#!/usr/bin/python # # Copyright (C) 2017 Google, Inc # Written by Simon Glass # # SPDX-License-Identifier: GPL-2.0+ # """Device tree to platform data class This supports converting device tree data to C structures definitions and static data. """ import copy import sys import fdt import fdt_util # When we see these properties we ignore them - i.e. do not create a structure member PROP_IGNORE_LIST = [ '#address-cells', '#gpio-cells', '#size-cells', 'compatible', 'linux,phandle', "status", 'phandle', 'u-boot,dm-pre-reloc', 'u-boot,dm-tpl', 'u-boot,dm-spl', ] # C type declarations for the tyues we support TYPE_NAMES = { fdt.TYPE_INT: 'fdt32_t', fdt.TYPE_BYTE: 'unsigned char', fdt.TYPE_STRING: 'const char *', fdt.TYPE_BOOL: 'bool', } STRUCT_PREFIX = 'dtd_' VAL_PREFIX = 'dtv_' def conv_name_to_c(name): """Convert a device-tree name to a C identifier This uses multiple replace() calls instead of re.sub() since it is faster (400ms for 1m calls versus 1000ms for the 're' version). Args: name: Name to convert Return: String containing the C version of this name """ new = name.replace('@', '_at_') new = new.replace('-', '_') new = new.replace(',', '_') new = new.replace('.', '_') return new def tab_to(num_tabs, line): """Append tabs to a line of text to reach a tab stop. Args: num_tabs: Tab stop to obtain (0 = column 0, 1 = column 8, etc.) line: Line of text to append to Returns: line with the correct number of tabs appeneded. If the line already extends past that tab stop then a single space is appended. """ if len(line) >= num_tabs * 8: return line + ' ' return line + '\t' * (num_tabs - len(line) // 8) def get_value(ftype, value): """Get a value as a C expression For integers this returns a byte-swapped (little-endian) hex string For bytes this returns a hex string, e.g. 0x12 For strings this returns a literal string enclosed in quotes For booleans this return 'true' Args: type: Data type (fdt_util) value: Data value, as a string of bytes """ if ftype == fdt.TYPE_INT: return '%#x' % fdt_util.fdt32_to_cpu(value) elif ftype == fdt.TYPE_BYTE: return '%#x' % ord(value[0]) elif ftype == fdt.TYPE_STRING: return '"%s"' % value elif ftype == fdt.TYPE_BOOL: return 'true' def get_compat_name(node): """Get a node's first compatible string as a C identifier Args: node: Node object to check Return: Tuple: C identifier for the first compatible string List of C identifiers for all the other compatible strings (possibly empty) """ compat = node.props['compatible'].value aliases = [] if isinstance(compat, list): compat, aliases = compat[0], compat[1:] return conv_name_to_c(compat), [conv_name_to_c(a) for a in aliases] def is_phandle(prop): """Check if a node contains phandles We have no reliable way of detecting whether a node uses a phandle or not. As an interim measure, use a list of known property names. Args: prop: Prop object to check Return: True if the object value contains phandles, else False """ if prop.name in ['clocks']: return True return False class DtbPlatdata(object): """Provide a means to convert device tree binary data to platform data The output of this process is C structures which can be used in space- constrained encvironments where the ~3KB code overhead of device tree code is not affordable. Properties: _fdt: Fdt object, referencing the device tree _dtb_fname: Filename of the input device tree binary file _valid_nodes: A list of Node object with compatible strings _include_disabled: true to include nodes marked status = "disabled" _phandle_nodes: A dict of nodes indexed by phandle number (1, 2...) _outfile: The current output file (sys.stdout or a real file) _lines: Stashed list of output lines for outputting in the future _phandle_nodes: A dict of Nodes indexed by phandle (an integer) """ def __init__(self, dtb_fname, include_disabled): self._fdt = None self._dtb_fname = dtb_fname self._valid_nodes = None self._include_disabled = include_disabled self._phandle_nodes = {} self._outfile = None self._lines = [] self._aliases = {} def setup_output(self, fname): """Set up the output destination