diff options
Diffstat (limited to 'include/linux')
41 files changed, 318 insertions, 157 deletions
diff --git a/include/linux/bio.h b/include/linux/bio.h index a3c071c..847994a 100644 --- a/include/linux/bio.h +++ b/include/linux/bio.h @@ -211,8 +211,8 @@ extern void bio_pair_release(struct bio_pair *dbio); extern struct bio_set *bioset_create(unsigned int, unsigned int); extern void bioset_free(struct bio_set *); -extern struct bio *bio_alloc(gfp_t, int); -extern struct bio *bio_kmalloc(gfp_t, int); +extern struct bio *bio_alloc(gfp_t, unsigned int); +extern struct bio *bio_kmalloc(gfp_t, unsigned int); extern struct bio *bio_alloc_bioset(gfp_t, int, struct bio_set *); extern void bio_put(struct bio *); extern void bio_free(struct bio *, struct bio_set *); @@ -519,7 +519,11 @@ extern void bio_integrity_init(void); #define bioset_integrity_create(a, b) (0) #define bio_integrity_prep(a) (0) #define bio_integrity_enabled(a) (0) -#define bio_integrity_clone(a, b, c, d) (0) +static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src, + gfp_t gfp_mask, struct bio_set *bs) +{ + return 0; +} #define bioset_integrity_free(a) do { } while (0) #define bio_integrity_free(a, b) do { } while (0) #define bio_integrity_endio(a, b) do { } while (0) diff --git a/include/linux/ceph/osd_client.h b/include/linux/ceph/osd_client.h index f88eacb..7c05ac2 100644 --- a/include/linux/ceph/osd_client.h +++ b/include/linux/ceph/osd_client.h @@ -10,6 +10,12 @@ #include "osdmap.h" #include "messenger.h" +/* + * Maximum object name size + * (must be at least as big as RBD_MAX_MD_NAME_LEN -- currently 100) + */ +#define MAX_OBJ_NAME_SIZE 100 + struct ceph_msg; struct ceph_snap_context; struct ceph_osd_request; @@ -75,7 +81,7 @@ struct ceph_osd_request { struct inode *r_inode; /* for use by callbacks */ void *r_priv; /* ditto */ - char r_oid[40]; /* object name */ + char r_oid[MAX_OBJ_NAME_SIZE]; /* object name */ int r_oid_len; unsigned long r_stamp; /* send OR check time */ diff --git a/include/linux/clocksource.h b/include/linux/clocksource.h index 139c4db..c86c940 100644 --- a/include/linux/clocksource.h +++ b/include/linux/clocksource.h @@ -156,6 +156,7 @@ extern u64 timecounter_cyc2time(struct timecounter *tc, * @mult: cycle to nanosecond multiplier * @shift: cycle to nanosecond divisor (power of two) * @max_idle_ns: max idle time permitted by the clocksource (nsecs) + * @maxadj maximum adjustment value to mult (~11%) * @flags: flags describing special properties * @archdata: arch-specific data * @suspend: suspend function for the clocksource, if necessary @@ -172,7 +173,7 @@ struct clocksource { u32 mult; u32 shift; u64 max_idle_ns; - + u32 maxadj; #ifdef CONFIG_ARCH_CLOCKSOURCE_DATA struct arch_clocksource_data archdata; #endif diff --git a/include/linux/compat.h b/include/linux/compat.h index 154bf56..66ed067 100644 --- a/include/linux/compat.h +++ b/include/linux/compat.h @@ -552,5 +552,14 @@ extern ssize_t compat_rw_copy_check_uvector(int type, extern void __user *compat_alloc_user_space(unsigned long len); +asmlinkage ssize_t compat_sys_process_vm_readv(compat_pid_t pid, + const struct compat_iovec __user *lvec, + unsigned long liovcnt, const struct compat_iovec __user *rvec, + unsigned long riovcnt, unsigned long flags); +asmlinkage ssize_t compat_sys_process_vm_writev(compat_pid_t pid, + const struct compat_iovec __user *lvec, + unsigned long liovcnt, const struct compat_iovec __user *rvec, + unsigned long riovcnt, unsigned long flags); + #endif /* CONFIG_COMPAT */ #endif /* _LINUX_COMPAT_H */ diff --git a/include/linux/dcache.h b/include/linux/dcache.h index 4df9261..ed9f74f 100644 --- a/include/linux/dcache.h +++ b/include/linux/dcache.h @@ -339,7 +339,8 @@ extern int d_validate(struct dentry *, struct dentry *); */ extern char *dynamic_dname(struct dentry *, char *, int, const char *, ...); -extern char *__d_path(const struct path *path, struct path *root, char *, int); +extern char *__d_path(const struct path *, const struct path *, char *, int); +extern char *d_absolute_path(const struct path *, char *, int); extern char *d_path(const struct path *, char *, int); extern char *d_path_with_unreachable(const struct path *, char *, int); extern char *dentry_path_raw(struct dentry *, char *, int); diff --git a/include/linux/devfreq.h b/include/linux/devfreq.h index afb9458..98ce812 100644 --- a/include/linux/devfreq.h +++ b/include/linux/devfreq.h @@ -41,7 +41,7 @@ struct devfreq_dev_status { unsigned long total_time; unsigned long busy_time; unsigned long current_frequency; - void *private_date; + void *private_data; }; /** diff --git a/include/linux/device.h b/include/linux/device.h index ffbcf95..3136ede 100644 --- a/include/linux/device.h +++ b/include/linux/device.h @@ -69,7 +69,7 @@ extern void bus_remove_file(struct bus_type *, struct bus_attribute *); * @resume: Called to bring a device on this bus out of sleep mode. * @pm: Power management operations of this bus, callback the specific * device driver's pm-ops. - * @iommu_ops IOMMU specific operations for this bus, used to attach IOMMU + * @iommu_ops: IOMMU specific operations for this bus, used to attach IOMMU * driver implementations to a bus and allow the driver to do * bus-specific setup * @p: The private data of the driver core, only the driver core can @@ -682,6 +682,11 @@ static inline bool device_async_suspend_enabled(struct device *dev) return !!dev->power.async_suspend; } +static inline void pm_suspend_ignore_children(struct device *dev, bool enable) +{ + dev->power.ignore_children = enable; +} + static inline void device_lock(struct device *dev) { mutex_lock(&dev->mutex); diff --git a/include/linux/fs.h b/include/linux/fs.h index 0c4df26..e0bc4ff 100644 --- a/include/linux/fs.h +++ b/include/linux/fs.h @@ -393,8 +393,8 @@ struct inodes_stat_t { #include <linux/semaphore.h> #include <linux/fiemap.h> #include <linux/rculist_bl.h> -#include <linux/shrinker.h> #include <linux/atomic.h> +#include <linux/shrinker.h> #include <asm/byteorder.h> @@ -1886,6 +1886,7 @@ extern struct dentry *mount_single(struct file_system_type *fs_type, extern struct dentry *mount_nodev(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); +extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); void generic_shutdown_super(struct super_block *sb); void kill_block_super(struct super_block *sb); void kill_anon_super(struct super_block *sb); @@ -1941,6 +1942,7 @@ extern int fd_statfs(int, struct kstatfs *); extern int statfs_by_dentry(struct dentry *, struct kstatfs *); extern int freeze_super(struct super_block *super); extern int thaw_super(struct super_block *super); +extern bool our_mnt(struct vfsmount *mnt); extern int current_umask(void); diff --git a/include/linux/ftrace_event.h b/include/linux/ftrace_event.h index 96efa67..c3da42d 100644 --- a/include/linux/ftrace_event.h +++ b/include/linux/ftrace_event.h @@ -172,6 +172,7 @@ enum { TRACE_EVENT_FL_FILTERED_BIT, TRACE_EVENT_FL_RECORDED_CMD_BIT, TRACE_EVENT_FL_CAP_ANY_BIT, + TRACE_EVENT_FL_NO_SET_FILTER_BIT, }; enum { @@ -179,6 +180,7 @@ enum { TRACE_EVENT_FL_FILTERED = (1 << TRACE_EVENT_FL_FILTERED_BIT), TRACE_EVENT_FL_RECORDED_CMD = (1 << TRACE_EVENT_FL_RECORDED_CMD_BIT), TRACE_EVENT_FL_CAP_ANY = (1 << TRACE_EVENT_FL_CAP_ANY_BIT), + TRACE_EVENT_FL_NO_SET_FILTER = (1 << TRACE_EVENT_FL_NO_SET_FILTER_BIT), }; struct ftrace_event_call { diff --git a/include/linux/genhd.h b/include/linux/genhd.h index 9de31bc..6d18f35 100644 --- a/include/linux/genhd.h +++ b/include/linux/genhd.h @@ -21,8 +21,6 @@ #define dev_to_part(device) container_of((device), struct hd_struct, __dev) #define disk_to_dev(disk) (&(disk)->part0.__dev) #define part_to_dev(part) (&((part)->__dev)) -#define alias_name(disk) ((disk)->alias ? (disk)->alias : \ - (disk)->disk_name) extern struct device_type part_type; extern struct kobject *block_depr; @@ -60,7 +58,6 @@ enum { #define DISK_MAX_PARTS 256 #define DISK_NAME_LEN 32 -#define ALIAS_LEN 256 #include <linux/major.h> #include <linux/device.h> @@ -166,7 +163,6 @@ struct gendisk { * disks that can't be partitioned. */ char disk_name[DISK_NAME_LEN]; /* name of major driver */ - char *alias; /* alias name of disk */ char *(*devnode)(struct gendisk *gd, mode_t *mode); unsigned int events; /* supported events */ diff --git a/include/linux/hugetlb.h b/include/linux/hugetlb.h index 19644e0..d9d6c86 100644 --- a/include/linux/hugetlb.h +++ b/include/linux/hugetlb.h @@ -110,11 +110,6 @@ static inline void copy_huge_page(struct page *dst, struct page *src) #define hugetlb_change_protection(vma, address, end, newprot) -#ifndef HPAGE_MASK -#define HPAGE_MASK PAGE_MASK /* Keep the compiler happy */ -#define HPAGE_SIZE PAGE_SIZE -#endif - #endif /* !CONFIG_HUGETLB_PAGE */ #define HUGETLB_ANON_FILE "anon_hugepage" diff --git a/include/linux/hwspinlock.h b/include/linux/hwspinlock.h index 08a2fee..aad6bd4 100644 --- a/include/linux/hwspinlock.h +++ b/include/linux/hwspinlock.h @@ -118,7 +118,6 @@ int __hwspin_trylock(struct hwspinlock *hwlock, int mode, unsigned long *flags) static inline void __hwspin_unlock(struct hwspinlock *hwlock, int mode, unsigned long *flags) { - return 0; } static inline int hwspin_lock_get_id(struct hwspinlock *hwlock) diff --git a/include/linux/i2c.h b/include/linux/i2c.h index a81bf6d..07d103a 100644 --- a/include/linux/i2c.h +++ b/include/linux/i2c.h @@ -432,9 +432,6 @@ void i2c_unlock_adapter(struct i2c_adapter *); /* Internal numbers to terminate lists */ #define I2C_CLIENT_END 0xfffeU -/* The numbers to use to set I2C bus address */ -#define ANY_I2C_BUS 0xffff - /* Construct an I2C_CLIENT_END-terminated array of i2c addresses */ #define I2C_ADDRS(addr, addrs...) \ ((const unsigned short []){ addr, ## addrs, I2C_CLIENT_END }) diff --git a/include/linux/inet_diag.h b/include/linux/inet_diag.h index 80b480c..abf5028 100644 --- a/include/linux/inet_diag.h +++ b/include/linux/inet_diag.h @@ -98,9 +98,10 @@ enum { INET_DIAG_VEGASINFO, INET_DIAG_CONG, INET_DIAG_TOS, + INET_DIAG_TCLASS, }; -#define INET_DIAG_MAX INET_DIAG_TOS +#define INET_DIAG_MAX INET_DIAG_TCLASS /* INET_DIAG_MEM */ diff --git a/include/linux/init_task.h b/include/linux/init_task.h index 08ffab0..32574ee 100644 --- a/include/linux/init_task.h +++ b/include/linux/init_task.h @@ -126,6 +126,8 @@ extern struct cred init_cred; # define INIT_PERF_EVENTS(tsk) #endif +#define INIT_TASK_COMM "swapper" + /* * INIT_TASK is used to set up the first task table, touch at * your own risk!. Base=0, limit=0x1fffff (=2MB) @@ -162,7 +164,7 @@ extern struct cred init_cred; .group_leader = &tsk, \ RCU_INIT_POINTER(.real_cred, &init_cred), \ RCU_INIT_POINTER(.cred, &init_cred), \ - .comm = "swapper", \ + .comm = INIT_TASK_COMM, \ .thread = INIT_THREAD, \ .fs = &init_fs, \ .files = &init_files, \ @@ -184,7 +186,6 @@ extern struct cred init_cred; [PIDTYPE_SID] = INIT_PID_LINK(PIDTYPE_SID), \ }, \ .thread_group = LIST_HEAD_INIT(tsk.thread_group), \ - .dirties = INIT_PROP_LOCAL_SINGLE(dirties), \ INIT_IDS \ INIT_PERF_EVENTS(tsk) \ INIT_TRACE_IRQFLAGS \ diff --git a/include/linux/kvm.h b/include/linux/kvm.h index f47fcd3..c3892fc 100644 --- a/include/linux/kvm.h +++ b/include/linux/kvm.h @@ -555,7 +555,6 @@ struct kvm_ppc_pvinfo { #define KVM_CAP_PPC_SMT 64 #define KVM_CAP_PPC_RMA 65 #define KVM_CAP_MAX_VCPUS 66 /* returns max vcpus per vm */ -#define KVM_CAP_PPC_HIOR 67 #define KVM_CAP_PPC_PAPR 68 #define KVM_CAP_S390_GMAP 71 diff --git a/include/linux/mfd/tps65910.h b/include/linux/mfd/tps65910.h index 82b4c88..8bf2cb9 100644 --- a/include/linux/mfd/tps65910.h +++ b/include/linux/mfd/tps65910.h @@ -243,7 +243,8 @@ /*Registers VDD1, VDD2 voltage values definitions */ -#define VDD1_2_NUM_VOLTS 73 +#define VDD1_2_NUM_VOLT_FINE 73 +#define VDD1_2_NUM_VOLT_COARSE 3 #define VDD1_2_MIN_VOLT 6000 #define VDD1_2_OFFSET 125 diff --git a/include/linux/mfd/wm8994/registers.h b/include/linux/mfd/wm8994/registers.h index fae2950..83a9cae 100644 --- a/include/linux/mfd/wm8994/registers.h +++ b/include/linux/mfd/wm8994/registers.h @@ -1963,6 +1963,21 @@ #define WM8958_MICB2_DISCH_WIDTH 1 /* MICB2_DISCH */ /* + * R210 (0xD2) - Mic Detect 3 + */ +#define WM8958_MICD_LVL_MASK 0x07FC /* MICD_LVL - [10:2] */ +#define WM8958_MICD_LVL_SHIFT 2 /* MICD_LVL - [10:2] */ +#define WM8958_MICD_LVL_WIDTH 9 /* MICD_LVL - [10:2] */ +#define WM8958_MICD_VALID 0x0002 /* MICD_VALID */ +#define WM8958_MICD_VALID_MASK 0x0002 /* MICD_VALID */ +#define WM8958_MICD_VALID_SHIFT 1 /* MICD_VALID */ +#define WM8958_MICD_VALID_WIDTH 1 /* MICD_VALID */ +#define WM8958_MICD_STS 0x0001 /* MICD_STS */ +#define WM8958_MICD_STS_MASK 0x0001 /* MICD_STS */ +#define WM8958_MICD_STS_SHIFT 0 /* MICD_STS */ +#define WM8958_MICD_STS_WIDTH 1 /* MICD_STS */ + +/* * R76 (0x4C) - Charge Pump (1) */ #define WM8994_CP_ENA 0x8000 /* CP_ENA */ diff --git a/include/linux/mm.h b/include/linux/mm.h index 3dc3a8c..4baadd1 100644 --- a/include/linux/mm.h +++ b/include/linux/mm.h @@ -10,6 +10,7 @@ #include <linux/mmzone.h> #include <linux/rbtree.h> #include <linux/prio_tree.h> +#include <linux/atomic.h> #include <linux/debug_locks.h> #include <linux/mm_types.h> #include <linux/range.h> diff --git a/include/linux/netdevice.h b/include/linux/netdevice.h index cbeb586..a82ad4d 100644 --- a/include/linux/netdevice.h +++ b/include/linux/netdevice.h @@ -2536,6 +2536,8 @@ extern void net_disable_timestamp(void); extern void *dev_seq_start(struct seq_file *seq, loff_t *pos); extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos); extern void dev_seq_stop(struct seq_file *seq, void *v); +extern int dev_seq_open_ops(struct inode *inode, struct file *file, + const struct seq_operations *ops); #endif extern int netdev_class_create_file(struct class_attribute *class_attr); diff --git a/include/linux/nfs_fs.h b/include/linux/nfs_fs.h index ab2c634..92ecf55 100644 --- a/include/linux/nfs_fs.h +++ b/include/linux/nfs_fs.h @@ -410,6 +410,9 @@ extern const struct inode_operations nfs_file_inode_operations; extern const struct inode_operations nfs3_file_inode_operations; #endif /* CONFIG_NFS_V3 */ extern const struct file_operations nfs_file_operations; +#ifdef CONFIG_NFS_V4 +extern const struct file_operations nfs4_file_operations; +#endif /* CONFIG_NFS_V4 */ extern const struct address_space_operations nfs_file_aops; extern const struct address_space_operations nfs_dir_aops; diff --git a/include/linux/nfs_xdr.h b/include/linux/nfs_xdr.h index c74595b..2a7c533 100644 --- a/include/linux/nfs_xdr.h +++ b/include/linux/nfs_xdr.h @@ -1192,6 +1192,7 @@ struct nfs_rpc_ops { const struct dentry_operations *dentry_ops; const struct inode_operations *dir_inode_ops; const struct inode_operations *file_inode_ops; + const struct file_operations *file_ops; int (*getroot) (struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *); diff --git a/include/linux/pci-ats.h b/include/linux/pci-ats.h index e3d0b38..7ef6872 100644 --- a/include/linux/pci-ats.h +++ b/include/linux/pci-ats.h @@ -12,7 +12,7 @@ struct pci_ats { unsigned int is_enabled:1; /* Enable bit is set */ }; -#ifdef CONFIG_PCI_IOV +#ifdef CONFIG_PCI_ATS extern int pci_enable_ats(struct pci_dev *dev, int ps); extern void pci_disable_ats(struct pci_dev *dev); @@ -29,7 +29,7 @@ static inline int pci_ats_enabled(struct pci_dev *dev) return dev->ats && dev->ats->is_enabled; } -#else /* CONFIG_PCI_IOV */ +#else /* CONFIG_PCI_ATS */ static inline int pci_enable_ats(struct pci_dev *dev, int ps) { @@ -50,7 +50,7 @@ static inline int pci_ats_enabled(struct pci_dev *dev) return 0; } -#endif /* CONFIG_PCI_IOV */ +#endif /* CONFIG_PCI_ATS */ #ifdef CONFIG_PCI_PRI diff --git a/include/linux/pci.h b/include/linux/pci.h index 337df0d..7cda65b 100644 --- a/include/linux/pci.h +++ b/include/linux/pci.h @@ -338,7 +338,7 @@ struct pci_dev { struct list_head msi_list; #endif struct pci_vpd *vpd; -#ifdef CONFIG_PCI_IOV +#ifdef CONFIG_PCI_ATS union { struct pci_sriov *sriov; /* SR-IOV capability related */ struct pci_dev *physfn; /* the PF this VF is associated with */ diff --git a/include/linux/pci_ids.h b/include/linux/pci_ids.h index 3fdf251..2aaee0c 100644 --- a/include/linux/pci_ids.h +++ b/include/linux/pci_ids.h @@ -517,8 +517,12 @@ #define PCI_DEVICE_ID_AMD_11H_NB_DRAM 0x1302 #define PCI_DEVICE_ID_AMD_11H_NB_MISC 0x1303 #define PCI_DEVICE_ID_AMD_11H_NB_LINK 0x1304 +#define PCI_DEVICE_ID_AMD_15H_NB_F0 0x1600 +#define PCI_DEVICE_ID_AMD_15H_NB_F1 0x1601 +#define PCI_DEVICE_ID_AMD_15H_NB_F2 0x1602 #define PCI_DEVICE_ID_AMD_15H_NB_F3 0x1603 #define PCI_DEVICE_ID_AMD_15H_NB_F4 0x1604 +#define PCI_DEVICE_ID_AMD_15H_NB_F5 0x1605 #define PCI_DEVICE_ID_AMD_CNB17H_F3 0x1703 #define PCI_DEVICE_ID_AMD_LANCE 0x2000 #define PCI_DEVICE_ID_AMD_LANCE_HOME 0x2001 @@ -2405,6 +2409,8 @@ #define PCI_VENDOR_ID_AZWAVE 0x1a3b +#define PCI_VENDOR_ID_ASMEDIA 0x1b21 + #define PCI_VENDOR_ID_TEKRAM 0x1de1 #define PCI_DEVICE_ID_TEKRAM_DC290 0xdc29 diff --git a/include/linux/perf_event.h b/include/linux/perf_event.h index 1e9ebe5..b1f8912 100644 --- a/include/linux/perf_event.h +++ b/include/linux/perf_event.h @@ -822,6 +822,7 @@ struct perf_event { int mmap_locked; struct user_struct *mmap_user; struct ring_buffer *rb; + struct list_head rb_entry; /* poll related */ wait_queue_head_t waitq; diff --git a/include/linux/pinctrl/pinctrl.h b/include/linux/pinctrl/pinctrl.h index 3605e94..04c0110 100644 --- a/include/linux/pinctrl/pinctrl.h +++ b/include/linux/pinctrl/pinctrl.h @@ -121,6 +121,7 @@ extern const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev); extern void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev); #else +struct pinctrl_dev; /* Sufficiently stupid default function when pinctrl is not in use */ static inline bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) diff --git a/include/linux/pkt_sched.h b/include/linux/pkt_sched.h index c533670..7281d5a 100644 --- a/include/linux/pkt_sched.h +++ b/include/linux/pkt_sched.h @@ -30,7 +30,7 @@ */ struct tc_stats { - __u64 bytes; /* NUmber of enqueues bytes */ + __u64 bytes; /* Number of enqueued bytes */ __u32 packets; /* Number of enqueued packets */ __u32 drops; /* Packets dropped because of lack of resources */ __u32 overlimits; /* Number of throttle events when this @@ -297,7 +297,7 @@ struct tc_htb_glob { __u32 debug; /* debug flags */ /* stats */ - __u32 direct_pkts; /* count of non shapped packets */ + __u32 direct_pkts; /* count of non shaped packets */ }; enum { TCA_HTB_UNSPEC, @@ -503,7 +503,7 @@ enum { }; #define NETEM_LOSS_MAX (__NETEM_LOSS_MAX - 1) -/* State transition probablities for 4 state model */ +/* State transition probabilities for 4 state model */ struct tc_netem_gimodel { __u32 p13; __u32 p31; diff --git a/include/linux/pm.h b/include/linux/pm.h index f15acb6..3f3ed83 100644 --- a/include/linux/pm.h +++ b/include/linux/pm.h @@ -54,118 +54,145 @@ typedef struct pm_message { /** * struct dev_pm_ops - device PM callbacks * - * Several driver power state transitions are externally visible, affecting + * Several device power state transitions are externally visible, affecting * the state of pending I/O queues and (for drivers that touch hardware) * interrupts, wakeups, DMA, and other hardware state. There may also be - * internal transitions to various low power modes, which are transparent + * internal transitions to various low-power modes which are transparent * to the rest of the driver stack (such as a driver that's ON gating off * clocks which are not in active use). * - * The externally visible transitions are handled with the help of the following - * callbacks included in this structure: - * - * @prepare: Prepare the device for the upcoming transition, but do NOT change - * its hardware state. Prevent new children of the device from being - * registered after @prepare() returns (the driver's subsystem and - * generally the rest of the kernel is supposed to prevent new calls to the - * probe method from being made too once @prepare() has succeeded). If - * @prepare() detects a situation it cannot handle (e.g. registration of a - * child already in progress), it may return -EAGAIN, so that the PM core - * can execute it once again (e.g. after the new child has been registered) - * to recover from the race condition. This method is executed for all - * kinds of suspend transitions and is followed by one of the suspend - * callbacks: @suspend(), @freeze(), or @poweroff(). - * The PM core executes @prepare() for all devices before starting to - * execute suspend callbacks for any of them, so drivers may assume all of - * the other devices to be present and functional while @prepare() is being - * executed. In particular, it is safe to make GFP_KERNEL memory - * allocations from within @prepare(). However, drivers may NOT assume - * anything about the availability of the user space at that time and it - * is not correct to request firmware from within @prepare() (it's too - * late to do that). [To work around this limitation, drivers may - * register suspend and hibernation notifiers that are executed before the - * freezing of tasks.] + * The externally visible transitions are handled with the help of callbacks + * included in this structure in such a way that two levels of callbacks are + * involved. First, the PM core executes callbacks provided by PM domains, + * device types, classes and bus types. They are the subsystem-level callbacks + * supposed to execute callbacks provided by device drivers, although they may + * choose not to do that. If the driver callbacks are executed, they have to + * collaborate with the subsystem-level callbacks to achieve the goals + * appropriate for the given system transition, given transition phase and the + * subsystem the device belongs to. + * + * @prepare: The principal role of this callback is to prevent new children of + * the device from being registered after it has returned (the driver's + * subsystem and generally the rest of the kernel is supposed to prevent + * new calls to the probe method from being made too once @prepare() has + * succeeded). If @prepare() detects a situation it cannot handle (e.g. + * registration of a child already in progress), it may return -EAGAIN, so + * that the PM core can execute it once again (e.g. after a new child has + * been registered) to recover from the race condition. + * This method is executed for all kinds of suspend transitions and is + * followed by one of the suspend callbacks: @suspend(), @freeze(), or + * @poweroff(). The PM core executes subsystem-level @prepare() for all + * devices before starting to invoke suspend callbacks for any of them, so + * generally devices may be assumed to be functional or to respond to + * runtime resume requests while @prepare() is being executed. However, + * device drivers may NOT assume anything about the availability of user + * space at that time and it is NOT valid to request firmware from within + * @prepare() (it's too late to do that). It also is NOT valid to allocate + * substantial amounts of memory from @prepare() in the GFP_KERNEL mode. + * [To work around these limitations, drivers may register suspend and + * hibernation notifiers to be executed before the freezing