Age | Commit message (Collapse) | Author |
|
Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
in commit 7230c5644188cd9e3fb380cc97dde00c464a3ba7
"powerpc: Rework lazy-interrupt handling"
I introduced a regression, accidentally calling irq tracing twice
and not properly restoring a clobbered register (r7) later used
for writing to the MSR.
This caused lockups when booting on a G5 with lockdep enabled.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
|
|
The current code soft-disables, and then goes to NAP mode which
turns interrupts on. That means that if an interrupt occurs, we
will hit the masked interrupt code path which isn't what we want,
as it will return with EE off, which will either get us out of
NAP mode, or fail to enter it (according to spec).
Instead, let's just rely on the fact that it is safe to take
decrementer interrupts on an offline CPU and leave interrupts
enabled. We can also get rid of the special case in asm for
power4_cpu_offline_powersave() and just use power4_idle().
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
This allows "hotplugging" of CPUs on G5 machines. CPUs that are
disabled are put into an idle loop with the decrementer frequency set
to minimum. To wake them up again we kick them just like when bringing
them up. To stop those CPUs from messing with any global state we stop
them from entering the timer interrupt.
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This implements a lazy strategy for disabling interrupts. This means
that local_irq_disable() et al. just clear the 'interrupts are
enabled' flag in the paca. If an interrupt comes along, the interrupt
entry code notices that interrupts are supposed to be disabled, and
clears the EE bit in SRR1, clears the 'interrupts are hard-enabled'
flag in the paca, and returns. This means that interrupts only
actually get disabled in the processor when an interrupt comes along.
When interrupts are enabled by local_irq_enable() et al., the code
sets the interrupts-enabled flag in the paca, and then checks whether
interrupts got hard-disabled. If so, it also sets the EE bit in the
MSR to hard-enable the interrupts.
This has the potential to improve performance, and also makes it
easier to make a kernel that can boot on iSeries and on other 64-bit
machines, since this lazy-disable strategy is very similar to the
soft-disable strategy that iSeries already uses.
This version renames paca->proc_enabled to paca->soft_enabled, and
changes a couple of soft-disables in the kexec code to hard-disables,
which should fix the crash that Michael Ellerman saw. This doesn't
yet use a reserved CR field for the soft_enabled and hard_enabled
flags. This applies on top of Stephen Rothwell's patches to make it
possible to build a combined iSeries/other kernel.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
|
|
We weren't using the recommended sequence for putting the CPU into
nap mode. When I changed the idle loop, for some reason 7447A cpus
started hanging when we put them into nap mode. Changing to the
recommended sequence fixes that.
The complexity here is that the recommended sequence is a loop that
keeps putting the cpu back into nap mode. Clearly we need some way
to break out of the loop when an interrupt (external interrupt,
decrementer, performance monitor) occurs. Here we use a bit in
the thread_info struct to indicate that we need this, and the exception
entry code notices this and arranges for the exception to return
to the value in the link register, thus breaking out of the loop.
We use a new `local_flags' field in the thread_info which we can
alter without needing to use an atomic update sequence.
The PPC970 has the same recommended sequence, so we do the same thing
there too.
This also fixes a bug in the kernel stack overflow handling code on
32-bit, since it was causing a value that we needed in a register to
get trashed.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This fixes a mistake I made when editing these functions - when I
took out the interrupt disabling code (because interrupts are now
disabled by the caller) I left the register that is used for the MSR
value to be used during doze/nap uninitialized. This fixes it.
Also updated some of the comments in idle_power4.S and removed some
code that was copied over from idle_6xx.S but is no longer relevant
(we don't ever clear the CPU_FTR_CAN_NAP bit at runtime for POWER4).
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This unifies the 32-bit (ARCH=ppc and ARCH=powerpc) and 64-bit idle
loops. It brings over the concept of having a ppc_md.power_save
function from 32-bit to ARCH=powerpc, which lets us get rid of
native_idle(). With this we will also be able to simplify the idle
handling for pSeries and cell.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This patch consolidates the variety of macros used for loading 32 or
64-bit constants in assembler (LOADADDR, LOADBASE, SET_REG_TO_*). The
idea is to make the set of macros consistent across 32 and 64 bit and
to make it more obvious which is the appropriate one to use in a given
situation. The new macros and their semantics are described in the
comments in ppc_asm.h.
In the process, we change several places that were unnecessarily using
immediate loads on ppc64 to use the GOT/TOC. Likewise we cleanup a
couple of places where we were clumsily subtracting PAGE_OFFSET with
asm instructions to use assemble-time arithmetic or the toreal() macro
instead.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
The merge-tree version of LOADBASE actually loads the whole given
address from the toc for ppc64. The matching OFF macro adjust for
this, using an offset of 0 for ppc64, but we weren't using that in
power4_idle.
Signed-off-by: David Gibson <dwg@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Use idle_power4.S from ppc64 as we are not going to support
32 bit power4 in the merged tree.
Merge ppc64 traps.c into powerpc traps.c:
use ppc64 versions of exception routine names
(as they don't have StudlyCaps)
make all the versions if die() have the same
prototype
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
|