summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/DocBook/device-drivers.tmpl2
-rw-r--r--Documentation/arm/cluster-pm-race-avoidance.txt498
-rw-r--r--Documentation/arm/vlocks.txt211
-rw-r--r--Documentation/devicetree/bindings/mfd/ab8500.txt6
-rw-r--r--Documentation/devicetree/bindings/tty/serial/of-serial.txt3
-rw-r--r--Documentation/hwmon/lm752
-rw-r--r--Documentation/i2c/busses/i2c-diolan-u2c2
-rw-r--r--Documentation/input/alps.txt67
-rw-r--r--Documentation/kernel-parameters.txt29
-rw-r--r--Documentation/networking/ipvs-sysctl.txt7
-rw-r--r--Documentation/networking/tuntap.txt77
-rw-r--r--Documentation/scsi/LICENSE.qla2xxx2
-rw-r--r--Documentation/sound/alsa/ALSA-Configuration.txt7
-rw-r--r--Documentation/sound/alsa/seq_oss.html2
-rw-r--r--Documentation/trace/ftrace.txt2
15 files changed, 892 insertions, 25 deletions
diff --git a/Documentation/DocBook/device-drivers.tmpl b/Documentation/DocBook/device-drivers.tmpl
index 7514dbf..c36892c 100644
--- a/Documentation/DocBook/device-drivers.tmpl
+++ b/Documentation/DocBook/device-drivers.tmpl
@@ -227,7 +227,7 @@ X!Isound/sound_firmware.c
<chapter id="uart16x50">
<title>16x50 UART Driver</title>
!Edrivers/tty/serial/serial_core.c
-!Edrivers/tty/serial/8250/8250.c
+!Edrivers/tty/serial/8250/8250_core.c
</chapter>
<chapter id="fbdev">
diff --git a/Documentation/arm/cluster-pm-race-avoidance.txt b/Documentation/arm/cluster-pm-race-avoidance.txt
new file mode 100644
index 0000000..750b6fc
--- /dev/null
+++ b/Documentation/arm/cluster-pm-race-avoidance.txt
@@ -0,0 +1,498 @@
+Cluster-wide Power-up/power-down race avoidance algorithm
+=========================================================
+
+This file documents the algorithm which is used to coordinate CPU and
+cluster setup and teardown operations and to manage hardware coherency
+controls safely.
+
+The section "Rationale" explains what the algorithm is for and why it is
+needed. "Basic model" explains general concepts using a simplified view
+of the system. The other sections explain the actual details of the
+algorithm in use.
+
+
+Rationale
+---------
+
+In a system containing multiple CPUs, it is desirable to have the
+ability to turn off individual CPUs when the system is idle, reducing
+power consumption and thermal dissipation.
+
+In a system containing multiple clusters of CPUs, it is also desirable
+to have the ability to turn off entire clusters.
+
+Turning entire clusters off and on is a risky business, because it
+involves performing potentially destructive operations affecting a group
+of independently running CPUs, while the OS continues to run. This
+means that we need some coordination in order to ensure that critical
+cluster-level operations are only performed when it is truly safe to do
+so.
+
+Simple locking may not be sufficient to solve this problem, because
+mechanisms like Linux spinlocks may rely on coherency mechanisms which
+are not immediately enabled when a cluster powers up. Since enabling or
+disabling those mechanisms may itself be a non-atomic operation (such as
+writing some hardware registers and invalidating large caches), other
+methods of coordination are required in order to guarantee safe
+power-down and power-up at the cluster level.
+
+The mechanism presented in this document describes a coherent memory
+based protocol for performing the needed coordination. It aims to be as
+lightweight as possible, while providing the required safety properties.
+
+
+Basic model
+-----------
+
+Each cluster and CPU is assigned a state, as follows:
+
+ DOWN
+ COMING_UP
+ UP
+ GOING_DOWN
+
+ +---------> UP ----------+
+ | v
+
+ COMING_UP GOING_DOWN
+
+ ^ |
+ +--------- DOWN <--------+
+
+
+DOWN: The CPU or cluster is not coherent, and is either powered off or
+ suspended, or is ready to be powered off or suspended.
+
+COMING_UP: The CPU or cluster has committed to moving to the UP state.
+ It may be part way through the process of initialisation and
+ enabling coherency.
