/* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright (C) 2001-2003 Red Hat, Inc. * * Created by David Woodhouse * * For licensing information, see the file 'LICENCE' in this directory. * * $Id: nodelist.c,v 1.101 2005/07/27 14:46:11 dedekind Exp $ * */ #include #include #include #include #include #include #include #include #include "nodelist.h" void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list) { struct jffs2_full_dirent **prev = list; D1(printk(KERN_DEBUG "jffs2_add_fd_to_list( %p, %p (->%p))\n", new, list, *list)); while ((*prev) && (*prev)->nhash <= new->nhash) { if ((*prev)->nhash == new->nhash && !strcmp((*prev)->name, new->name)) { /* Duplicate. Free one */ if (new->version < (*prev)->version) { D1(printk(KERN_DEBUG "Eep! Marking new dirent node obsolete\n")); D1(printk(KERN_DEBUG "New dirent is \"%s\"->ino #%u. Old is \"%s\"->ino #%u\n", new->name, new->ino, (*prev)->name, (*prev)->ino)); jffs2_mark_node_obsolete(c, new->raw); jffs2_free_full_dirent(new); } else { D1(printk(KERN_DEBUG "Marking old dirent node (ino #%u) obsolete\n", (*prev)->ino)); new->next = (*prev)->next; jffs2_mark_node_obsolete(c, ((*prev)->raw)); jffs2_free_full_dirent(*prev); *prev = new; } goto out; } prev = &((*prev)->next); } new->next = *prev; *prev = new; out: D2(while(*list) { printk(KERN_DEBUG "Dirent \"%s\" (hash 0x%08x, ino #%u\n", (*list)->name, (*list)->nhash, (*list)->ino); list = &(*list)->next; }); } void jffs2_obsolete_node_frag(struct jffs2_sb_info *c, struct jffs2_node_frag *this) { if (this->node) { this->node->frags--; if (!this->node->frags) { /* The node has no valid frags left. It's totally obsoleted */ D2(printk(KERN_DEBUG "Marking old node @0x%08x (0x%04x-0x%04x) obsolete\n", ref_offset(this->node->raw), this->node->ofs, this->node->ofs+this->node->size)); jffs2_mark_node_obsolete(c, this->node->raw); jffs2_free_full_dnode(this->node); } else { D2(printk(KERN_DEBUG "Marking old node @0x%08x (0x%04x-0x%04x) REF_NORMAL. frags is %d\n", ref_offset(this->node->raw), this->node->ofs, this->node->ofs+this->node->size, this->node->frags)); mark_ref_normal(this->node->raw); } } jffs2_free_node_frag(this); } static void jffs2_fragtree_insert(struct jffs2_node_frag *newfrag, struct jffs2_node_frag *base) { struct rb_node *parent = &base->rb; struct rb_node **link = &parent; D2(printk(KERN_DEBUG "jffs2_fragtree_insert(%p; %d-%d, %p)\n", newfrag, newfrag->ofs, newfrag->ofs+newfrag->size, base)); while (*link) { parent = *link; base = rb_entry(parent, struct jffs2_node_frag, rb); D2(printk(KERN_DEBUG "fragtree_insert considering frag at 0x%x\n", base->ofs)); if (newfrag->ofs > base->ofs) link = &base->rb.rb_right; else if (newfrag->ofs < base->ofs) link = &base->rb.rb_left; else { printk(KERN_CRIT "Duplicate frag at %08x (%p,%p)\n", newfrag->ofs, newfrag, base); BUG(); } } rb_link_node(&newfrag->rb, &base->rb, link); } /* Doesn't set inode->i_size */ static int jffs2_add_frag_to_fragtree(struct jffs2_sb_info *c, struct rb_root *list, struct jffs2_node_frag *newfrag) { struct jffs2_node_frag *this; uint32_t lastend; /* Skip all the nodes which are completed before this one starts */ this = jffs2_lookup_node_frag(list, newfrag->node->ofs); if (this) { D2(printk(KERN_DEBUG "j_a_f_d_t_f: Lookup gave frag 0x%04x-0x%04x; phys 0x%08x (*%p)\n", this->ofs, this->ofs+this->size, this->node?