From 7030f27ef3da9f911299592751574044f86305f0 Mon Sep 17 00:00:00 2001 From: Bin Meng Date: Fri, 13 Nov 2015 00:11:24 -0800 Subject: x86: tsc: Move tsc_timer.c to drivers/timer To group all dm timer drivers together, move tsc timer to drivers/timer directory. Signed-off-by: Bin Meng Acked-by: Simon Glass diff --git a/arch/x86/lib/Makefile b/arch/x86/lib/Makefile index d676e2c..cd5ecb6 100644 --- a/arch/x86/lib/Makefile +++ b/arch/x86/lib/Makefile @@ -34,7 +34,6 @@ obj-$(CONFIG_GENERATE_SMBIOS_TABLE) += smbios.o obj-y += string.o obj-$(CONFIG_GENERATE_ACPI_TABLE) += acpi_table.o obj-y += tables.o -obj-$(CONFIG_SYS_X86_TSC_TIMER) += tsc_timer.o obj-$(CONFIG_CMD_ZBOOT) += zimage.o obj-$(CONFIG_HAVE_FSP) += fsp/ diff --git a/arch/x86/lib/tsc_timer.c b/arch/x86/lib/tsc_timer.c deleted file mode 100644 index 6aa2437..0000000 --- a/arch/x86/lib/tsc_timer.c +++ /dev/null @@ -1,389 +0,0 @@ -/* - * Copyright (c) 2012 The Chromium OS Authors. - * - * TSC calibration codes are adapted from Linux kernel - * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c - * - * SPDX-License-Identifier: GPL-2.0+ - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/* CPU reference clock frequency: in KHz */ -#define FREQ_83 83200 -#define FREQ_100 99840 -#define FREQ_133 133200 -#define FREQ_166 166400 - -#define MAX_NUM_FREQS 8 - -DECLARE_GLOBAL_DATA_PTR; - -/* - * According to Intel 64 and IA-32 System Programming Guide, - * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be - * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40]. - * Unfortunately some Intel Atom SoCs aren't quite compliant to this, - * so we need manually differentiate SoC families. This is what the - * field msr_plat does. - */ -struct freq_desc { - u8 x86_family; /* CPU family */ - u8 x86_model; /* model */ - /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */ - u8 msr_plat; - u32 freqs[MAX_NUM_FREQS]; -}; - -static struct freq_desc freq_desc_tables[] = { - /* PNW */ - { 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } }, - /* CLV+ */ - { 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } }, - /* TNG */ - { 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } }, - /* VLV2 */ - { 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } }, - /* Ivybridge */ - { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } }, - /* ANN */ - { 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } }, -}; - -static int match_cpu(u8 family, u8 model) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) { - if ((family == freq_desc_tables[i].x86_family) && - (model == freq_desc_tables[i].x86_model)) - return i; - } - - return -1; -} - -/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */ -#define id_to_freq(cpu_index, freq_id) \ - (freq_desc_tables[cpu_index].freqs[freq_id]) - -/* - * Do MSR calibration only for known/supported CPUs. - * - * Returns the calibration value or 0 if MSR calibration failed. - */ -static unsigned long __maybe_unused try_msr_calibrate_tsc(void) -{ - u32 lo, hi, ratio, freq_id, freq; - unsigned long res; - int cpu_index; - - cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model); - if (cpu_index < 0) - return 0; - - if (freq_desc_tables[cpu_index].msr_plat) { - rdmsr(MSR_PLATFORM_INFO, lo, hi); - ratio = (lo >> 8) & 0x1f; - } else { - rdmsr(MSR_IA32_PERF_STATUS, lo, hi); - ratio = (hi >> 8) & 0x1f; - } - debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio); - - if (!ratio) - goto fail; - - if (freq_desc_tables[cpu_index].msr_plat == 2) { - /* TODO: Figure out how best to deal with this */ - freq = FREQ_100; - debug("Using frequency: %u KHz\n", freq); - } else { - /* Get FSB FREQ ID */ - rdmsr(MSR_FSB_FREQ, lo, hi); - freq_id = lo & 0x7; - freq = id_to_freq(cpu_index, freq_id); - debug("Resolved frequency ID: %u, frequency: %u KHz\n", - freq_id, freq); - } - if (!freq) - goto fail; - - /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */ - res = freq * ratio / 1000; - debug("TSC runs at %lu MHz\n", res); - - return res; - -fail: - debug("Fast TSC calibration using MSR failed\n"); - return 0; -} - -/* - * This reads the current MSB of the PIT counter, and - * checks if we are running on sufficiently fast and - * non-virtualized hardware. - * - * Our