+
+UP: The CPU or cluster is active and coherent at the hardware
+ level. A CPU in this state is not necessarily being used
+ actively by the kernel.
+
+GOING_DOWN: The CPU or cluster has committed to moving to the DOWN
+ state. It may be part way through the process of teardown and
+ coherency exit.
+
+
+Each CPU has one of these states assigned to it at any point in time.
+The CPU states are described in the "CPU state" section, below.
+
+Each cluster is also assigned a state, but it is necessary to split the
+state value into two parts (the "cluster" state and "inbound" state) and
+to introduce additional states in order to avoid races between different
+CPUs in the cluster simultaneously modifying the state. The cluster-
+level states are described in the "Cluster state" section.
+
+To help distinguish the CPU states from cluster states in this
+discussion, the state names are given a CPU_ prefix for the CPU states,
+and a CLUSTER_ or INBOUND_ prefix for the cluster states.
+
+
+CPU state
+---------
+
+In this algorithm, each individual core in a multi-core processor is
+referred to as a "CPU". CPUs are assumed to be single-threaded:
+therefore, a CPU can only be doing one thing at a single point in time.
+
+This means that CPUs fit the basic model closely.
+
+The algorithm defines the following states for each CPU in the system:
+
+ CPU_DOWN
+ CPU_COMING_UP
+ CPU_UP
+ CPU_GOING_DOWN
+
+ cluster setup and
+ CPU setup complete policy decision
+ +-----------> CPU_UP ------------+
+ | v
+
+ CPU_COMING_UP CPU_GOING_DOWN
+
+ ^ |
+ +----------- CPU_DOWN <----------+
+ policy decision CPU teardown complete
+ or hardware event
+
+
+The definitions of the four states correspond closely to the states of
+the basic model.
+
+Transitions between states occur as follows.
+
+A trigger event (spontaneous) means that the CPU can transition to the
+next state as a result of making local progress only, with no
+requirement for any external event to happen.
+
+
+CPU_DOWN:
+
+ A CPU reaches the CPU_DOWN state when it is ready for
+ power-down. On reaching this state, the CPU will typically
+ power itself down or suspend itself, via a WFI instruction or a
+ firmware call.
+
+ Next state: CPU_COMING_UP
+ Conditions: none
+
+ Trigger events:
+
+ a) an explicit hardware power-up operation, resulting
+ from a policy decision on another CPU;
+
+ b) a hardware event, such as an interrupt.
+
+
+CPU_COMING_UP:
+
+ A CPU cannot start participating in hardware coherency until the
+ cluster is set up and coherent. If the cluster is not ready,
+ then the CPU will wait in the CPU_COMING_UP state until the
+ cluster has been set up.
+
+ Next state: CPU_UP
+ Conditions: The CPU's parent cluster must be in CLUSTER_UP.
+ Trigger events: Transition of the parent cluster to CLUSTER_UP.
+
+ Refer to the "Cluster state" section for a description of the
+ CLUSTER_UP state.
+
+
+CPU_UP:
+ When a CPU reaches the CPU_UP state, it is safe for the CPU to
+ start participating in local coherency.
+
+ This is done by jumping to the kernel's CPU resume code.
+
+ Note that the definition of this state is slightly different
+ from the basic model definition: CPU_UP does not mean that the
+ CPU is coherent yet, but it does mean that it is safe to resume
+ the kernel. The kernel handles the rest of the resume
+ procedure, so the remaining steps are not visible as part of the
+ race avoidance algorithm.
+
+ The CPU remains in this state until an explicit policy decision
+ is made to shut down or suspend the CPU.
+
+ Next state: CPU_GOING_DOWN
+ Conditions: none
+ Trigger events: explicit policy decision
+
+
+CPU_GOING_DOWN:
+
+ While in this state, the CPU exits coherency, including any
+ operations required to achieve this (such as cleaning data
+ caches).
+
+ Next state: CPU_DOWN
+ Conditions: local CPU teardown complete
+ Trigger events: (spontaneous)
+
+
+Cluster state
+-------------
+
+A cluster is a group of connected CPUs with some common resources.
+Because a cluster contains multiple CPUs, it can be doing multiple
+things at the same time. This has some implications. In particular, a
+CPU can start up while another CPU is tearing the cluster down.
