI: Command length limit exceeded\n"); return -ENOSPC; } memcpy(trans->cmd, dout, bytes); trans->cmd_len = bytes; debug("ICH SPI: Saved %d bytes\n", bytes); return 0; } /* * We process a 'middle' spi_xfer() call, which has no * SPI_XFER_BEGIN/END, as an independent transaction as if it had * an end. We therefore repeat the command. This is because ICH * seems to have no support for this, or because interest (in digging * out the details and creating a special case in the code) is low. */ if (trans->cmd_len) { trans->out = trans->cmd; trans->bytesout = trans->cmd_len; using_cmd = 1; debug("ICH SPI: Using %d bytes\n", trans->cmd_len); } else { trans->out = dout; trans->bytesout = dout ? bytes : 0; } trans->in = din; trans->bytesin = din ? bytes : 0; /* There has to always at least be an opcode. */ if (!trans->bytesout) { debug("ICH SPI: No opcode for transfer\n"); return -EPROTO; } ret = ich_status_poll(ctlr, SPIS_SCIP, 0); if (ret < 0) return ret; if (plat->ich_version == 7) ich_writew(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status); else ich_writeb(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status); spi_setup_type(trans, using_cmd ? bytes : 0); opcode_index = spi_setup_opcode(ctlr, trans); if (opcode_index < 0) return -EINVAL; with_address = spi_setup_offset(trans); if (with_address < 0) return -EINVAL; if (trans->opcode == SPI_OPCODE_WREN) { /* * Treat Write Enable as Atomic Pre-Op if possible * in order to prevent the Management Engine from * issuing a transaction between WREN and DATA. */ if (!ctlr->ichspi_lock) ich_writew(ctlr, trans->opcode, ctlr->preop); return 0; } if (ctlr->speed && ctlr->max_speed >= 33000000) { int byte; byte = ich_readb(ctlr, ctlr->speed); if (ctlr->cur_speed >= 33000000) byte |= SSFC_SCF_33MHZ; else byte &= ~SSFC_SCF_33MHZ; ich_writeb(ctlr, byte, ctlr->speed); } /* See if we have used up the command data */ if (using_cmd && dout && bytes) { trans->out = dout; trans->bytesout = bytes; debug("ICH SPI: Moving to data, %d bytes\n", bytes); } /* Preset control fields */ control = ich_readw(ctlr, ctlr->control); control &= ~SSFC_RESERVED; control = SPIC_SCGO | ((opcode_index & 0x07) << 4); /* Issue atomic preop cycle if needed */ if (ich_readw(ctlr, ctlr->preop)) control |= SPIC_ACS; if (!trans->bytesout && !trans->bytesin) { /* SPI addresses are 24 bit only */ if (with_address) { ich_writel(ctlr, trans->offset & 0x00FFFFFF, ctlr->addr); } /* * This is a 'no data' command (like Write Enable), its * bitesout size was 1, decremented to zero while executing * spi_setup_opcode() above. Tell the chip to send the * command. */ ich_writew(ctlr, control, ctlr->control); /* wait for the result */ status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1); if (status < 0) return status; if (status & SPIS_FCERR) { debug("ICH SPI: Command transaction error\n"); return -EIO; } return 0; } /* * Check if this is a write command atempting to transfer more bytes * than the controller can handle. Iterations for writes are not * supported here because each SPI write command needs to be preceded * and followed by other SPI commands, and this sequence is controlled * by the SPI chip driver. */ if (trans->bytesout > ctlr->databytes) { debug("ICH SPI: Too much to write. This should be prevented by the driver's max_write_size?\n"); return -EPROTO; } /* * Read or write up to databytes bytes at a time until everything has * been sent. */ while (trans->bytesout || trans->bytesin) { uint32_t data_length; /* SPI addresses are 24 bit only */ ich_writel(ctlr, trans->offset & 0x00FFFFFF, ctlr->addr); if (trans->bytesout) data_length = min(trans->bytesout, ctlr->databytes); else data_length = min(trans->bytesin, ctlr->databytes); /* Program data into FDATA0 to N */ if (trans->bytesout) { write_reg(ctlr, trans->out, ctlr->data, data_length); spi_use_out(trans, data_length); if (with_address) trans->offset += data_length; } /* Add proper control fields' values */ control &= ~((ctlr->databytes - 1) << 8); control |= SPIC_DS; control |= (data_length - 1) << 8; /* write it */ ich_writew(ctlr, control, ctlr->control); /* Wait for Cycle Done Status or Flash Cycle Error. */ status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1); if (status < 0) return status; if (status & SPIS_FCERR) { debug("ICH SPI: Data transaction error %x\n", status); return -EIO; } if (trans->bytesin) { read_reg(ctlr, ctlr->data, trans->in, data_length); spi_use_in(trans, data_length); if (with_address) trans->offset += data_length; } } /* Clear atomic preop now that xfer is done */ ich_writew(ctlr, 0, ctlr->preop); return 0; } /* * This uses the SPI controller from the Intel Cougar Point and Panther Point * PCH to write-protect portions of the SPI flash until reboot. The changes * don't actually take effect until the HSFS[FLOCKDN] bit is set, but that's * done elsewhere. */ int spi_write_protect_region(struct udevice *dev, uint32_t lower_limit, uint32_t length, int hint) { struct udevice *bus = dev->parent; struct ich_spi_priv *ctlr = dev_get_priv(bus); uint32_t tmplong; uint32_t upper_limit; if (!ctlr->pr) { printf("%s: operation not supported on this chipset\n", __func__); return -ENOSYS; } if (length == 0 || lower_limit > (0xFFFFFFFFUL - length) + 1 || hint < 0 || hint > 4) { printf("%s(0x%x, 0x%x, %d): invalid args\n", __func__, lower_limit, length, hint); return -EPERM; } upper_limit = lower_limit + length - 1; /* * Determine bits to write, as follows: * 31 Write-protection enable (includes erase operation) * 30:29 reserved * 28:16 Upper Limit (FLA address bits 24:12, with 11:0 == 0xfff) * 15 Read-protection enable * 14:13 reserved * 12:0 Lower Limit (FLA address bits 24:12, with 11:0 == 0x000) */ tmplong = 0x80000000 | ((upper_limit & 0x01fff000) << 4) | ((lower_limit & 0x01fff000) >> 12); printf("%s: writing 0x%08x to %p\n", __func__, tmplong, &ctlr->pr[hint]); ctlr->pr[hint] = tmplong; return 0; } static int ich_spi_probe(struct udevice *bus) { struct ich_spi_platdata *plat = dev_get_platdata(bus); struct ich_spi_priv *priv = dev_get_priv(bus); uint8_t bios_cntl; int ret; ret = ich_init_controller(plat, priv); if (ret) return ret; /* * Disable the BIOS write protect so write commands are allowed. On * v9, deassert SMM BIOS Write Protect Disable. */ if (plat->use_sbase) { bios_cntl = ich_readb(priv, priv->bcr); bios_cntl &= ~BIT(5); /* clear Enable InSMM_STS (EISS) */ bios_cntl |= 1; /* Write Protect Disable (WPD) */ ich_writeb(priv, bios_cntl, priv->bcr); } else { pci_read_config_byte(plat->dev, 0xdc, &bios_cntl); if (plat->ich_version == 9) bios_cntl &= ~BIT(5); pci_write_config_byte(plat->dev, 0xdc, bios_cntl | 0x1); } priv->cur_speed = priv->max_speed; return 0; } static int ich_spi_ofdata_to_platdata(struct udevice *bus) { struct ich_spi_platdata *plat = dev_get_platdata(bus); int ret; ret = ich_find_spi_controller(plat); if (ret) return ret; return 0; } static int ich_spi_set_speed(struct udevice *bus, uint speed) { struct ich_spi_priv *priv = dev_get_priv(bus); priv->cur_speed = speed; return 0; } static int ich_spi_set_mode(struct udevice *bus, uint mode) { debug("%s: mode=%d\n", __func__, mode); return 0; } static int ich_spi_child_pre_probe(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct ich_spi_platdata *plat = dev_get_platdata(bus); struct ich_spi_priv *priv = dev_get_priv(bus); struct spi_slave *slave = dev_get_parentdata(dev); /* * Yes this controller can only write a small number of bytes at * once! The limit is typically 64 bytes. */ slave->max_write_size = priv->databytes; /* * ICH 7 SPI controller only supports array read command * and byte program command for SST flash */ if (plat->ich_version == 7) { slave->op_mode_rx = SPI_OPM_RX_AS; slave->op_mode_tx = SPI_OPM_TX_BP; } return 0; } static const struct dm_spi_ops ich_spi_ops = { .xfer = ich_spi_xfer, .set_speed = ich_spi_set_speed, .set_mode = ich_spi_set_mode, /* * cs_info is not needed, since we require all chip selects to be * in the device tree explicitly */ }; static const struct udevice_id ich_spi_ids[] = { { .compatible = "intel,ich-spi" }, { } }; U_BOOT_DRIVER(ich_spi) = { .name = "ich_spi", .id = UCLASS_SPI, .of_match = ich_spi_ids, .ops = &ich_spi_ops, .ofdata_to_platdata = ich_spi_ofdata_to_platdata, .platdata_auto_alloc_size = sizeof(struct ich_spi_platdata), .priv_auto_alloc_size = sizeof(struct ich_spi_priv), .child_pre_probe = ich_spi_child_pre_probe, .probe = ich_spi_probe, };