Once this is done, future calls to self.out() will output to this file. Args: fname: Filename to send output to, or '-' for stdout """ if fname == '-': self._outfile = sys.stdout else: self._outfile = open(fname, 'w') def out(self, line): """Output a string to the output file Args: line: String to output """ self._outfile.write(line) def buf(self, line): """Buffer up a string to send later Args: line: String to add to our 'buffer' list """ self._lines.append(line) def get_buf(self): """Get the contents of the output buffer, and clear it Returns: The output buffer, which is then cleared for future use """ lines = self._lines self._lines = [] return lines def scan_dtb(self): """Scan the device tree to obtain a tree of notes and properties Once this is done, self._fdt.GetRoot() can be called to obtain the device tree root node, and progress from there. """ self._fdt = fdt.FdtScan(self._dtb_fname) def scan_node(self, root): """Scan a node and subnodes to build a tree of node and phandle info This adds each node to self._valid_nodes and each phandle to self._phandle_nodes. Args: root: Root node for scan """ for node in root.subnodes: if 'compatible' in node.props: status = node.props.get('status') if (not self._include_disabled and not status or status.value != 'disabled'): self._valid_nodes.append(node) phandle_prop = node.props.get('phandle') if phandle_prop: phandle = phandle_prop.GetPhandle() self._phandle_nodes[phandle] = node # recurse to handle any subnodes self.scan_node(node) def scan_tree(self): """Scan the device tree for useful information This fills in the following properties: _phandle_nodes: A dict of Nodes indexed by phandle (an integer) _valid_nodes: A list of nodes we wish to consider include in the platform data """ self._phandle_nodes = {} self._valid_nodes = [] return self.scan_node(self._fdt.GetRoot()) def scan_structs(self): """Scan the device tree building up the C structures we will use. Build a dict keyed by C struct name containing a dict of Prop object for each struct field (keyed by property name). Where the same struct appears multiple times, try to use the 'widest' property, i.e. the one with a type which can express all others. Once the widest property is determined, all other properties are updated to match that width. """ structs = {} for node in self._valid_nodes: node_name, _ = get_compat_name(node) fields = {} # Get a list of all the valid properties in this node. for name, prop in node.props.items(): if name not in PROP_IGNORE_LIST and name[0] != '#': fields[name] = copy.deepcopy(prop) # If we've seen this node_name before, update the existing struct. if node_name in structs: struct = structs[node_name] for name, prop in fields.items(): oldprop = struct.get(name) if oldprop: oldprop.Widen(prop) else: struct[name] = prop # Otherwise store this as a new struct. else: structs[node_name] = fields upto = 0 for node in self._valid_nodes: node_name, _ = get_compat_name(node) struct = structs[node_name] for name, prop in node.props.items(): if name not in PROP_IGNORE_LIST and name[0] != '#': prop.Widen(struct[name]) upto += 1 struct_name, aliases = get_compat_name(node) for alias in aliases: self._aliases[alias] = struct_name return structs def scan_phandles(self): """Figure out what phandles each node uses We need to be careful when outputing nodes that use phandles since they must come after the declaration of the phandles in the C file. Otherwise we get a compiler error since the phandle struct is not yet declared. This function adds to each node a list of phandle nodes that the node depends on. This allows us to output things in the right order. """ for node in self._valid_nodes: node.phandles = set() for pname, prop in node.props.items(): if pname in PROP_IGNORE_LIST or pname[0] == '#': continue if isinstance(prop.value, list): if is_phandle(prop): # Process the list as pairs of (phandle, id) value_it = iter(prop.value) for phandle_cell, _ in zip(value_it, value_it): phandle = fdt_util.fdt32_to_cpu(phandle_cell) target_node = self._phandle_nodes[phandle] node.phandles.add(target_node) def generate_structs(self, structs): """Generate struct defintions for the platform data This writes out the body of a header file consisting of structure definitions for node in self._valid_nodes. See the documentation in README.of-plat for more information. """ self.out('#include \n') self.out('#include \n') # Output the struct definition for name in sorted(structs): self.out('struct %s%s {\n' % (STRUCT_PREFIX, name)) for pname in sorted(structs[name]): prop = structs[name][pname] if is_phandle(prop): # For phandles, include a reference to the target self.out('\t%s%s[%d]' % (tab_to(2, 'struct phandle_2_cell'), conv_name_to_c(prop.name), len(prop.value) / 2)) else: ptype = TYPE_NAMES[prop.type] self.out('\t%s%s' % (tab_to(2, ptype), conv_name_to_c(prop.name))) if isinstance(prop.value, list): self.out('[%d]' % len(prop.value)) self.out(';\n') self.out('};\n') for alias, struct_name in self._aliases.iteritems(): self.out('#define %s%s %s%s\n'% (STRUCT_PREFIX, alias, STRUCT_PREFIX, struct_name)) def output_node(self, node): """Output the C code for a node Args: node: node to output """ struct_name, _ = get_compat_name(node) var_name = conv_name_to_c(node.name) self.buf('static struct %s%s %s%s = {\n' % (STRUCT_PREFIX, struct_name, VAL_PREFIX, var_name)) for pname, prop in node.props.items(): if pname in PROP_IGNORE_LIST or pname[0] == '#': continue member_name = conv_name_to_c(prop.name) self.buf('\t%s= ' % tab_to(3, '.' + member_name)) # Special handling for lists if isinstance(prop.value, list): self.buf('{') vals = [] # For phandles, output a reference to the platform data # of the target node. if is_phandle(prop): # Process the list as pairs of (phandle, id) value_it = iter(prop.value) for phandle_cell, id_cell in zip(value_it, value_it): phandle = fdt_util.fdt32_to_cpu(phandle_cell) id_num = fdt_util.fdt32_to_cpu(id_cell) target_node = self._phandle_nodes[phandle] name = conv_name_to_c(target_node.name) vals.append('{&%s%s, %d}' % (VAL_PREFIX, name, id_num)) else: for val in prop.value: vals.append(get_value(prop.type, val)) self.buf(', '.join(vals)) self.buf('}') else: self.buf(get_value(prop.type, prop.value)) self.buf(',\n') self.buf('};\n') # Add a device declaration self.buf('U_BOOT_DEVICE(%s) = {\n' % var_name) self.buf('\t.name\t\t= "%s",\n' % struct_name) self.buf('\t.platdata\t= &%s%s,\n' % (VAL_PREFIX, var_name)) self.buf('\t.platdata_size\t= sizeof(%s%s),\n' % (VAL_PREFIX, var_name)) self.buf('};\n') self.buf('\n') self.out(''.join(self.get_buf())) def generate_tables(self): """Generate device defintions for the platform data This writes out C platform data initialisation data and U_BOOT_DEVICE() declarations for each valid node. Where a node has multiple compatible strings, a #define is used to make them equivalent. See the documentation in doc/driver-model/of-plat.txt for more information. """ self.out('#include \n') self.out('#include \n') self.out('#include \n') self.out('\n') nodes_to_output = list(self._valid_nodes) # Keep outputing nodes until there is none left while nodes_to_output: node = nodes_to_output[0] # Output all the node's dependencies first for req_node in node.phandles: if req_node in nodes_to_output: self.output_node(req_node) nodes_to_output.remove(req_node) self.output_node(node) nodes_to_output.remove(node) def run_steps(args, dtb_file, include_disabled, output): """Run all the steps of the dtoc tool Args: args: List of non-option arguments provided to the problem dtb_file: Filename of dtb file to process include_disabled: True to include disabled nodes output: Name of output file """ if not args: raise ValueError('Please specify a command: struct, platdata') plat = DtbPlatdata(dtb_file, include_disabled) plat.scan_dtb() plat.scan_tree() plat.setup_output(output) structs = plat.scan_structs() plat.scan_phandles() for cmd in args[0].split(','): if cmd == 'struct': plat.generate_structs(structs) elif cmd == 'platdata': plat.generate_tables() else: raise ValueError("Unknown command '%s': (use: struct, platdata)" % cmd)