+
+In this discussion, the "outbound side" is the view of the cluster state
+as seen by a CPU tearing the cluster down. The "inbound side" is the
+view of the cluster state as seen by a CPU setting the CPU up.
+
+In order to enable safe coordination in such situations, it is important
+that a CPU which is setting up the cluster can advertise its state
+independently of the CPU which is tearing down the cluster. For this
+reason, the cluster state is split into two parts:
+
+ "cluster" state: The global state of the cluster; or the state
+ on the outbound side:
+
+ CLUSTER_DOWN
+ CLUSTER_UP
+ CLUSTER_GOING_DOWN
+
+ "inbound" state: The state of the cluster on the inbound side.
+
+ INBOUND_NOT_COMING_UP
+ INBOUND_COMING_UP
+
+
+ The different pairings of these states results in six possible
+ states for the cluster as a whole:
+
+ CLUSTER_UP
+ +==========> INBOUND_NOT_COMING_UP -------------+
+ # |
+ |
+ CLUSTER_UP <----+ |
+ INBOUND_COMING_UP | v
+
+ ^ CLUSTER_GOING_DOWN CLUSTER_GOING_DOWN
+ # INBOUND_COMING_UP <=== INBOUND_NOT_COMING_UP
+
+ CLUSTER_DOWN | |
+ INBOUND_COMING_UP <----+ |
+ |
+ ^ |
+ +=========== CLUSTER_DOWN <------------+
+ INBOUND_NOT_COMING_UP
+
+ Transitions -----> can only be made by the outbound CPU, and
+ only involve changes to the "cluster" state.
+
+ Transitions ===##> can only be made by the inbound CPU, and only
+ involve changes to the "inbound" state, except where there is no
+ further transition possible on the outbound side (i.e., the
+ outbound CPU has put the cluster into the CLUSTER_DOWN state).
+
+ The race avoidance algorithm does not provide a way to determine
+ which exact CPUs within the cluster play these roles. This must
+ be decided in advance by some other means. Refer to the section
+ "Last man and first man selection" for more explanation.
+
+
+ CLUSTER_DOWN/INBOUND_NOT_COMING_UP is the only state where the
+ cluster can actually be powered down.
+
+ The parallelism of the inbound and outbound CPUs is observed by
+ the existence of two different paths from CLUSTER_GOING_DOWN/
+ INBOUND_NOT_COMING_UP (corresponding to GOING_DOWN in the basic
+ model) to CLUSTER_DOWN/INBOUND_COMING_UP (corresponding to
+ COMING_UP in the basic model). The second path avoids cluster
+ teardown completely.
+
+ CLUSTER_UP/INBOUND_COMING_UP is equivalent to UP in the basic
+ model. The final transition to CLUSTER_UP/INBOUND_NOT_COMING_UP
+ is trivial and merely resets the state machine ready for the
+ next cycle.
+
+ Details of the allowable transitions follow.
+
+ The next state in each case is notated
+
+ <cluster state>/<inbound state> (<transitioner>)
+
+ where the <transitioner> is the side on which the transition
+ can occur; either the inbound or the outbound side.
+
+
+CLUSTER_DOWN/INBOUND_NOT_COMING_UP:
+
+ Next state: CLUSTER_DOWN/INBOUND_COMING_UP (inbound)
+ Conditions: none
+ Trigger events:
+
+ a) an explicit hardware power-up operation, resulting
+ from a policy decision on another CPU;
+
+ b) a hardware event, such as an interrupt.
+
+
+CLUSTER_DOWN/INBOUND_COMING_UP:
+
+ In this state, an inbound CPU sets up the cluster, including
+ enabling of hardware coherency at the cluster level and any
+ other operations (such as cache invalidation) which are required
+ in order to achieve this.
+
+ The purpose of this state is to do sufficient cluster-level
+ setup to enable other CPUs in the cluster to enter coherency
+ safely.
+
+ Next state: CLUSTER_UP/INBOUND_COMING_UP (inbound)
+ Conditions: cluster-level setup and hardware coherency complete
+ Trigger events: (spontaneous)
+
+
+CLUSTER_UP/INBOUND_COMING_UP:
+
+ Cluster-level setup is complete and hardware coherency is
+ enabled for the cluster. Other CPUs in the cluster can safely
+ enter coherency.