of tasks.] * * @complete: Undo the changes made by @prepare(). This method is executed for * all kinds of resume transitions, following one of the resume callbacks: * @resume(), @thaw(), @restore(). Also called if the state transition - * fails before the driver's suspend callback (@suspend(), @freeze(), - * @poweroff()) can be executed (e.g. if the suspend callback fails for one + * fails before the driver's suspend callback: @suspend(), @freeze() or + * @poweroff(), can be executed (e.g. if the suspend callback fails for one * of the other devices that the PM core has unsuccessfully attempted to * suspend earlier). - * The PM core executes @complete() after it has executed the appropriate - * resume callback for all devices. + * The PM core executes subsystem-level @complete() after it has executed + * the appropriate resume callbacks for all devices. * * @suspend: Executed before putting the system into a sleep state in which the - * contents of main memory are preserved. Quiesce the device, put it into - * a low power state appropriate for the upcoming system state (such as - * PCI_D3hot), and enable wakeup events as appropriate. + * contents of main memory are preserved. The exact action to perform + * depends on the device's subsystem (PM domain, device type, class or bus + * type), but generally the device must be quiescent after subsystem-level + * @suspend() has returned, so that it doesn't do any I/O or DMA. + * Subsystem-level @suspend() is executed for all devices after invoking + * subsystem-level @prepare() for all of them. * * @resume: Executed after waking the system up from a sleep state in which the - * contents of main memory were preserved. Put the device into the - * appropriate state, according to the information saved in memory by the - * preceding @suspend(). The driver starts working again, responding to - * hardware events and software requests. The hardware may have gone - * through a power-off reset, or it may have maintained state from the - * previous suspend() which the driver may rely on while resuming. On most - * platforms, there are no restrictions on availability of resources like - * clocks during @resume(). + * contents of main memory were preserved. The exact action to perform + * depends on the device's subsystem, but generally the driver is expected + * to start working again, responding to hardware events and software + * requests (the device itself may be left in a low-power state, waiting + * for a runtime resume to occur). The state of the device at the time its + * driver's @resume() callback is run depends on the platform and subsystem + * the device belongs to. On most platforms, there are no restrictions on + * availability of resources like clocks during @resume(). + * Subsystem-level @resume() is executed for all devices after invoking + * subsystem-level @resume_noirq() for all of them. * * @freeze: Hibernation-specific, executed before creating a hibernation image. - * Quiesce operations so that a consistent image can be created, but do NOT - * otherwise put the device into a low power device state and do NOT emit - * system wakeup events. Save in main memory the device settings to be - * used by @restore() during the subsequent resume from hibernation or by - * the subsequent @thaw(), if the creation of the image or the restoration - * of main memory contents from it fails. + * Analogous to @suspend(), but it should not enable the device to signal + * wakeup events or change its power state. The majority of subsystems + * (with the notable exception of the PCI bus type) expect the driver-level + * @freeze() to save the device settings in memory to be used by @restore() + * during the subsequent resume from hibernation. + * Subsystem-level @freeze() is executed for all devices after invoking + * subsystem-level @prepare() for all of them. * * @thaw: Hibernation-specific, executed after creating a hibernation image OR - * if the creation of the image fails. Also executed after a failing + * if the creation of an image has failed. Also executed after a failing * attempt to restore the contents of main memory from such an image. * Undo the changes made by the preceding @freeze(), so the device can be * operated in the same way as immediately before the call to @freeze(). + * Subsystem-level @thaw() is executed for all devices after invoking + * subsystem-level @thaw_noirq() for all of them. It also may be executed + * directly after @freeze() in case of a transition error. * * @poweroff: Hibernation-specific, executed after saving a hibernation image. - * Quiesce the device, put it into a low power state appropriate for the - * upcoming system state (such as PCI_D3hot), and enable wakeup events as - * appropriate. + * Analogous to @suspend(), but it need not save the device's settings in + * memory. + * Subsystem-level @poweroff() is executed for all devices after invoking + * subsystem-level @prepare() for all of them. * * @restore: Hibernation-specific, executed after restoring the contents of main - * memory from a hibernation image. Driver starts working again, - * responding to hardware events and software requests. Drivers may NOT - * make ANY assumptions about the hardware state right prior to @restore(). - * On most platforms, there are no restrictions on availability of - * resources like clocks during @restore(). - * - * @suspend_noirq: Complete the operations of ->suspend() by carrying out any - * actions required for suspending the device that need interrupts to be - * disabled - * - * @resume_noirq: Prepare for the execution of ->resume() by carrying out any - * actions required for resuming the device that need interrupts to be - * disabled - * - * @freeze_noirq: Complete the operations of ->freeze() by carrying