diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 22:20:36 (GMT) |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 22:20:36 (GMT) |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/mtd/devices/lart.c | |
download | linux-fsl-qoriq-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.xz |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/mtd/devices/lart.c')
-rw-r--r-- | drivers/mtd/devices/lart.c | 711 |
1 files changed, 711 insertions, 0 deletions
diff --git a/drivers/mtd/devices/lart.c b/drivers/mtd/devices/lart.c new file mode 100644 index 0000000..dfd335e --- /dev/null +++ b/drivers/mtd/devices/lart.c @@ -0,0 +1,711 @@ + +/* + * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART. + * + * $Id: lart.c,v 1.7 2004/08/09 13:19:44 dwmw2 Exp $ + * + * Author: Abraham vd Merwe <abraham@2d3d.co.za> + * + * Copyright (c) 2001, 2d3D, Inc. + * + * This code is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * References: + * + * [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet + * - Order Number: 290644-005 + * - January 2000 + * + * [2] MTD internal API documentation + * - http://www.linux-mtd.infradead.org/tech/ + * + * Limitations: + * + * Even though this driver is written for 3 Volt Fast Boot + * Block Flash Memory, it is rather specific to LART. With + * Minor modifications, notably the without data/address line + * mangling and different bus settings, etc. it should be + * trivial to adapt to other platforms. + * + * If somebody would sponsor me a different board, I'll + * adapt the driver (: + */ + +/* debugging */ +//#define LART_DEBUG + +/* partition support */ +#define HAVE_PARTITIONS + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/types.h> +#include <linux/init.h> +#include <linux/errno.h> +#include <linux/mtd/mtd.h> +#ifdef HAVE_PARTITIONS +#include <linux/mtd/partitions.h> +#endif + +#ifndef CONFIG_SA1100_LART +#error This is for LART architecture only +#endif + +static char module_name[] = "lart"; + +/* + * These values is specific to 28Fxxxx3 flash memory. + * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet + */ +#define FLASH_BLOCKSIZE_PARAM (4096 * BUSWIDTH) +#define FLASH_NUMBLOCKS_16m_PARAM 8 +#define FLASH_NUMBLOCKS_8m_PARAM 8 + +/* + * These values is specific to 28Fxxxx3 flash memory. + * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet + */ +#define FLASH_BLOCKSIZE_MAIN (32768 * BUSWIDTH) +#define FLASH_NUMBLOCKS_16m_MAIN 31 +#define FLASH_NUMBLOCKS_8m_MAIN 15 + +/* + * These values are specific to LART + */ + +/* general */ +#define BUSWIDTH 4 /* don't change this - a lot of the code _will_ break if you change this */ +#define FLASH_OFFSET 0xe8000000 /* see linux/arch/arm/mach-sa1100/lart.c */ + +/* blob */ +#define NUM_BLOB_BLOCKS FLASH_NUMBLOCKS_16m_PARAM +#define BLOB_START 0x00000000 +#define BLOB_LEN (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM) + +/* kernel */ +#define NUM_KERNEL_BLOCKS 7 +#define KERNEL_START (BLOB_START + BLOB_LEN) +#define KERNEL_LEN (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN) + +/* initial ramdisk */ +#define NUM_INITRD_BLOCKS 24 +#define INITRD_START (KERNEL_START + KERNEL_LEN) +#define INITRD_LEN (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN) + +/* + * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet + */ +#define READ_ARRAY 0x00FF00FF /* Read Array/Reset */ +#define READ_ID_CODES 0x00900090 /* Read Identifier Codes */ +#define ERASE_SETUP 0x00200020 /* Block Erase */ +#define ERASE_CONFIRM 0x00D000D0 /* Block Erase and Program Resume */ +#define PGM_SETUP 0x00400040 /* Program */ +#define STATUS_READ 0x00700070 /* Read Status Register */ +#define STATUS_CLEAR 0x00500050 /* Clear Status Register */ +#define STATUS_BUSY 0x00800080 /* Write State Machine Status (WSMS) */ +#define STATUS_ERASE_ERR 