+
+ This is a transient state, leading immediately to
+ CLUSTER_UP/INBOUND_NOT_COMING_UP. All other CPUs on the cluster
+ should consider treat these two states as equivalent.
+
+ Next state: CLUSTER_UP/INBOUND_NOT_COMING_UP (inbound)
+ Conditions: none
+ Trigger events: (spontaneous)
+
+
+CLUSTER_UP/INBOUND_NOT_COMING_UP:
+
+ Cluster-level setup is complete and hardware coherency is
+ enabled for the cluster. Other CPUs in the cluster can safely
+ enter coherency.
+
+ The cluster will remain in this state until a policy decision is
+ made to power the cluster down.
+
+ Next state: CLUSTER_GOING_DOWN/INBOUND_NOT_COMING_UP (outbound)
+ Conditions: none
+ Trigger events: policy decision to power down the cluster
+
+
+CLUSTER_GOING_DOWN/INBOUND_NOT_COMING_UP:
+
+ An outbound CPU is tearing the cluster down. The selected CPU
+ must wait in this state until all CPUs in the cluster are in the
+ CPU_DOWN state.
+
+ When all CPUs are in the CPU_DOWN state, the cluster can be torn
+ down, for example by cleaning data caches and exiting
+ cluster-level coherency.
+
+ To avoid wasteful unnecessary teardown operations, the outbound
+ should check the inbound cluster state for asynchronous
+ transitions to INBOUND_COMING_UP. Alternatively, individual
+ CPUs can be checked for entry into CPU_COMING_UP or CPU_UP.
+
+
+ Next states:
+
+ CLUSTER_DOWN/INBOUND_NOT_COMING_UP (outbound)
+ Conditions: cluster torn down and ready to power off
+ Trigger events: (spontaneous)
+
+ CLUSTER_GOING_DOWN/INBOUND_COMING_UP (inbound)
+ Conditions: none
+ Trigger events:
+
+ a) an explicit hardware power-up operation,
+ resulting from a policy decision on another
+ CPU;
+
+ b) a hardware event, such as an interrupt.
+
+
+CLUSTER_GOING_DOWN/INBOUND_COMING_UP:
+
+ The cluster is (or was) being torn down, but another CPU has
+ come online in the meantime and is trying to set up the cluster
+ again.
+
+ If the outbound CPU observes this state, it has two choices:
+
+ a) back out of teardown, restoring the cluster to the
+ CLUSTER_UP state;
+
+ b) finish tearing the cluster down and put the cluster
+ in the CLUSTER_DOWN state; the inbound CPU will
+ set up the cluster again from there.
+
+ Choice (a) permits the removal of some latency by avoiding
+ unnecessary teardown and setup operations in situations where
+ the cluster is not really going to be powered down.
+
+
+ Next states:
+
+ CLUSTER_UP/INBOUND_COMING_UP (outbound)
+ Conditions: cluster-level setup and hardware
+ coherency complete
+ Trigger events: (spontaneous)
+
+ CLUSTER_DOWN/INBOUND_COMING_UP (outbound)
+ Conditions: cluster torn down and ready to power off
+ Trigger events: (spontaneous)
+
+
+Last man and First man selection
+--------------------------------
+
+The CPU which performs cluster tear-down operations on the outbound side
+is commonly referred to as the "last man".
+
+The CPU which performs cluster setup on the inbound side is commonly
+referred to as the "first man".
+
+The race avoidance algorithm documented above does not provide a
+mechanism to choose which CPUs should play these roles.
+
+
+Last man:
+
+When shutting down the cluster, all the CPUs involved are initially
+executing Linux and hence coherent. Therefore, ordinary spinlocks can
+be used to select a last man safely, before the CPUs become
+non-coherent.
+
+
+First man:
+
+Because CPUs may power up asynchronously in response to external wake-up
+events, a dynamic mechanism is needed to make sure that only one CPU
+attempts to play the first man role and do the cluster-level
+initialisation: any other CPUs must wait for this to complete before
+proceeding.
+
+Cluster-level initialisation may involve actions such as configuring
+coherency controls in the bus fabric.
+
+The current implementation in mcpm_head.S uses a separate mutual exclusion
+mechanism to do this arbitration. This mechanism is documented in
+detail in vlocks.txt.