expectations are: - * - * - the PIT is running at roughly 1.19MHz - * - * - each IO is going to take about 1us on real hardware, - * but we allow it to be much faster (by a factor of 10) or - * _slightly_ slower (ie we allow up to a 2us read+counter - * update - anything else implies a unacceptably slow CPU - * or PIT for the fast calibration to work. - * - * - with 256 PIT ticks to read the value, we have 214us to - * see the same MSB (and overhead like doing a single TSC - * read per MSB value etc). - * - * - We're doing 2 reads per loop (LSB, MSB), and we expect - * them each to take about a microsecond on real hardware. - * So we expect a count value of around 100. But we'll be - * generous, and accept anything over 50. - * - * - if the PIT is stuck, and we see *many* more reads, we - * return early (and the next caller of pit_expect_msb() - * then consider it a failure when they don't see the - * next expected value). - * - * These expectations mean that we know that we have seen the - * transition from one expected value to another with a fairly - * high accuracy, and we didn't miss any events. We can thus - * use the TSC value at the transitions to calculate a pretty - * good value for the TSC frequencty. - */ -static inline int pit_verify_msb(unsigned char val) -{ - /* Ignore LSB */ - inb(0x42); - return inb(0x42) == val; -} - -static inline int pit_expect_msb(unsigned char val, u64 *tscp, - unsigned long *deltap) -{ - int count; - u64 tsc = 0, prev_tsc = 0; - - for (count = 0; count < 50000; count++) { - if (!pit_verify_msb(val)) - break; - prev_tsc = tsc; - tsc = rdtsc(); - } - *deltap = rdtsc() - prev_tsc; - *tscp = tsc; - - /* - * We require _some_ success, but the quality control - * will be based on the error terms on the TSC values. - */ - return count > 5; -} - -/* - * How many MSB values do we want to see? We aim for - * a maximum error rate of 500ppm (in practice the - * real error is much smaller), but refuse to spend - * more than 50ms on it. - */ -#define MAX_QUICK_PIT_MS 50 -#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) - -static unsigned long __maybe_unused quick_pit_calibrate(void) -{ - int i; - u64 tsc, delta; - unsigned long d1, d2; - - /* Set the Gate high, disable speaker */ - outb((inb(0x61) & ~0x02) | 0x01, 0x61); - - /* - * Counter 2, mode 0 (one-shot), binary count - * - * NOTE! Mode 2 decrements by two (and then the - * output is flipped each time, giving the same - * final output frequency as a decrement-by-one), - * so mode 0 is much better when looking at the - * individual counts. - */ - outb(0xb0, 0x43); - - /* Start at 0xffff */ - outb(0xff, 0x42); - outb(0xff, 0x42); - - /* - * The PIT starts counting at the next edge, so we - * need to delay for a microsecond. The easiest way - * to do that is to just read back the 16-bit counter - * once from the PIT. - */ - pit_verify_msb(0); - - if (pit_expect_msb(0xff, &tsc, &d1)) { - for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { - if (!pit_expect_msb(0xff-i, &delta, &d2)) - break; - - /* - * Iterate until the error is less than 500 ppm - */ - delta -= tsc; - if (d1+d2 >= delta >> 11) - continue; - - /* - * Check the PIT one more time to verify that - * all TSC reads were stable wrt the PIT. - * - * This also guarantees serialization of the - * last cycle read ('d2') in pit_expect_msb. - */ - if (!pit_verify_msb(0xfe - i)) - break; - goto success; - } - } - debug("Fast TSC calibration failed\n"); - return 0; - -success: - /* - * Ok, if we get here, then we've seen the - * MSB of the PIT decrement 'i' times, and the - * error has shrunk to less than 500 ppm. - * - * As a result, we can depend on there not being - * any odd delays anywhere, and the TSC reads are - * reliable (within the error). - * - * kHz = ticks / time-in-seconds / 1000; - * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 - * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) - */ - delta *= PIT_TICK_RATE; - delta /= (i*256*1000); - debug("Fast TSC calibration using PIT\n"); - return delta / 1000; -} - -/* Get the speed of the TSC timer in MHz */ -unsigned notrace long get_tbclk_mhz(void) -{ - return get_tbclk() / 1000000; -} - -static ulong get_ms_timer(void) -{ - return (get_ticks() * 1000) / get_tbclk(); -} - -ulong get_timer(ulong base) -{ - return get_ms_timer() - base; -} - -ulong notrace timer_get_us(void) -{ - return get_ticks() / get_tbclk_mhz(); -} - -ulong timer_get_boot_us(void) -{ - return timer_get_us(); -} - -void __udelay(unsigned long usec) -{ - u64 now = get_ticks(); - u64 stop; - - stop = now + usec * get_tbclk_mhz(); - - while ((int64_t)(stop - get_ticks()) > 0) -#if defined(CONFIG_QEMU) && defined(CONFIG_SMP) - /* - * Add a 'pause' instruction on qemu target, - * to give other VCPUs a chance to run. - */ - asm volatile("pause"); -#else - ; -#endif -} - -int timer_init(void) -{ -#ifdef CONFIG_I8254_TIMER - /* Set up the i8254 timer if required */ - i8254_init(); -#endif - - return 0; -} - -static int tsc_timer_get_count(struct udevice *dev, u64 *count) -{ - u64 now_tick = rdtsc(); - - *count = now_tick - gd->arch.tsc_base; - - return 0; -} - -static int tsc_timer_probe(struct udevice *dev) -{ - struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev); - - gd->arch.tsc_base = rdtsc(); - - /* - * If there is no clock frequency specified in the device tree, - * calibrate it by ourselves. - */ - if (!uc_priv->clock_rate) { - unsigned long fast_calibrate; - - fast_calibrate = try_msr_calibrate_tsc(); - if (!fast_calibrate) { - fast_calibrate = quick_pit_calibrate(); - if (!fast_calibrate) - panic("TSC frequency is ZERO"); - } - - uc_priv->clock_rate = fast_calibrate * 1000000; - } - - return 0; -} - -static const struct timer_ops tsc_timer_ops = { - .get_count = tsc_timer_get_count, -}; - -static const struct udevice_id tsc_timer_ids[] = { - { .compatible = "x86,tsc-timer", }, - { } -}; - -U_BOOT_DRIVER(tsc_timer) = { - .name = "tsc_timer", - .id = UCLASS_TIMER, - .of_match = tsc_timer_ids, - .probe = tsc_timer_probe, - .ops = &tsc_timer_ops, - .flags = DM_FLAG_PRE_RELOC, -}; diff --git a/drivers/timer/Kconfig b/drivers/timer/Kconfig index 029af64..2b10d2b 100644 --- a/drivers/timer/Kconfig +++ b/drivers/timer/Kconfig @@ -23,4 +23,11 @@ config SANDBOX_TIMER Select this to enable an emulated timer for sandbox. It gets time from host os. +config X86_TSC_TIMER + bool "x86 Time-Stamp Counter (TSC) timer support" + depends on TIMER && X86 + default y if X86 + help + Select this to enable Time-Stamp Counter (TSC) timer for x86. + endmenu diff --git a/drivers/timer/Makefile b/drivers/timer/Makefile index 300946e..fe954ec 100644 --- a/drivers/timer/Makefile +++ b/drivers/timer/Makefile @@ -7,3 +7,4 @@ obj-$(CONFIG_TIMER) += timer-uclass.o obj-$(CONFIG_ALTERA_TIMER) += altera_timer.o obj-$(CONFIG_SANDBOX_TIMER) += sandbox_timer.o +obj-$(CONFIG_X86_TSC_TIMER) += tsc_timer.o diff --git a/drivers/timer/tsc_timer.c b/drivers/timer/tsc_timer.c new file mode 100644 index 0000000..6aa2437 --- /dev/null +++ b/drivers/timer/tsc_timer.c @@ -0,0 +1,389 @@ +/* + * Copyright (c) 2012 The Chromium OS Authors. + * + * TSC calibration codes are adapted from Linux kernel + * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c + * + * SPDX-License-Identifier: GPL-2.0+ + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* CPU reference clock frequency: in KHz */ +#define FREQ_83 83200 +#define FREQ_100 99840 +#define FREQ_133 133200 +#define FREQ_166 166400 + +#define MAX_NUM_FREQS 8 + +DECLARE_GLOBAL_DATA_PTR; + +/* + * According to Intel 64 and IA-32 System Programming Guide, + * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be + * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40]. + * Unfortunately some Intel Atom SoCs aren't quite compliant to this, + * so we need manually differentiate SoC families. This is what the + * field msr_plat does. + */ +struct freq_desc { + u8 x86_family; /* CPU family */ + u8 x86_model; /* model */ + /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */ + u8 msr_plat; + u32 freqs[MAX_NUM_FREQS]; +}; + +static struct freq_desc freq_desc_tables[] = { + /* PNW */ + { 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } }, + /* CLV+ */ + { 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } }, + /* TNG */ + { 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } }, + /* VLV2 */ + { 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } }, + /* Ivybridge */ + { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } }, + /* ANN */ + { 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } }, +}; + +static int match_cpu(u8 family, u8 model) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) { + if ((family == freq_desc_tables[i].x86_family) && + (model == freq_desc_tables[i].x86_model)) + return i; + } + + return -1; +} + +/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */ +#define id_to_freq(cpu_index, freq_id) \ + (freq_desc_tables[cpu_index].freqs[freq_id]) + +/* + * Do MSR calibration only for known/supported CPUs. + * + * Returns the calibration value or 0 if MSR calibration failed. + */ +static unsigned long __maybe_unused try_msr_calibrate_tsc(void) +{ + u32 lo, hi, ratio, freq_id, freq; + unsigned long res; + int cpu_index; + + cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model); + if (cpu_index < 0) + return 0; + + if (freq_desc_tables[cpu_index].msr_plat) { + rdmsr(MSR_PLATFORM_INFO, lo, hi); + ratio = (lo >> 8) & 0x1f; + } else { + rdmsr(MSR_IA32_PERF_STATUS, lo, hi); + ratio = (hi >> 8) & 0x1f; + } + debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio); + + if (!ratio) + goto fail; + + if (freq_desc_tables[cpu_index].msr_plat == 2) { + /* TODO: Figure out how best to deal with this */ + freq = FREQ_100; + debug("Using frequency: %u KHz\n", freq); + } else { + /* Get FSB FREQ ID */ + rdmsr(MSR_FSB_FREQ, lo, hi); + freq_id = lo & 0x7; + freq = id_to_freq(cpu_index, freq_id); + debug("Resolved frequency ID: %u, frequency: %u KHz\n", + freq_id, freq); + } + if (!freq) + goto fail; + + /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */ + res = freq * ratio / 1000; + debug("TSC runs at %lu MHz\n", res); + + return res; + +fail: + debug("Fast TSC calibration using MSR failed\n"); + return 0; +} + +/* + * This reads the current MSB of the PIT counter, and + * checks if we are running on sufficiently fast and + * non-virtualized hardware. + * + * Our expectations are: + * + * - the PIT is running at roughly 1.19MHz + * + * - each IO is going to take about 1us on real hardware, + * but we allow it to be much faster (by a factor of 10) or + * _slightly_ slower (ie we allow up to a 2us read+counter + * update - anything else implies a unacceptably slow CPU + * or PIT for the fast calibration to work. + * + * - with 256 PIT ticks to read the value, we have 214us to + * see the same MSB (and overhead like doing a single TSC + * read per MSB value etc). + * + * - We're doing 2 reads per loop (LSB, MSB), and we expect + * them each to take about a microsecond on real hardware. + * So we expect a count value of around 100. But we'll be + * generous, and accept anything over 50. + * + * - if the PIT is stuck, and we see *many* more reads, we + * return early (and the next caller of pit_expect_msb() + * then consider it a failure when they don't see the + * next expected value). + * + * These expectations mean that we know that we have seen the + * transition from one expected value to another with a fairly + * high accuracy, and we didn't miss any events. We can thus + * use the TSC value at the transitions to calculate a pretty + * good value for the TSC frequencty. + */ +static inline int pit_verify_msb(unsigned char val) +{ + /* Ignore LSB */ + inb(0x42); + return inb(0x42) == val; +} + +static inline int pit_expect_msb(unsigned char val, u64 *tscp, + unsigned long *deltap) +{ + int count; + u64 tsc = 0, prev_tsc = 0; + + for (count = 0; count < 50000; count++) { + if (!pit_verify_msb(val)) + break; + prev_tsc = tsc; + tsc = rdtsc(); + } + *deltap = rdtsc() - prev_tsc; + *tscp = tsc; + + /* + * We require _some_ success, but the quality control + * will be based on the error terms on the TSC values. + */ + return count > 5; +} + +/* + * How many MSB values do we want to see? We aim for + * a maximum error rate of 500ppm (in practice the + * real error is much smaller), but refuse to spend + * more than 50ms on it. + */ +#define MAX_QUICK_PIT_MS 50 +#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) + +static unsigned long __maybe_unused quick_pit_calibrate(void) +{ + int i; + u64 tsc, delta; + unsigned long d1, d2; + + /* Set the Gate high, disable speaker */ + outb((inb(0x61) & ~0x02) | 0x01, 0x61); + + /* + * Counter 2, mode 0 (one-shot), binary count + * + * NOTE! Mode 2 decrements by two (and then the + * output is flipped each time, giving the same + * final output frequency as a decrement-by-one), + * so mode 0 is much better when looking at the + * individual counts. + */ + outb(0xb0, 0x43); + + /* Start at 0xffff */ + outb(0xff, 0x42); + outb(0xff, 0x42); + + /* + * The PIT starts counting at the next edge, so we + * need to delay for a microsecond. The easiest way + * to do that is to just read back the 16-bit counter + * once from the PIT. + */ + pit_verify_msb(0); + + if (pit_expect_msb(0xff, &tsc, &d1)) { + for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { + if (!pit_expect_msb(0xff-i, &delta, &d2)) + break; + + /* + * Iterate until the error is less than 500 ppm + */ + delta -= tsc; + if (d1+d2 >= delta >> 11) + continue; + + /* + * Check the PIT one more time to verify that + * all TSC reads were stable wrt the PIT. + * + * This also guarantees serialization of the + * last cycle read ('d2') in pit_expect_msb. + */ + if (!pit_verify_msb(0xfe - i)) + break; + goto success; + } + } + debug("Fast TSC calibration failed\n"); + return 0; + +success: + /* + * Ok, if we get here, then we've seen the + * MSB of the PIT decrement 'i' times, and the + * error has shrunk to less than 500 ppm. + * + * As a result, we can depend on there not being + * any odd delays anywhere, and the TSC reads are + * reliable (within the error). + * + * kHz = ticks / time-in-seconds / 1000; + * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 + * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) + */ + delta *= PIT_TICK_RATE; + delta /= (i*256*1000); + debug("Fast TSC calibration using PIT\n"); + return delta / 1000; +} + +/* Get the speed of the TSC timer in MHz */ +unsigned notrace long get_tbclk_mhz(void) +{ + return get_tbclk() / 1000000; +} + +static ulong get_ms_timer(void) +{ + return (get_ticks() * 1000) / get_tbclk(); +} + +ulong get_timer(ulong base) +{ + return get_ms_timer() - base; +} + +ulong notrace timer_get_us(void) +{ + return get_ticks() / get_tbclk_mhz(); +} + +ulong timer_get_boot_us(void) +{ + return timer_get_us(); +} + +void __udelay(unsigned long usec) +{ + u64 now = get_ticks(); + u64 stop; + + stop = now + usec * get_tbclk_mhz(); + + while ((int64_t)(stop - get_ticks()) > 0) +#if defined(CONFIG_QEMU) && defined(CONFIG_SMP) + /* + * Add a 'pause' instruction on qemu target, + * to give other VCPUs a chance to run. + */ + asm volatile("pause"); +#else + ; +#endif +} + +int timer_init(void) +{ +#ifdef CONFIG_I8254_TIMER + /* Set up the i8254 timer if required */ + i8254_init(); +#endif + + return 0; +} + +static int tsc_timer_get_count(struct udevice *dev, u64 *count) +{ + u64 now_tick = rdtsc(); + + *count = now_tick - gd->arch.tsc_base; + + return 0; +} + +static int tsc_timer_probe(struct udevice *dev) +{ + struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev); + + gd->arch.tsc_base = rdtsc(); + + /* + * If there is no clock frequency specified in the device tree, + * calibrate it by ourselves. + */ + if (!uc_priv->clock_rate) { + unsigned long fast_calibrate; + + fast_calibrate = try_msr_calibrate_tsc(); + if (!fast_calibrate) { + fast_calibrate = quick_pit_calibrate(); + if (!fast_calibrate) + panic("TSC frequency is ZERO"); + } + + uc_priv->clock_rate = fast_calibrate * 1000000; + } + + return 0; +} + +static const struct timer_ops tsc_timer_ops = { + .get_count = tsc_timer_get_count, +}; + +static const struct udevice_id tsc_timer_ids[] = { + { .compatible = "x86,tsc-timer", }, + { } +}; + +U_BOOT_DRIVER(tsc_timer) = { + .name = "tsc_timer", + .id = UCLASS_TIMER, + .of_match = tsc_timer_ids, + .probe = tsc_timer_probe, + .ops = &tsc_timer_ops, + .flags = DM_FLAG_PRE_RELOC, +}; diff --git a/include/configs/x86-common.h b/include/configs/x86-common.h index 65d50ca..70ec103 100644 --- a/include/configs/x86-common.h +++ b/include/configs/x86-common.h @@ -152,8 +152,6 @@ * CPU Features */ -#define CONFIG_SYS_X86_TSC_TIMER - #define CONFIG_SYS_STACK_SIZE (32 * 1024) #define CONFIG_SYS_MONITOR_BASE CONFIG_SYS_TEXT_BASE #define CONFIG_SYS_MALLOC_LEN 0x200000 -- cgit v0.10.2