out any - * actions required for freezing the device that need interrupts to be - * disabled - * - * @thaw_noirq: Prepare for the execution of ->thaw() by carrying out any - * actions required for thawing the device that need interrupts to be - * disabled - * - * @poweroff_noirq: Complete the operations of ->poweroff() by carrying out any - * actions required for handling the device that need interrupts to be - * disabled - * - * @restore_noirq: Prepare for the execution of ->restore() by carrying out any - * actions required for restoring the operations of the device that need - * interrupts to be disabled + * memory from a hibernation image, analogous to @resume(). + * + * @suspend_noirq: Complete the actions started by @suspend(). Carry out any + * additional operations required for suspending the device that might be + * racing with its driver's interrupt handler, which is guaranteed not to + * run while @suspend_noirq() is being executed. + * It generally is expected that the device will be in a low-power state + * (appropriate for the target system sleep state) after subsystem-level + * @suspend_noirq() has returned successfully. If the device can generate + * system wakeup signals and is enabled to wake up the system, it should be + * configured to do so at that time. However, depending on the platform + * and device's subsystem, @suspend() may be allowed to put the device into + * the low-power state and configure it to generate wakeup signals, in + * which case it generally is not necessary to define @suspend_noirq(). + * + * @resume_noirq: Prepare for the execution of @resume() by carrying out any + * operations required for resuming the device that might be racing with + * its driver's interrupt handler, which is guaranteed not to run while + * @resume_noirq() is being executed. + * + * @freeze_noirq: Complete the actions started by @freeze(). Carry out any + * additional operations required for freezing the device that might be + * racing with its driver's interrupt handler, which is guaranteed not to + * run while @freeze_noirq() is being executed. + * The power state of the device should not be changed by either @freeze() + * or @freeze_noirq() and it should not be configured to signal system + * wakeup by any of these callbacks. + * + * @thaw_noirq: Prepare for the execution of @thaw() by carrying out any + * operations required for thawing the device that might be racing with its + * driver's interrupt handler, which is guaranteed not to run while + * @thaw_noirq() is being executed. + * + * @poweroff_noirq: Complete the actions started by @poweroff(). Analogous to + * @suspend_noirq(), but it need not save the device's settings in memory. + * + * @restore_noirq: Prepare for the execution of @restore() by carrying out any + * operations required for thawing the device that might be racing with its + * driver's interrupt handler, which is guaranteed not to run while + * @restore_noirq() is being executed. Analogous to @resume_noirq(). * * All of the above callbacks, except for @complete(), return error codes. * However, the error codes returned by the resume operations, @resume(), - * @thaw(), @restore(), @resume_noirq(), @thaw_noirq(), and @restore_noirq() do + * @thaw(), @restore(), @resume_noirq(), @thaw_noirq(), and @restore_noirq(), do * not cause the PM core to abort the resume transition during which they are - * returned. The error codes returned in that cases are only printed by the PM + * returned. The error codes returned in those cases are only printed by the PM * core to the system logs for debugging purposes. Still, it is recommended * that drivers only return error codes from their resume methods in case of an * unrecoverable failure (i.e. when the device being handled refuses to resume @@ -174,31 +201,43 @@ typedef struct pm_message { * their children. * * It is allowed to unregister devices while the above callbacks are being - * executed. However, it is not allowed to unregister a device from within any - * of its own callbacks. + * executed. However, a callback routine must NOT try to unregister the device + * it was called for, although it may unregister children of that device (for + * example, if it detects that a child was unplugged while the system was + * asleep). + * + * Refer to Documentation/power/devices.txt for more information about the role + * of the above callbacks in the system suspend process. * - * There also are the following callbacks related to run-time power management - * of devices: + * There also are callbacks related to runtime power management of devices. + * Again, these callbacks are executed by the PM core only for subsystems + * (PM domains, device types, classes and bus types) and the subsystem-level + * callbacks are supposed to invoke the driver callbacks. Moreover, the exact + * actions to be performed by a device driver's callbacks generally depend on + * the platform and subsystem the device belongs to. * * @runtime_suspend: Prepare the device for a condition in which it won't be * able to communicate with the CPU(s) and RAM due to power management. - * This need not mean that the device should be put into a low power state. + * This need not mean that the device should be put into a low-power state. * For example, if the device is behind a link which is about to be turned * off, the device may remain at full power. If the device does go to low - * power and is capable of generating run-time wake-up events, remote - * wake-up (i.e., a hardware mechanism allowing the device to request a - * change of its power state via a wake-up event, such as PCI PME) should - * be enabled for it. + * power and is capable of generating runtime wakeup events, remote wakeup + * (i.e., a hardware mechanism allowing the