+
+
+Features and Limitations
+------------------------
+
+Implementation:
+
+ The current ARM-based implementation is split between
+ arch/arm/common/mcpm_head.S (low-level inbound CPU operations) and
+ arch/arm/common/mcpm_entry.c (everything else):
+
+ __mcpm_cpu_going_down() signals the transition of a CPU to the
+ CPU_GOING_DOWN state.
+
+ __mcpm_cpu_down() signals the transition of a CPU to the CPU_DOWN
+ state.
+
+ A CPU transitions to CPU_COMING_UP and then to CPU_UP via the
+ low-level power-up code in mcpm_head.S. This could
+ involve CPU-specific setup code, but in the current
+ implementation it does not.
+
+ __mcpm_outbound_enter_critical() and __mcpm_outbound_leave_critical()
+ handle transitions from CLUSTER_UP to CLUSTER_GOING_DOWN
+ and from there to CLUSTER_DOWN or back to CLUSTER_UP (in
+ the case of an aborted cluster power-down).
+
+ These functions are more complex than the __mcpm_cpu_*()
+ functions due to the extra inter-CPU coordination which
+ is needed for safe transitions at the cluster level.
+
+ A cluster transitions from CLUSTER_DOWN back to CLUSTER_UP via
+ the low-level power-up code in mcpm_head.S. This
+ typically involves platform-specific setup code,
+ provided by the platform-specific power_up_setup
+ function registered via mcpm_sync_init.
+
+Deep topologies:
+
+ As currently described and implemented, the algorithm does not
+ support CPU topologies involving more than two levels (i.e.,
+ clusters of clusters are not supported). The algorithm could be
+ extended by replicating the cluster-level states for the
+ additional topological levels, and modifying the transition
+ rules for the intermediate (non-outermost) cluster levels.
+
+
+Colophon
+--------
+
+Originally created and documented by Dave Martin for Linaro Limited, in
+collaboration with Nicolas Pitre and Achin Gupta.
+
+Copyright (C) 2012-2013 Linaro Limited
+Distributed under the terms of Version 2 of the GNU General Public
+License, as defined in linux/COPYING.
diff --git a/Documentation/arm/vlocks.txt b/Documentation/arm/vlocks.txt
new file mode 100644
index 0000000..415960a
--- /dev/null
+++ b/Documentation/arm/vlocks.txt
@@ -0,0 +1,211 @@
+vlocks for Bare-Metal Mutual Exclusion
+======================================
+
+Voting Locks, or "vlocks" provide a simple low-level mutual exclusion
+mechanism, with reasonable but minimal requirements on the memory
+system.
+
+These are intended to be used to coordinate critical activity among CPUs
+which are otherwise non-coherent, in situations where the hardware
+provides no other mechanism to support this and ordinary spinlocks
+cannot be used.
+
+
+vlocks make use of the atomicity provided by the memory system for
+writes to a single memory location. To arbitrate, every CPU "votes for
+itself", by storing a unique number to a common memory location. The
+final value seen in that memory location when all the votes have been
+cast identifies the winner.
+
+In order to make sure that the election produces an unambiguous result
+in finite time, a CPU will only enter the election in the first place if
+no winner has been chosen and the election does not appear to have
+started yet.
+
+
+Algorithm
+---------
+
+The easiest way to explain the vlocks algorithm is with some pseudo-code:
+
+
+ int currently_voting[NR_CPUS] = { 0, };
+ int last_vote = -1; /* no votes yet */
+
+ bool vlock_trylock(int this_cpu)
+ {
+ /* signal our desire to vote */
+ currently_voting[this_cpu] = 1;
+ if (last_vote != -1) {
+ /* someone already volunteered himself */
+ currently_voting[this_cpu] = 0;
+ return false; /* not ourself */
+ }
+
+ /* let's suggest ourself */
+ last_vote = this_cpu;
+ currently_voting[this_cpu] = 0;
+
+ /* then wait until everyone else is done voting */
+ for_each_cpu(i) {
+ while (currently_voting[i] != 0)
+ /* wait */;
+ }
+
+ /* result */
+ if (last_vote == this_cpu)
+ return true; /* we won */
+ return false;
+ }
+
+ bool vlock_unlock(void)
+ {
+ last_vote = -1;
+ }
+
+
+The currently_voting[] array provides a way for the CPUs to determine
+whether an election is in progress, and plays a role analogous to the
+"entering" array in Lamport's bakery algorithm [1].