(ref_offset(this->node->raw)):0xffffffff, this)); lastend = this->ofs + this->size; } else { D2(printk(KERN_DEBUG "j_a_f_d_t_f: Lookup gave no frag\n")); lastend = 0; } /* See if we ran off the end of the list */ if (lastend <= newfrag->ofs) { /* We did */ /* Check if 'this' node was on the same page as the new node. If so, both 'this' and the new node get marked REF_NORMAL so the GC can take a look. */ if (lastend && (lastend-1) >> PAGE_CACHE_SHIFT == newfrag->ofs >> PAGE_CACHE_SHIFT) { if (this->node) mark_ref_normal(this->node->raw); mark_ref_normal(newfrag->node->raw); } if (lastend < newfrag->node->ofs) { /* ... and we need to put a hole in before the new node */ struct jffs2_node_frag *holefrag = jffs2_alloc_node_frag(); if (!holefrag) { jffs2_free_node_frag(newfrag); return -ENOMEM; } holefrag->ofs = lastend; holefrag->size = newfrag->node->ofs - lastend; holefrag->node = NULL; if (this) { /* By definition, the 'this' node has no right-hand child, because there are no frags with offset greater than it. So that's where we want to put the hole */ D2(printk(KERN_DEBUG "Adding hole frag (%p) on right of node at (%p)\n", holefrag, this)); rb_link_node(&holefrag->rb, &this->rb, &this->rb.rb_right); } else { D2(printk(KERN_DEBUG "Adding hole frag (%p) at root of tree\n", holefrag)); rb_link_node(&holefrag->rb, NULL, &list->rb_node); } rb_insert_color(&holefrag->rb, list); this = holefrag; } if (this) { /* By definition, the 'this' node has no right-hand child, because there are no frags with offset greater than it. So that's where we want to put new fragment */ D2(printk(KERN_DEBUG "Adding new frag (%p) on right of node at (%p)\n", newfrag, this)); rb_link_node(&newfrag->rb, &this->rb, &this->rb.rb_right); } else { D2(printk(KERN_DEBUG "Adding new frag (%p) at root of tree\n", newfrag)); rb_link_node(&newfrag->rb, NULL, &list->rb_node); } rb_insert_color(&newfrag->rb, list); return 0; } D2(printk(KERN_DEBUG "j_a_f_d_t_f: dealing with frag 0x%04x-0x%04x; phys 0x%08x (*%p)\n", this->ofs, this->ofs+this->size, this->node?(ref_offset(this->node->raw)):0xffffffff, this)); /* OK. 'this' is pointing at the first frag that newfrag->ofs at least partially obsoletes, * - i.e. newfrag->ofs < this->ofs+this->size && newfrag->ofs >= this->ofs */ if (newfrag->ofs > this->ofs) { /* This node isn't completely obsoleted. The start of it remains valid */ /* Mark the new node and the partially covered node REF_NORMAL -- let the GC take a look at them */ mark_ref_normal(newfrag->node->raw); if (this->node) mark_ref_normal(this->node->raw); if (this->ofs + this->size > newfrag->ofs + newfrag->size) { /* The new node splits 'this' frag into two */ struct jffs2_node_frag *newfrag2 = jffs2_alloc_node_frag(); if (!newfrag2) { jffs2_free_node_frag(newfrag); return -ENOMEM; } D2(printk(KERN_DEBUG "split old frag 0x%04x-0x%04x -->", this->ofs, this->ofs+this->size); if (this->node) printk("phys 0x%08x\n", ref_offset(this->node->raw)); else printk("hole\n"); ) /* New second frag pointing to this's node */ newfrag2->ofs = newfrag->ofs + newfrag->size; newfrag2->size = (this->ofs+this->size) - newfrag2->ofs; newfrag2->node = this->node; if (this->node) this->node->frags++; /* Adjust size of original 'this' */ this->size = newfrag->ofs - this->ofs; /* Now, we know there's no node with offset greater than this->ofs but smaller than newfrag2->ofs or newfrag->ofs, for obvious reasons. So we can do a tree insert from 'this' to insert newfrag, and a tree insert from newfrag to insert newfrag2. */ jffs2_fragtree_insert(newfrag, this); rb_insert_color(&newfrag->rb, list); jffs2_fragtree_insert(newfrag2, newfrag); rb_insert_color(&newfrag2->rb, list); return 0; } /* New node just reduces 'this' frag in size, doesn't split it */ this->size = newfrag->ofs - this->ofs; /* Again, we know it lives down here in the tree */ jffs2_fragtree_insert(newfrag, this); rb_insert_color(&newfrag->rb, list); } else { /* New frag starts at the same point as 'this' used to. Replace it in the tree without doing a delete and insertion */ D2(printk(KERN_DEBUG "Inserting newfrag (*%p),%d-%d in before 'this' (*%p),%d-%d\n", newfrag, newfrag->ofs, newfrag->ofs+newfrag->size, this, this->ofs, this->ofs+this->size)); rb_replace_node(&this->rb, &newfrag->rb, list); if (newfrag->ofs + newfrag->size >= this->ofs+this->size) { D2(printk(KERN_DEBUG "Obsoleting node frag %p (%x-%x)\n", this, this->ofs, this->ofs+this->size)); jffs2_obsolete_node_frag(c, this); } else { this->ofs += newfrag->size; this->size -= newfrag->size; jffs2_fragtree_insert(this, newfrag); rb_insert_color(&this->rb, list); return 0; } } /* OK, now we have newfrag added in the correct place in the tree, but frag_next(newfrag) may be a fragment which is overlapped by it */ while ((this = frag_next(newfrag)) && newfrag->ofs + newfrag->size >= this->ofs + this->size) { /* 'this' frag is obsoleted completely. */ D2(printk(KERN_DEBUG "Obsoleting node frag %p (%x-%x) and removing from tree\n", this, this->ofs, this->ofs+this->size)); rb_erase(&this->rb, list); jffs2_obsolete_node_frag(c, this); } /* Now we're pointing at the first frag which isn't totally obsoleted by the new frag */ if (!this || newfrag->ofs + newfrag->size == this->ofs) { return 0; } /* Still some overlap but we don't need to move it in the tree */ this->size = (this->ofs + this->size) - (newfrag->ofs + newfrag->size); this->ofs = newfrag->ofs + newfrag->size; /* And mark them REF_NORMAL so the GC takes a look at them */ if (this->node) mark_ref_normal(this->node->raw); mark_ref_normal(newfrag->node->raw); return 0; } /* Given an inode, probably with existing list of fragments, add the new node * to the fragment list. */ int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn) { int ret; struct jffs2_node_frag *newfrag; D1(printk(KERN_DEBUG "jffs2_add_full_dnode_to_inode(ino #%u, f %p, fn %p)\n", f->inocache->ino, f, fn)); if (unlikely(!fn->size)) return 0; newfrag = jffs2_alloc_node_frag(); if (unlikely(!newfrag)) return -ENOMEM; D2(printk(KERN_DEBUG "adding node %04x-%04x @0x%08x on flash, newfrag *%p\n", fn->ofs, fn->ofs+fn->size, ref_offset(fn->raw), newfrag)); newfrag->ofs = fn->ofs; newfrag->size = fn->size; newfrag->node = fn; newfrag->node->frags = 1; ret = jffs2_add_frag_to_fragtree(c, &f->fragtree, newfrag); if (unlikely(ret)) return ret; /* If we now share a page with other nodes, mark either previous or next node REF_NORMAL, as appropriate. */ if (newfrag->ofs & (PAGE_CACHE_SIZE-1)) { struct jffs2_node_frag *prev = frag_prev(newfrag); mark_ref_normal(fn->raw); /* If we don't start at zero there's _always_ a previous */ if (prev->node) mark_ref_normal(prev->node->raw); } if ((newfrag->ofs+newfrag->size) & (PAGE_CACHE_SIZE-1)) { struct jffs2_node_frag *next = frag_next(newfrag); if (next) { mark_ref_normal(fn->raw); if (next->node) mark_ref_normal(next->node->raw); } } jffs2_dbg_fragtree_paranoia_check_nolock(f); jffs2_dbg_dump_fragtree_nolock(f); return 0; } void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state) { spin_lock(&c->inocache_lock); ic->state = state; wake_up(&c->inocache_wq); spin_unlock(&c->inocache_lock); } /* During mount, this needs no locking. During normal operation, its callers want to do other stuff while still holding the inocache_lock. Rather than introducing special case get_ino_cache functions or callbacks, we just let the caller do the locking itself. */ struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t ino) { struct jffs2_inode_cache *ret; D2(printk(KERN_DEBUG "jffs2_get_ino_cache(): ino %u\n", ino)); ret = c->inocache_list[ino % INOCACHE_HASHSIZE]; while (ret && ret->ino < ino) { ret = ret->next; } if (ret && ret->ino != ino) ret = NULL; D2(printk(KERN_DEBUG "jffs2_get_ino_cache found %p for ino %u\n", ret, ino)); return ret; } void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new) { struct jffs2_inode_cache **prev; spin_lock(&c->inocache_lock); if (!new->ino) new->ino = ++c->highest_ino; D2(printk(KERN_DEBUG "jffs2_add_ino_cache: Add %p (ino #%u)\n", new, new->ino)); prev = &c->inocache_list[new->ino % INOCACHE_HASHSIZE]; while ((*prev) && (*prev)->ino < new->ino) { prev = &(*prev)->next; } new->next = *prev; *prev = new; spin_unlock(&c->inocache_lock); } void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old) { struct jffs2_inode_cache **prev; D1(printk(KERN_DEBUG "jffs2_del_ino_cache: Del %p (ino #%u)\n", old, old->ino)); spin_lock(&c->inocache_lock); prev = &c->inocache_list[old->ino % INOCACHE_HASHSIZE]; while ((*prev) && (*prev)->ino < old->ino) { prev = &(*prev)->next; } if ((*prev) == old) { *prev = old->next; } /* Free it now unless it's in READING or CLEARING state, which are the transitions upon read_inode() and clear_inode(). The rest of the time we know nobody else is looking at it, and if it's held by read_inode() or clear_inode() they'll free it for themselves. */ if (old->state != INO_STATE_READING && old->state != INO_STATE_CLEARING) jffs2_free_inode_cache(old); spin_unlock(&c->inocache_lock); } void jffs2_free_ino_caches(struct jffs2_sb_info *c) { int i; struct jffs2_inode_cache *this, *next; for (i=0; iinocache_list[i]; while (this) { next = this->next; jffs2_free_inode_cache(this); this = next; } c->inocache_list[i] = NULL; } } void jffs2_free_raw_node_refs(struct jffs2_sb_info *c) { int i; struct jffs2_raw_node_ref *this, *next; for (i=0; inr_blocks; i++) { this = c->blocks[i].first_node; while(this) { next = this->next_phys; jffs2_free_raw_node_ref(this); this = next; } c->blocks[i].first_node = c->blocks[i].last_node = NULL; } } struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset) { /* The common case in lookup is that there will be a node which precisely matches. So we go looking for that first */ struct rb_node *next; struct jffs2_node_frag *prev = NULL; struct jffs2_node_frag *frag = NULL; D2(printk(KERN_DEBUG "jffs2_lookup_node_frag(%p, %d)\n", fragtree, offset)); next = fragtree->rb_node; while(next) { frag = rb_entry(next, struct jffs2_node_frag, rb); D2(printk(KERN_DEBUG "Considering frag %d-%d (%p). left %p, right %p\n", frag->ofs, frag->ofs+frag->size, frag, frag->rb.rb_left, frag->rb.rb_right)); if (frag->ofs + frag->size <= offset) { D2(printk(KERN_DEBUG "Going right from frag %d-%d, before the region we care about\n", frag->ofs, frag->ofs+frag->size)); /* Remember the closest smaller match on the way down */ if (!prev || frag->ofs > prev->ofs) prev = frag; next = frag->rb.rb_right; } else if (frag->ofs > offset) { D2(printk(KERN_DEBUG "Going left from frag %d-%d, after the region we care about\n", frag->ofs, frag->ofs+frag->size)); next = frag->rb.rb_left; } else { D2(printk(KERN_DEBUG "Returning frag %d,%d, matched\n", frag->ofs, frag->ofs+frag->size)); return frag; } } /* Exact match not found. Go back up looking at each parent, and return the closest smaller one */ if (prev) D2(printk(KERN_DEBUG "No match. Returning frag %d,%d, closest previous\n", prev->ofs, prev->ofs+prev->size)); else D2(printk(KERN_DEBUG "Returning NULL, empty fragtree\n")); return prev; } /* Pass 'c' argument to indicate that nodes should be marked obsolete as they're killed. */ void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c) { struct jffs2_node_frag *frag; struct jffs2_node_frag *parent; if (!root->rb_node) return; frag = (rb_entry(root->rb_node, struct jffs2_node_frag, rb)); while(frag) { if (frag->rb.rb_left) { D2(printk(KERN_DEBUG "Going left from frag (%p) %d-%d\n", frag, frag->ofs, frag->ofs+frag->size)); frag = frag_left(frag); continue; } if (frag->rb.rb_right) { D2(printk(KERN_DEBUG "Going right from frag (%p) %d-%d\n", frag, frag->ofs, frag->ofs+frag->size)); frag = frag_right(frag); continue; } D2(printk(KERN_DEBUG "jffs2_kill_fragtree: frag at 0x%x-0x%x: node %p, frags %d--\n", frag->ofs, frag->ofs+frag->size, frag->node, frag->node?frag->node->frags:0)); if (frag->node && !(--frag->node->frags)) { /* Not a hole, and it's the final remaining frag of this node. Free the node */ if (c) jffs2_mark_node_obsolete(c, frag->node->raw); jffs2_free_full_dnode(frag->node); } parent = frag_parent(frag); if (parent) { if (frag_left(parent) == frag) parent->rb.rb_left = NULL; else parent->rb.rb_right = NULL; } jffs2_free_node_frag(frag); frag = parent; cond_resched(); } }