device to request a change of + * its power state via an interrupt) should be enabled for it. * * @runtime_resume: Put the device into the fully active state in response to a - * wake-up event generated by hardware or at the request of software. If - * necessary, put the device into the full power state and restore its + * wakeup event generated by hardware or at the request of software. If + * necessary, put the device into the full-power state and restore its * registers, so that it is fully operational. * - * @runtime_idle: Device appears to be inactive and it might be put into a low - * power state if all of the necessary conditions are satisfied. Check + * @runtime_idle: Device appears to be inactive and it might be put into a + * low-power state if all of the necessary conditions are satisfied. Check * these conditions and handle the device as appropriate, possibly queueing * a suspend request for it. The return value is ignored by the PM core. + * + * Refer to Documentation/power/runtime_pm.txt for more information about the + * role of the above callbacks in device runtime power management. + * */ struct dev_pm_ops { @@ -447,6 +486,7 @@ struct dev_pm_info { unsigned int async_suspend:1; bool is_prepared:1; /* Owned by the PM core */ bool is_suspended:1; /* Ditto */ + bool ignore_children:1; spinlock_t lock; #ifdef CONFIG_PM_SLEEP struct list_head entry; @@ -464,7 +504,6 @@ struct dev_pm_info { atomic_t usage_count; atomic_t child_count; unsigned int disable_depth:3; - unsigned int ignore_children:1; unsigned int idle_notification:1; unsigned int request_pending:1; unsigned int deferred_resume:1; diff --git a/include/linux/pm_runtime.h b/include/linux/pm_runtime.h index d8d9036..d3085e7 100644 --- a/include/linux/pm_runtime.h +++ b/include/linux/pm_runtime.h @@ -52,11 +52,6 @@ static inline bool pm_children_suspended(struct device *dev) || !atomic_read(&dev->power.child_count); } -static inline void pm_suspend_ignore_children(struct device *dev, bool enable) -{ - dev->power.ignore_children = enable; -} - static inline void pm_runtime_get_noresume(struct device *dev) { atomic_inc(&dev->power.usage_count); @@ -130,7 +125,6 @@ static inline void pm_runtime_allow(struct device *dev) {} static inline void pm_runtime_forbid(struct device *dev) {} static inline bool pm_children_suspended(struct device *dev) { return false; } -static inline void pm_suspend_ignore_children(struct device *dev, bool en) {} static inline void pm_runtime_get_noresume(struct device *dev) {} static inline void pm_runtime_put_noidle(struct device *dev) {} static inline bool device_run_wake(struct device *dev) { return false; } diff --git a/include/linux/pstore.h b/include/linux/pstore.h index ea56732..2ca8cde 100644 --- a/include/linux/pstore.h +++ b/include/linux/pstore.h @@ -35,10 +35,12 @@ struct pstore_info { spinlock_t buf_lock; /* serialize access to 'buf' */ char *buf; size_t bufsize; + struct mutex read_mutex; /* serialize open/read/close */ int (*open)(struct pstore_info *psi); int (*close)(struct pstore_info *psi); ssize_t (*read)(u64 *id, enum pstore_type_id *type, - struct timespec *time, struct pstore_info *psi); + struct timespec *time, char **buf, + struct pstore_info *psi); int (*write)(enum pstore_type_id type, u64 *id, unsigned int part, size_t size, struct pstore_info *psi); int (*erase)(enum pstore_type_id type, u64 id, diff --git a/include/linux/sched.h b/include/linux/sched.h index 68daf4f..1c4f3e9 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -1521,7 +1521,6 @@ struct task_struct { #ifdef CONFIG_FAULT_INJECTION int make_it_fail; #endif - struct prop_local_single dirties; /* * when (nr_dirtied >= nr_dirtied_pause), it's time to call * balance_dirty_pages() for some dirty throttling pause diff --git a/include/linux/serial.h b/include/linux/serial.h index 97ff8e2..3d86517 100644 --- a/include/linux/serial.h +++ b/include/linux/serial.h @@ -207,13 +207,15 @@ struct serial_icounter_struct { struct serial_rs485 { __u32 flags; /* RS485 feature flags */ -#define SER_RS485_ENABLED (1 << 0) -#define SER_RS485_RTS_ON_SEND (1 << 1) -#define SER_RS485_RTS_AFTER_SEND (1 << 2) -#define SER_RS485_RTS_BEFORE_SEND (1 << 3) +#define SER_RS485_ENABLED (1 << 0) /* If enabled */ +#define SER_RS485_RTS_ON_SEND (1 << 1) /* Logical level for + RTS pin when + sending */ +#define SER_RS485_RTS_AFTER_SEND (1 << 2) /* Logical level for + RTS pin after sent*/ #define SER_RS485_RX_DURING_TX (1 << 4) - __u32 delay_rts_before_send; /* Milliseconds */ - __u32 delay_rts_after_send; /* Milliseconds */ + __u32 delay_rts_before_send; /* Delay before send (milliseconds) */ + __u32 delay_rts_after_send; /* Delay after send (milliseconds) */ __u32 padding[5]; /* Memory is cheap, new structs are a royal PITA .. */ }; diff --git a/include/linux/serial_sci.h b/include/linux/serial_sci.h index 0efa1f1..369273a 100644 --- a/include/linux/serial_sci.h +++ b/include/linux/serial_sci.h @@ -67,6 +67,7 @@ enum { SCIx_IRDA_REGTYPE, SCIx_SCIFA_REGTYPE, SCIx_SCIFB_REGTYPE, + SCIx_SH2_SCIF_FIFODATA_REGTYPE, SCIx_SH3_SCIF_REGTYPE, SCIx_SH4_SCIF_REGTYPE, SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE, diff --git a/include/linux/sh_clk.h b/include/linux/sh_clk.h index 3ccf186..a20831c 100644 --- a/include/linux/sh_clk.h +++ b/include/linux/sh_clk.h @@ -52,7 +52,6 @@ struct clk { unsigned long arch_flags; void *priv; - struct dentry *dentry; struct clk_mapping *mapping; struct cpufreq_frequency_table *freq_table; unsigned int nr_freqs; @@ -94,6 +93,9 @@ int clk_rate_table_find(struct clk *clk, long clk_rate_div_range_round(struct clk *clk, unsigned int div_min, unsigned int div_max, unsigned long rate); +long clk_rate_mult_range_round(struct clk *clk, unsigned int mult_min, + unsigned int mult_max, unsigned long rate); + long