/* * Syncookies implementation for the Linux kernel * * Copyright (C) 1997 Andi Kleen * Based on ideas by D.J.Bernstein and Eric Schenk. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include /* Timestamps: lowest bits store TCP options */ #define TSBITS 6 #define TSMASK (((__u32)1 << TSBITS) - 1) extern int sysctl_tcp_syncookies; __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS]; EXPORT_SYMBOL(syncookie_secret); static __init int init_syncookies(void) { get_random_bytes(syncookie_secret, sizeof(syncookie_secret)); return 0; } __initcall(init_syncookies); #define COOKIEBITS 24 /* Upper bits store count */ #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1) static DEFINE_PER_CPU(__u32 [16 + 5 + SHA_WORKSPACE_WORDS], ipv4_cookie_scratch); static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport, u32 count, int c) { __u32 *tmp = __get_cpu_var(ipv4_cookie_scratch); memcpy(tmp + 4, syncookie_secret[c], sizeof(syncookie_secret[c])); tmp[0] = (__force u32)saddr; tmp[1] = (__force u32)daddr; tmp[2] = ((__force u32)sport << 16) + (__force u32)dport; tmp[3] = count; sha_transform(tmp + 16, (__u8 *)tmp, tmp + 16 + 5); return tmp[17]; } /* * when syncookies are in effect and tcp timestamps are enabled we encode * tcp options in the lower bits of the timestamp value that will be * sent in the syn-ack. * Since subsequent timestamps use the normal tcp_time_stamp value, we * must make sure that the resulting initial timestamp is <= tcp_time_stamp. */ __u32 cookie_init_timestamp(struct request_sock *req) { struct inet_request_sock *ireq; u32 ts, ts_now = tcp_time_stamp; u32 options = 0; ireq = inet_rsk(req); options = ireq->wscale_ok ? ireq->snd_wscale : 0xf; options |= ireq->sack_ok << 4; options |= ireq->ecn_ok << 5; ts = ts_now & ~TSMASK; ts |= options; if (ts > ts_now) { ts >>= TSBITS; ts--; ts <<= TSBITS; ts |= options; } return ts; } static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport, __u32 sseq, __u32 data) { /* * Compute the secure sequence number. * The output should be: * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24) * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24). * Where sseq is their sequence number and count increases every * minute by 1. * As an extra hack, we add a small "data" value that encodes the * MSS into the second hash value. */ u32 count = tcp_cookie_time(); return (cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq + (count << COOKIEBITS) + ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data) & COOKIEMASK)); } /* * This retrieves the small "data" value from the syncookie. * If the syncookie is bad, the data returned will be out of * range. This must be checked by the caller. * * The count value used to generate the cookie must be less than * MAX_SYNCOOKIE_AGE minutes in the past. * The return value (__u32)-1 if this test fails. */ static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr, __be16 sport, __be16 dport, __u32 sseq) { u32 diff, count = tcp_cookie_time(); /* Strip away the layers from the cookie */ cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq; /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */ diff = (count - (cookie >> COOKIEBITS)) & ((__u32) - 1 >> COOKIEBITS); if (diff >= MAX_SYNCOOKIE_AGE) return (__u32)-1; return (cookie - cookie_hash(saddr, daddr, sport, dport, count - diff, 1)) & COOKIEMASK; /* Leaving the data behind */ } /* * MSS Values are chosen based on the 2011 paper * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson. * Values .. * .. lower than 536 are rare (< 0.2%) * .. between 537 and 1299 account for less than < 1.5% of observed values * .. in the 1300-1349 range account for about 15 to 20% of observed mss values * .. exceeding 1460 are very rare (< 0.04%) * * 1460 is the single most frequently announced mss value (30 to 46% depending * on monitor location). Table must be sorted. */ static __u16 const msstab[] = { 536, 1300, 1440, /* 1440, 1452: PPPoE */ 1460, }; /* * Generate a syncookie. mssp points to the mss, which is returned * rounded down to the value encoded in the cookie. */ u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, u16 *mssp) { int mssind; const __u16 mss = *mssp; for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--) if (mss >= msstab[mssind]) break; *mssp = msstab[mssind]; return secure_tcp_syn_cookie(iph->saddr, iph->daddr, th->source, th->dest, ntohl(th->seq), mssind); } EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence); __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb, __u16 *mssp) { const struct iphdr *iph = ip_hdr(skb); const struct tcphdr *th = tcp_hdr(skb); tcp_synq_overflow(sk); NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); return __cookie_v4_init_sequence(iph, th, mssp); } /* * Check if a ack sequence number is a valid syncookie. * Return the decoded mss if it is, or 0 if