+
+However, once the election has started, the underlying memory system
+atomicity is used to pick the winner. This avoids the need for a static
+priority rule to act as a tie-breaker, or any counters which could
+overflow.
+
+As long as the last_vote variable is globally visible to all CPUs, it
+will contain only one value that won't change once every CPU has cleared
+its currently_voting flag.
+
+
+Features and limitations
+------------------------
+
+ * vlocks are not intended to be fair. In the contended case, it is the
+ _last_ CPU which attempts to get the lock which will be most likely
+ to win.
+
+ vlocks are therefore best suited to situations where it is necessary
+ to pick a unique winner, but it does not matter which CPU actually
+ wins.
+
+ * Like other similar mechanisms, vlocks will not scale well to a large
+ number of CPUs.
+
+ vlocks can be cascaded in a voting hierarchy to permit better scaling
+ if necessary, as in the following hypothetical example for 4096 CPUs:
+
+ /* first level: local election */
+ my_town = towns[(this_cpu >> 4) & 0xf];
+ I_won = vlock_trylock(my_town, this_cpu & 0xf);
+ if (I_won) {
+ /* we won the town election, let's go for the state */
+ my_state = states[(this_cpu >> 8) & 0xf];
+ I_won = vlock_lock(my_state, this_cpu & 0xf));
+ if (I_won) {
+ /* and so on */
+ I_won = vlock_lock(the_whole_country, this_cpu & 0xf];
+ if (I_won) {
+ /* ... */
+ }
+ vlock_unlock(the_whole_country);
+ }
+ vlock_unlock(my_state);
+ }
+ vlock_unlock(my_town);
+
+
+ARM implementation
+------------------
+
+The current ARM implementation [2] contains some optimisations beyond
+the basic algorithm:
+
+ * By packing the members of the currently_voting array close together,
+ we can read the whole array in one transaction (providing the number
+ of CPUs potentially contending the lock is small enough). This
+ reduces the number of round-trips required to external memory.
+
+ In the ARM implementation, this means that we can use a single load
+ and comparison:
+
+ LDR Rt, [Rn]
+ CMP Rt, #0
+
+ ...in place of code equivalent to:
+
+ LDRB Rt, [Rn]
+ CMP Rt, #0
+ LDRBEQ Rt, [Rn, #1]
+ CMPEQ Rt, #0
+ LDRBEQ Rt, [Rn, #2]
+ CMPEQ Rt, #0
+ LDRBEQ Rt, [Rn, #3]
+ CMPEQ Rt, #0
+
+ This cuts down on the fast-path latency, as well as potentially
+ reducing bus contention in contended cases.
+
+ The optimisation relies on the fact that the ARM memory system
+ guarantees coherency between overlapping memory accesses of
+ different sizes, similarly to many other architectures. Note that
+ we do not care which element of currently_voting appears in which
+ bits of Rt, so there is no need to worry about endianness in this
+ optimisation.
+
+ If there are too many CPUs to read the currently_voting array in
+ one transaction then multiple transations are still required. The
+ implementation uses a simple loop of word-sized loads for this
+ case. The number of transactions is still fewer than would be
+ required if bytes were loaded individually.
+
+
+ In principle, we could aggregate further by using LDRD or LDM, but
+ to keep the code simple this was not attempted in the initial
+ implementation.
+
+
+ * vlocks are currently only used to coordinate between CPUs which are
+ unable to enable their caches yet. This means that the
+ implementation removes many of the barriers which would be required
+ when executing the algorithm in cached memory.
+
+ packing of the currently_voting array does not work with cached
+ memory unless all CPUs contending the lock are cache-coherent, due
+ to cache writebacks from one CPU clobbering values written by other
+ CPUs. (Though if all the CPUs are cache-coherent, you should be
+ probably be using proper spinlocks instead anyway).
+
+
+ * The "no votes yet" value used for the last_vote variable is 0 (not
+ -1 as in the pseudocode). This allows statically-allocated vlocks
+ to be implicitly initialised to an unlocked state simply by putting
+ them in .bss.
+
+ An offset is added to each CPU's ID for the purpose of setting this
+ variable, so that no CPU uses the value 0 for its ID.