0x00200020 /* Erase Status (ES) */ +#define STATUS_PGM_ERR 0x00100010 /* Program Status (PS) */ + +/* + * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet + */ +#define FLASH_MANUFACTURER 0x00890089 +#define FLASH_DEVICE_8mbit_TOP 0x88f188f1 +#define FLASH_DEVICE_8mbit_BOTTOM 0x88f288f2 +#define FLASH_DEVICE_16mbit_TOP 0x88f388f3 +#define FLASH_DEVICE_16mbit_BOTTOM 0x88f488f4 + +/***************************************************************************************************/ + +/* + * The data line mapping on LART is as follows: + * + * U2 CPU | U3 CPU + * ------------------- + * 0 20 | 0 12 + * 1 22 | 1 14 + * 2 19 | 2 11 + * 3 17 | 3 9 + * 4 24 | 4 0 + * 5 26 | 5 2 + * 6 31 | 6 7 + * 7 29 | 7 5 + * 8 21 | 8 13 + * 9 23 | 9 15 + * 10 18 | 10 10 + * 11 16 | 11 8 + * 12 25 | 12 1 + * 13 27 | 13 3 + * 14 30 | 14 6 + * 15 28 | 15 4 + */ + +/* Mangle data (x) */ +#define DATA_TO_FLASH(x) \ + ( \ + (((x) & 0x08009000) >> 11) + \ + (((x) & 0x00002000) >> 10) + \ + (((x) & 0x04004000) >> 8) + \ + (((x) & 0x00000010) >> 4) + \ + (((x) & 0x91000820) >> 3) + \ + (((x) & 0x22080080) >> 2) + \ + ((x) & 0x40000400) + \ + (((x) & 0x00040040) << 1) + \ + (((x) & 0x00110000) << 4) + \ + (((x) & 0x00220100) << 5) + \ + (((x) & 0x00800208) << 6) + \ + (((x) & 0x00400004) << 9) + \ + (((x) & 0x00000001) << 12) + \ + (((x) & 0x00000002) << 13) \ + ) + +/* Unmangle data (x) */ +#define FLASH_TO_DATA(x) \ + ( \ + (((x) & 0x00010012) << 11) + \ + (((x) & 0x00000008) << 10) + \ + (((x) & 0x00040040) << 8) + \ + (((x) & 0x00000001) << 4) + \ + (((x) & 0x12200104) << 3) + \ + (((x) & 0x08820020) << 2) + \ + ((x) & 0x40000400) + \ + (((x) & 0x00080080) >> 1) + \ + (((x) & 0x01100000) >> 4) + \ + (((x) & 0x04402000) >> 5) + \ + (((x) & 0x20008200) >> 6) + \ + (((x) & 0x80000800) >> 9) + \ + (((x) & 0x00001000) >> 12) + \ + (((x) & 0x00004000) >> 13) \ + ) + +/* + * The address line mapping on LART is as follows: + * + * U3 CPU | U2 CPU + * ------------------- + * 0 2 | 0 2 + * 1 3 | 1 3 + * 2 9 | 2 9 + * 3 13 | 3 8 + * 4 8 | 4 7 + * 5 12 | 5 6 + * 6 11 | 6 5 + * 7 10 | 7 4 + * 8 4 | 8 10 + * 9 5 | 9 11 + * 10 6 | 10 12 + * 11 7 | 11 13 + * + * BOOT BLOCK BOUNDARY + * + * 12 15 | 12 15 + * 13 14 | 13 14 + * 14 16 | 14 16 + * + * MAIN BLOCK BOUNDARY + * + * 15 17 | 15 18 + * 16 18 | 16 17 + * 17 20 | 17 20 + * 18 19 | 18 19 + * 19 21 | 19 21 + * + * As we can see from above, the addresses aren't mangled across + * block boundaries, so we don't need to worry about address + * translations except for sending/reading commands during + * initialization + */ + +/* Mangle address (x) on chip U2 */ +#define ADDR_TO_FLASH_U2(x) \ + ( \ + (((x) & 0x00000f00) >> 4) + \ + (((x) & 0x00042000) << 1) + \ + (((x) & 0x0009c003) << 2) + \ + (((x) & 0x00021080) << 3) + \ + (((x) & 0x00000010) << 4) + \ + (((x) & 0x00000040) << 5) + \ + (((x) & 0x00000024) << 7) + \ + (((x) & 0x00000008) << 10) \ + ) + +/* Unmangle address (x) on chip U2 */ +#define FLASH_U2_TO_ADDR(x) \ + ( \ + (((x) << 4) & 0x00000f00) + \ + (((x) >> 1) & 0x00042000) + \ + (((x) >> 2) & 0x0009c003) + \ + (((x) >> 3) & 0x00021080) + \ + (((x) >> 4) & 0x00000010) + \ + (((x) >> 5) & 0x00000040) + \ + (((x) >> 7) & 0x00000024) + \ + (((x) >> 10) & 0x00000008) \ + ) + +/* Mangle address (x) on chip U3 */ +#define ADDR_TO_FLASH_U3(x) \ + ( \ + (((x) & 0x00000080) >> 3) + \ + (((x) & 0x00000040) >> 1) + \ + (((x) & 0x00052020) << 1) + \ + (((x) & 0x00084f03) << 2) + \ + (((x) & 0x00029010) << 3) + \ + (((x) & 0x00000008) << 5) + \ + (((x) & 0x00000004) << 7) \ + ) + +/* Unmangle address (x) on chip U3 */ +#define FLASH_U3_TO_ADDR(x) \ + ( \ + (((x) << 3) & 0x00000080) + \ + (((x) << 1) & 0x00000040) + \ + (((x) >> 1) & 0x00052020) + \ + (((x) >> 2) & 0x00084f03) + \ + (((x) >> 3) & 0x00029010) + \ + (((x) >> 5) & 0x00000008) + \ + (((x) >> 7) & 0x00000004) \ + ) + +/***************************************************************************************************/ + +static __u8 read8 (__u32 offset) +{ + volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset); +#ifdef LART_DEBUG + printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n",__FUNCTION__,offset,*data); +#endif + return (*data); +} + +static __u32 read32 (__u32 offset) +{ + volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset); +#ifdef LART_DEBUG + printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n",__FUNCTION__,offset,*data); +#endif + return (*data); +} + +static void write32 (__u32 x,__u32 offset) +{ + volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset); + *data = x; +#ifdef LART_DEBUG + printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n",__FUNCTION__,offset,*data); +#endif +} + +/***************************************************************************************************/ + +/* + * Probe for 16mbit flash memory on a LART board without doing + * too much damage. Since we need to write 1 dword to memory, + * we're f**cked if this happens to be DRAM since we can't + * restore the memory (otherwise we might exit Read Array mode). + * + * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise. + */ +static int flash_probe (void) +{ + __u32 manufacturer,devtype; + + /* setup "Read Identifier Codes" mode */ + write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000); + + /* probe U2. U2/U3 returns the same data since the first 3 + * address lines is mangled in the same way */ + manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000))); + devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001))); + + /* put the flash back into command mode */ + write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000); + + return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || FLASH_DEVICE_16mbit_BOTTOM)); +} + +/* + * Erase one block of flash memory at offset ``offset'' which is any + * address within the block which should be erased. + * + * Returns 1 if successful, 0 otherwise. + */ +static inline int erase_block (__u32 offset) +{ + __u32 status; + +#ifdef LART_DEBUG + printk (KERN_DEBUG "%s(): 0x%.8x\n",__FUNCTION__,offset); +#endif + + /* erase and confirm */ + write32 (DATA_TO_FLASH (ERASE_SETUP),offset); + write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset); + + /* wait for block erase to finish */ + do + { + write32 (DATA_TO_FLASH (STATUS_READ),offset); + status = FLASH_TO_DATA (read32 (offset)); + } + while ((~status & STATUS_BUSY) != 0); + + /* put the flash back into command mode */ + write32 (DATA_TO_FLASH (READ_ARRAY),offset); + + /* was the erase successfull? */ + if ((status & STATUS_ERASE_ERR)) + { + printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset); + return (0); + } + + return (1); +} + +static int flash_erase (struct mtd_info *mtd,struct erase_info *instr) +{ + __u32 addr,len; + int i,first; + +#ifdef LART_DEBUG + printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n",__FUNCTION__,instr->addr,instr->len); +#endif + + /* sanity checks */ + if (instr->addr + instr->len > mtd->size) return (-EINVAL); + + /* + * check that both start and end of the requested erase are + * aligned with the erasesize at the appropriate addresses. + * + * skip all erase regions which are ended before the start of + * the requested erase. Actually, to save on the calculations, + * we skip to the first erase region which starts after the + * start of the requested erase, and then go back one. + */ + for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ; + i--; + + /* + * ok, now i is pointing at the erase region in which this + * erase request starts. Check the start of the requested + * erase range is aligned with the erase size which is in + * effect here. + */ + if (instr->addr & (mtd->eraseregions[i].erasesize - 1)) return (-EINVAL); + + /* Remember the erase region we start on */ + first = i; + + /* + * next, check that the end of the requested erase is aligned + * with the erase region at that address. + * + * as before, drop back one to point at the region in which + * the address actually falls + */ + for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ; + i--; + + /* is the end aligned on a block boundary? */ + if ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)) return (-EINVAL); + + addr = instr->addr; + len = instr->len; + + i = first; + + /* now erase those blocks */ + while (len) + { + if (!erase_block (addr)) + { + instr->state = MTD_ERASE_FAILED; + return (-EIO); + } + + addr += mtd->eraseregions[i].erasesize; + len -= mtd->eraseregions[i].erasesize; + + if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++; + } + + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + + return (0); +} + +static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf) +{ +#ifdef LART_DEBUG + printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) from,len); +#endif + + /* sanity checks */ + if (!len) return (0); + if (from + len > mtd->size) return (-EINVAL); + + /* we always read len bytes */ + *retlen = len; + + /* first, we read bytes until we reach a dword boundary */ + if (from & (BUSWIDTH - 1)) + { + int gap = BUSWIDTH - (from & (BUSWIDTH - 1)); + + while (len && gap--) *buf++ = read8 (from++), len--; + } + + /* now we read dwords until we reach a non-dword boundary */ + while (len >= BUSWIDTH) + { + *((__u32 *) buf) = read32 (from); + + buf += BUSWIDTH; + from += BUSWIDTH; + len -= BUSWIDTH; + } + + /* top up the last unaligned bytes */ + if (len & (BUSWIDTH - 1)) + while (len--) *buf++ = read8 (from++); + + return (0); +} + +/* + * Write one dword ``x'' to flash memory at offset ``offset''. ``offset'' + * must be 32 bits, i.e. it must be on a dword boundary. + * + * Returns 1 if successful, 0 otherwise. + */ +static inline int write_dword (__u32 offset,__u32 x) +{ + __u32 status; + +#ifdef LART_DEBUG + printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n",__FUNCTION__,offset,x); +#endif + + /* setup writing */ + write32 (DATA_TO_FLASH (PGM_SETUP),offset); + + /* write the data */ + write32 (x,offset); + + /* wait for the write to finish */ + do + { + write32 (DATA_TO_FLASH (STATUS_READ),offset); + status = FLASH_TO_DATA (read32 (offset)); + } + while ((~status & STATUS_BUSY) != 0); + + /* put the flash back into command mode */ + write32 (DATA_TO_FLASH (READ_ARRAY),offset); + + /* was the write successfull? */ + if ((status & STATUS_PGM_ERR) || read32 (offset) != x) + { + printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset); + return (0); + } + + return (1); +} + +static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf) +{ + __u8 tmp[4]; + int i,n; + +#ifdef LART_DEBUG + printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) to,len); +#endif + + *retlen = 0; + + /* sanity checks */ + if (!len) return (0); + if (to + len > mtd->size) return (-EINVAL); + + /* first, we write a 0xFF.... padded byte until we reach a dword boundary */ + if (to & (BUSWIDTH - 1)) + { + __u32 aligned = to & ~(BUSWIDTH - 1); + int gap = to - aligned; + + i = n = 0; + + while (gap--) tmp[i++] = 0xFF; + while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--; + while (i < BUSWIDTH) tmp[i++] = 0xFF; + + if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO); + + to += n; + buf += n; + *retlen += n; + } + + /* now we write dwords until we reach a non-dword boundary */ + while (len >= BUSWIDTH) + { + if (!write_dword (to,*((__u32 *) buf))) return (-EIO); + + to += BUSWIDTH; + buf += BUSWIDTH; + *retlen += BUSWIDTH; + len -= BUSWIDTH; + } + + /* top up the last unaligned bytes, padded with 0xFF.... */ + if (len & (BUSWIDTH - 1)) + { + i = n = 0; + + while (len--) tmp[i++] = buf[n++]; + while (i < BUSWIDTH) tmp[i++] = 0xFF; + + if (!write_dword (to,*((__u32 *) tmp))) return (-EIO); + + *retlen += n; + } + + return (0); +} + +/***************************************************************************************************/ + +#define NB_OF(x) (sizeof (x) / sizeof (x[0])) + +static struct mtd_info mtd; + +static struct mtd_erase_region_info erase_regions[] = { + /* parameter blocks */ + { + .offset = 0x00000000, + .erasesize = FLASH_BLOCKSIZE_PARAM, + .numblocks = FLASH_NUMBLOCKS_16m_PARAM, + }, + /* main blocks */ + { + .offset = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM, + .erasesize = FLASH_BLOCKSIZE_MAIN, + .numblocks = FLASH_NUMBLOCKS_16m_MAIN, + } +}; + +#ifdef HAVE_PARTITIONS +static struct mtd_partition lart_partitions[] = { + /* blob */ + { + .name = "blob", + .offset = BLOB_START, + .size = BLOB_LEN, + }, + /* kernel */ + { + .name = "kernel", + .offset = KERNEL_START, /* MTDPART_OFS_APPEND */ + .size = KERNEL_LEN, + }, + /* initial ramdisk / file system */ + { + .name = "file system", + .offset = INITRD_START, /* MTDPART_OFS_APPEND */ + .size = INITRD_LEN, /* MTDPART_SIZ_FULL */ + } +}; +#endif + +int __init lart_flash_init (void) +{ + int result; + memset (&mtd,0,sizeof (mtd)); + printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n"); + printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name); + if (!flash_probe ()) + { + printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name); + return (-ENXIO); + } + printk ("%s: This looks like a LART board to me.\n",module_name); + mtd.name = module_name; + mtd.type = MTD_NORFLASH; + mtd.flags = MTD_CAP_NORFLASH; + mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN; + mtd.erasesize = FLASH_BLOCKSIZE_MAIN; + mtd.numeraseregions = NB_OF (erase_regions); + mtd.eraseregions = erase_regions; + mtd.erase = flash_erase; + mtd.read = flash_read; + mtd.write = flash_write; + mtd.owner = THIS_MODULE; + +#ifdef LART_DEBUG + printk (KERN_DEBUG + "mtd.name = %s\n" + "mtd.size = 0x%.8x (%uM)\n" + "mtd.erasesize = 0x%.8x (%uK)\n" + "mtd.numeraseregions = %d\n", + mtd.name, + mtd.size,mtd.size / (1024*1024), + mtd.erasesize,mtd.erasesize / 1024, + mtd.numeraseregions); + + if (mtd.numeraseregions) + for (result = 0; result < mtd.numeraseregions; result++) + printk (KERN_DEBUG + "\n\n" + "mtd.eraseregions[%d].offset = 0x%.8x\n" + "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n" + "mtd.eraseregions[%d].numblocks = %d\n", + result,mtd.eraseregions[result].offset, + result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024, + result,mtd.eraseregions[result].numblocks); + +#ifdef HAVE_PARTITIONS + printk ("\npartitions = %d\n",NB_OF (lart_partitions)); + + for (result = 0; result < NB_OF (lart_partitions); result++) + printk (KERN_DEBUG + "\n\n" + "lart_partitions[%d].name = %s\n" + "lart_partitions[%d].offset = 0x%.8x\n" + "lart_partitions[%d].size = 0x%.8x (%uK)\n", + result,lart_partitions[result].name, + result,lart_partitions[result].offset, + result,lart_partitions[result].size,lart_partitions[result].size / 1024); +#endif +#endif + +#ifndef HAVE_PARTITIONS + result = add_mtd_device (&mtd); +#else + result = add_mtd_partitions (&mtd,lart_partitions,NB_OF (lart_partitions)); +#endif + + return (result); +} + +void __exit lart_flash_exit (void) +{ +#ifndef HAVE_PARTITIONS + del_mtd_device (&mtd); +#else + del_mtd_partitions (&mtd); +#endif +} + +module_init (lart_flash_init); +module_exit (lart_flash_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>"); +MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board"); + + |