clk_round_parent(struct clk *clk, unsigned long target, unsigned long *best_freq, unsigned long *parent_freq, unsigned int div_min, unsigned int div_max); diff --git a/include/linux/sh_pfc.h b/include/linux/sh_pfc.h index bc8c920..8446789 100644 --- a/include/linux/sh_pfc.h +++ b/include/linux/sh_pfc.h @@ -104,4 +104,80 @@ struct pinmux_info { int register_pinmux(struct pinmux_info *pip); int unregister_pinmux(struct pinmux_info *pip); +/* helper macro for port */ +#define PORT_1(fn, pfx, sfx) fn(pfx, sfx) + +#define PORT_10(fn, pfx, sfx) \ + PORT_1(fn, pfx##0, sfx), PORT_1(fn, pfx##1, sfx), \ + PORT_1(fn, pfx##2, sfx), PORT_1(fn, pfx##3, sfx), \ + PORT_1(fn, pfx##4, sfx), PORT_1(fn, pfx##5, sfx), \ + PORT_1(fn, pfx##6, sfx), PORT_1(fn, pfx##7, sfx), \ + PORT_1(fn, pfx##8, sfx), PORT_1(fn, pfx##9, sfx) + +#define PORT_90(fn, pfx, sfx) \ + PORT_10(fn, pfx##1, sfx), PORT_10(fn, pfx##2, sfx), \ + PORT_10(fn, pfx##3, sfx), PORT_10(fn, pfx##4, sfx), \ + PORT_10(fn, pfx##5, sfx), PORT_10(fn, pfx##6, sfx), \ + PORT_10(fn, pfx##7, sfx), PORT_10(fn, pfx##8, sfx), \ + PORT_10(fn, pfx##9, sfx) + +#define _PORT_ALL(pfx, sfx) pfx##_##sfx +#define _GPIO_PORT(pfx, sfx) PINMUX_GPIO(GPIO_PORT##pfx, PORT##pfx##_DATA) +#define PORT_ALL(str) CPU_ALL_PORT(_PORT_ALL, PORT, str) +#define GPIO_PORT_ALL() CPU_ALL_PORT(_GPIO_PORT, , unused) +#define GPIO_FN(str) PINMUX_GPIO(GPIO_FN_##str, str##_MARK) + +/* helper macro for pinmux_enum_t */ +#define PORT_DATA_I(nr) \ + PINMUX_DATA(PORT##nr##_DATA, PORT##nr##_FN0, PORT##nr##_IN) + +#define PORT_DATA_I_PD(nr) \ + PINMUX_DATA(PORT##nr##_DATA, PORT##nr##_FN0, \ + PORT##nr##_IN, PORT##nr##_IN_PD) + +#define PORT_DATA_I_PU(nr) \ + PINMUX_DATA(PORT##nr##_DATA, PORT##nr##_FN0, \ + PORT##nr##_IN, PORT##nr##_IN_PU) + +#define PORT_DATA_I_PU_PD(nr) \ + PINMUX_DATA(PORT##nr##_DATA, PORT##nr##_FN0, \ + PORT##nr##_IN, PORT##nr##_IN_PD, PORT##nr##_IN_PU) + +#define PORT_DATA_O(nr) \ + PINMUX_DATA(PORT##nr##_DATA, PORT##nr##_FN0, PORT##nr##_OUT) + +#define PORT_DATA_IO(nr) \ + PINMUX_DATA(PORT##nr##_DATA, PORT##nr##_FN0, PORT##nr##_OUT, \ + PORT##nr##_IN) + +#define PORT_DATA_IO_PD(nr) \ + PINMUX_DATA(PORT##nr##_DATA, PORT##nr##_FN0, PORT##nr##_OUT, \ + PORT##nr##_IN, PORT##nr##_IN_PD) + +#define PORT_DATA_IO_PU(nr) \ + PINMUX_DATA(PORT##nr##_DATA, PORT##nr##_FN0, PORT##nr##_OUT, \ + PORT##nr##_IN, PORT##nr##_IN_PU) + +#define PORT_DATA_IO_PU_PD(nr) \ + PINMUX_DATA(PORT##nr##_DATA, PORT##nr##_FN0, PORT##nr##_OUT, \ + PORT##nr##_IN, PORT##nr##_IN_PD, PORT##nr##_IN_PU) + +/* helper macro for top 4 bits in PORTnCR */ +#define _PCRH(in, in_pd, in_pu, out) \ + 0, (out), (in), 0, \ + 0, 0, 0, 0, \ + 0, 0, (in_pd), 0, \ + 0, 0, (in_pu), 0 + +#define PORTCR(nr, reg) \ + { \ + PINMUX_CFG_REG("PORT" nr "CR", reg, 8, 4) { \ + _PCRH(PORT##nr##_IN, PORT##nr##_IN_PD, \ + PORT##nr##_IN_PU, PORT##nr##_OUT), \ + PORT##nr##_FN0, PORT##nr##_FN1, \ + PORT##nr##_FN2, PORT##nr##_FN3, \ + PORT##nr##_FN4, PORT##nr##_FN5, \ + PORT##nr##_FN6, PORT##nr##_FN7 } \ + } + #endif /* __SH_PFC_H */ diff --git a/include/linux/shrinker.h b/include/linux/shrinker.h index a83833a..07ceb97 100644 --- a/include/linux/shrinker.h +++ b/include/linux/shrinker.h @@ -35,7 +35,7 @@ struct shrinker { /* These are for internal use */ struct list_head list; - long nr; /* objs pending delete */ + atomic_long_t nr_in_batch; /* objs pending delete */ }; #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ extern void register_shrinker(struct shrinker *); diff --git a/include/linux/sigma.h b/include/linux/sigma.h index e2accb3..d0de882 100644 --- a/include/linux/sigma.h +++ b/include/linux/sigma.h @@ -24,7 +24,7 @@ struct sigma_firmware { struct sigma_firmware_header { unsigned char magic[7]; u8 version; - u32 crc; + __le32 crc; }; enum { @@ -40,19 +40,14 @@ enum { struct sigma_action { u8 instr; u8 len_hi; - u16 len; - u16 addr; + __le16 len; + __be16 addr; unsigned char payload[]; }; static inline u32 sigma_action_len(struct sigma_action *sa) { - return (sa->len_hi << 16) | sa->len; -} - -static inline size_t sigma_action_size(struct sigma_action *sa, u32 payload_len) -{ - return sizeof(*sa) + payload_len + (payload_len % 2); + return (sa->len_hi << 16) | le16_to_cpu(sa->len); } extern int process_sigma_firmware(struct i2c_client *client, const char *name); diff --git a/include/linux/virtio_config.h b/include/linux/virtio_config.h index add4790..e9e72bd 100644 --- a/include/linux/virtio_config.h +++ b/include/linux/virtio_config.h @@ -85,6 +85,8 @@ * @reset: reset the device * vdev: the virtio device * After this, status and feature negotiation must be done again + * Device must not be reset from its vq/config callbacks, or in + * parallel with being added/removed. * @find_vqs: find virtqueues and instantiate them. * vdev: the virtio_device * nvqs: the number of virtqueues to find diff --git a/include/linux/virtio_mmio.h b/include/linux/virtio_mmio.h index 27c7ede..5c7b6f0 100644 --- a/include/linux/virtio_mmio.h +++ b/include/linux/virtio_mmio.h @@ -63,7 +63,7 @@ #define VIRTIO_MMIO_GUEST_FEATURES 0x020 /* Activated features set selector - Write Only */ -#define VIRTIO_MMIO_GUEST_FEATURES_SET 0x024 +#define VIRTIO_MMIO_GUEST_FEATURES_SEL 0x024 /* Guest's memory page size in bytes - Write Only */ #define VIRTIO_MMIO_GUEST_PAGE_SIZE 0x028 diff --git a/include/linux/vmalloc.h b/include/linux/vmalloc.h index 687fb11..4bde182 100644 --- a/include/linux/vmalloc.h +++ b/include/linux/vmalloc.h @@ -119,7 +119,7 @@ unmap_kernel_range(unsigned long addr, unsigned long size) #endif /* Allocate/destroy a 'vmalloc' VM area. */ -extern struct vm_struct *alloc_vm_area(size_t size); +extern struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes); extern void free_vm_area(struct vm_struct *area); /* for /dev/kmem */ |