+
+
+Colophon
+--------
+
+Originally created and documented by Dave Martin for Linaro Limited, for
+use in ARM-based big.LITTLE platforms, with review and input gratefully
+received from Nicolas Pitre and Achin Gupta. Thanks to Nicolas for
+grabbing most of this text out of the relevant mail thread and writing
+up the pseudocode.
+
+Copyright (C) 2012-2013 Linaro Limited
+Distributed under the terms of Version 2 of the GNU General Public
+License, as defined in linux/COPYING.
+
+
+References
+----------
+
+[1] Lamport, L. "A New Solution of Dijkstra's Concurrent Programming
+ Problem", Communications of the ACM 17, 8 (August 1974), 453-455.
+
+ http://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm
+
+[2] linux/arch/arm/common/vlock.S, www.kernel.org.
diff --git a/Documentation/devicetree/bindings/mfd/ab8500.txt b/Documentation/devicetree/bindings/mfd/ab8500.txt
index 13b707b..c3a14e0 100644
--- a/Documentation/devicetree/bindings/mfd/ab8500.txt
+++ b/Documentation/devicetree/bindings/mfd/ab8500.txt
@@ -13,9 +13,6 @@ Required parent device properties:
4 = active high level-sensitive
8 = active low level-sensitive
-Optional parent device properties:
-- reg : contains the PRCMU mailbox address for the AB8500 i2c port
-
The AB8500 consists of a large and varied group of sub-devices:
Device IRQ Names Supply Names Description
@@ -86,9 +83,8 @@ Non-standard child device properties:
- stericsson,amic2-bias-vamic1 : Analoge Mic wishes to use a non-standard Vamic
- stericsson,earpeice-cmv : Earpeice voltage (only: 950 | 1100 | 1270 | 1580)
-ab8500@5 {
+ab8500 {
compatible = "stericsson,ab8500";
- reg = <5>; /* mailbox 5 is i2c */
interrupts = <0 40 0x4>;
interrupt-controller;
#interrupt-cells = <2>;
diff --git a/Documentation/devicetree/bindings/tty/serial/of-serial.txt b/Documentation/devicetree/bindings/tty/serial/of-serial.txt
index 1e1145c..8f01cb1 100644
--- a/Documentation/devicetree/bindings/tty/serial/of-serial.txt
+++ b/Documentation/devicetree/bindings/tty/serial/of-serial.txt
@@ -11,6 +11,9 @@ Required properties:
- "nvidia,tegra20-uart"
- "nxp,lpc3220-uart"
- "ibm,qpace-nwp-serial"
+ - "altr,16550-FIFO32"
+ - "altr,16550-FIFO64"
+ - "altr,16550-FIFO128"
- "serial" if the port type is unknown.
- reg : offset and length of the register set for the device.
- interrupts : should contain uart interrupt.
diff --git a/Documentation/hwmon/lm75 b/Documentation/hwmon/lm75
index c91a1d1..69af1c7 100644
--- a/Documentation/hwmon/lm75
+++ b/Documentation/hwmon/lm75
@@ -23,7 +23,7 @@ Supported chips:
Datasheet: Publicly available at the Maxim website
http://www.maxim-ic.com/
* Microchip (TelCom) TCN75
- Prefix: 'lm75'
+ Prefix: 'tcn75'
Addresses scanned: none
Datasheet: Publicly available at the Microchip website
http://www.microchip.com/
diff --git a/Documentation/i2c/busses/i2c-diolan-u2c b/Documentation/i2c/busses/i2c-diolan-u2c
index 30fe4bb..0d6018c 100644
--- a/Documentation/i2c/busses/i2c-diolan-u2c
+++ b/Documentation/i2c/busses/i2c-diolan-u2c
@@ -5,7 +5,7 @@ Supported adapters:
Documentation:
http://www.diolan.com/i2c/u2c12.html
-Author: Guenter Roeck <guenter.roeck@ericsson.com>
+Author: Guenter Roeck <linux@roeck-us.net>
Description
-----------
diff --git a/Documentation/input/alps.txt b/Documentation/input/alps.txt
index 3262b6e..e544c7f 100644
--- a/Documentation/input/alps.txt
+++ b/Documentation/input/alps.txt
@@ -3,10 +3,26 @@ ALPS Touchpad Protocol
Introduction
------------
-
-Currently the ALPS touchpad driver supports four protocol versions in use by
-ALPS touchpads, called versions 1, 2, 3, and 4. Information about the various
-protocol versions is contained in the following sections.