not. */ int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, u32 cookie) { __u32 seq = ntohl(th->seq) - 1; __u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr, th->source, th->dest, seq); return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0; } EXPORT_SYMBOL_GPL(__cookie_v4_check); static inline struct sock *get_cookie_sock(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst) { struct inet_connection_sock *icsk = inet_csk(sk); struct sock *child; child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst); if (child) inet_csk_reqsk_queue_add(sk, req, child); else reqsk_free(req); return child; } /* * when syncookies are in effect and tcp timestamps are enabled we stored * additional tcp options in the timestamp. * This extracts these options from the timestamp echo. * * The lowest 4 bits store snd_wscale. * next 2 bits indicate SACK and ECN support. * * return false if we decode an option that should not be. */ bool cookie_check_timestamp(struct tcp_options_received *tcp_opt, struct net *net, bool *ecn_ok) { /* echoed timestamp, lowest bits contain options */ u32 options = tcp_opt->rcv_tsecr & TSMASK; if (!tcp_opt->saw_tstamp) { tcp_clear_options(tcp_opt); return true; } if (!sysctl_tcp_timestamps) return false; tcp_opt->sack_ok = (options & (1 << 4)) ? TCP_SACK_SEEN : 0; *ecn_ok = (options >> 5) & 1; if (*ecn_ok && !net->ipv4.sysctl_tcp_ecn) return false; if (tcp_opt->sack_ok && !sysctl_tcp_sack) return false; if ((options & 0xf) == 0xf) return true; /* no window scaling */ tcp_opt->wscale_ok = 1; tcp_opt->snd_wscale = options & 0xf; return sysctl_tcp_window_scaling != 0; } EXPORT_SYMBOL(cookie_check_timestamp); struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb, struct ip_options *opt) { struct tcp_options_received tcp_opt; struct inet_request_sock *ireq; struct tcp_request_sock *treq; struct tcp_sock *tp = tcp_sk(sk); const struct tcphdr *th = tcp_hdr(skb); __u32 cookie = ntohl(th->ack_seq) - 1; struct sock *ret = sk; struct request_sock *req; int mss; struct rtable *rt; __u8 rcv_wscale; bool ecn_ok = false; struct flowi4 fl4; if (!sysctl_tcp_syncookies || !th->ack || th->rst) goto out; if (tcp_synq_no_recent_overflow(sk) || (mss = __cookie_v4_check(ip_hdr(skb), th, cookie)) == 0) { NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED); goto out; } NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV); /* check for timestamp cookie support */ memset(&tcp_opt, 0, sizeof(tcp_opt)); tcp_parse_options(skb, &tcp_opt, 0, NULL); if (!cookie_check_timestamp(&tcp_opt, sock_net(sk), &ecn_ok)) goto out; ret = NULL; req = inet_reqsk_alloc(&tcp_request_sock_ops); /* for safety */ if (!req) goto out; ireq = inet_rsk(req); treq = tcp_rsk(req); treq->rcv_isn = ntohl(th->seq) - 1; treq->snt_isn = cookie; req->mss = mss; ireq->loc_port = th->dest; ireq->rmt_port = th->source; ireq->loc_addr = ip_hdr(skb)->daddr; ireq->rmt_addr = ip_hdr(skb)->saddr; ireq->ecn_ok = ecn_ok; ireq->snd_wscale = tcp_opt.snd_wscale; ireq->sack_ok = tcp_opt.sack_ok; ireq->wscale_ok = tcp_opt.wscale_ok; ireq->tstamp_ok = tcp_opt.saw_tstamp; req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0; treq->snt_synack = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsecr : 0; treq->listener = NULL; /* We throwed the options of the initial SYN away, so we hope * the ACK carries the same options again (see RFC1122 4.2.3.8) */ if (opt && opt->optlen) { int opt_size = sizeof(struct ip_options_rcu) + opt->optlen; ireq->opt = kmalloc(opt_size, GFP_ATOMIC); if (ireq->opt != NULL && ip_options_echo(&ireq->opt->opt, skb)) { kfree(ireq->opt); ireq->opt = NULL; } } if (security_inet_conn_request(sk, skb, req)) { reqsk_free(req); goto out; } req->expires = 0UL; req->num_retrans = 0; /* * We need to lookup the route here to get at the correct * window size. We should better make sure that the window size * hasn't changed since we received the original syn, but I see * no easy way to do this. */ flowi4_init_output(&fl4, sk->sk_bound_dev_if, sk->sk_mark, RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP, inet_sk_flowi_flags(sk), (opt && opt->srr) ? opt->faddr : ireq->rmt_addr, ireq->loc_addr, th->source, th->dest); security_req_classify_flow(req, flowi4_to_flowi(&fl4)); rt = ip_route_output_key(sock_net(sk), &fl4); if (IS_ERR(rt)) { reqsk_free(req); goto out; } /* Try to redo what tcp_v4_send_synack did. */ req->window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW); tcp_select_initial_window(tcp_full_space(sk), req->mss, &req->rcv_wnd, &req->window_clamp, ireq->wscale_ok, &rcv_wscale, dst_metric(&rt->dst, RTAX_INITRWND)); ireq->rcv_wscale = rcv_wscale; ret = get_cookie_sock(sk, skb, req, &rt->dst); /* ip_queue_xmit() depends on our flow being setup * Normal sockets get it right from inet_csk_route_child_sock() */ if (ret) inet_sk(ret)->cork.fl.u.ip4 = fl4; out: return ret; }