+Currently the ALPS touchpad driver supports five protocol versions in use by
+ALPS touchpads, called versions 1, 2, 3, 4 and 5.
+
+Since roughly mid-2010 several new ALPS touchpads have been released and
+integrated into a variety of laptops and netbooks. These new touchpads
+have enough behavior differences that the alps_model_data definition
+table, describing the properties of the different versions, is no longer
+adequate. The design choices were to re-define the alps_model_data
+table, with the risk of regression testing existing devices, or isolate
+the new devices outside of the alps_model_data table. The latter design
+choice was made. The new touchpad signatures are named: "Rushmore",
+"Pinnacle", and "Dolphin", which you will see in the alps.c code.
+For the purposes of this document, this group of ALPS touchpads will
+generically be called "new ALPS touchpads".
+
+We experimented with probing the ACPI interface _HID (Hardware ID)/_CID
+(Compatibility ID) definition as a way to uniquely identify the
+different ALPS variants but there did not appear to be a 1:1 mapping.
+In fact, it appeared to be an m:n mapping between the _HID and actual
+hardware type.
Detection
---------
@@ -20,9 +36,13 @@ If the E6 report is successful, the touchpad model is identified using the "E7
report" sequence: E8-E7-E7-E7-E9. The response is the model signature and is
matched against known models in the alps_model_data_array.
-With protocol versions 3 and 4, the E7 report model signature is always
-73-02-64. To differentiate between these versions, the response from the
-"Enter Command Mode" sequence must be inspected as described below.
+For older touchpads supporting protocol versions 3 and 4, the E7 report
+model signature is always 73-02-64. To differentiate between these
+versions, the response from the "Enter Command Mode" sequence must be
+inspected as described below.
+
+The new ALPS touchpads have an E7 signature of 73-03-50 or 73-03-0A but
+seem to be better differentiated by the EC Command Mode response.
Command Mode
------------
@@ -47,6 +67,14 @@ address of the register being read, and the third contains the value of the
register. Registers are written by writing the value one nibble at a time
using the same encoding used for addresses.
+For the new ALPS touchpads, the EC command is used to enter command
+mode. The response in the new ALPS touchpads is significantly different,
+and more important in determining the behavior. This code has been
+separated from the original alps_model_data table and put in the
+alps_identify function. For example, there seem to be two hardware init
+sequences for the "Dolphin" touchpads as determined by the second byte
+of the EC response.
+
Packet Format
-------------
@@ -187,3 +215,28 @@ There are several things worth noting here.
well.
So far no v4 devices with tracksticks have been encountered.
+
+ALPS Absolute Mode - Protocol Version 5
+---------------------------------------
+This is basically Protocol Version 3 but with different logic for packet
+decode. It uses the same alps_process_touchpad_packet_v3 call with a
+specialized decode_fields function pointer to correctly interpret the
+packets. This appears to only be used by the Dolphin devices.
+
+For single-touch, the 6-byte packet format is:
+
+ byte 0: 1 1 0 0 1 0 0 0
+ byte 1: 0 x6 x5 x4 x3 x2 x1 x0
+ byte 2: 0 y6 y5 y4 y3 y2 y1 y0
+ byte 3: 0 M R L 1 m r l
+ byte 4: y10 y9 y8 y7 x10 x9 x8 x7
+ byte 5: 0 z6 z5 z4 z3 z2 z1 z0
+
+For mt, the format is:
+
+ byte 0: 1 1 1 n3 1 n2 n1 x24
+ byte 1: 1 y7 y6 y5 y4 y3 y2 y1
+ byte 2: ? x2 x1 y12 y11 y10 y9 y8
+ byte 3: 0 x23 x22 x21 x20 x19 x18 x17
+ byte 4: 0 x9 x8 x7 x6 x5 x4 x3
+ byte 5: 0 x16 x15 x14 x13 x12 x11 x10
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 4609e81..8ccbf27 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -596,9 +596,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
is selected automatically. Check
Documentation/kdump/kdump.txt for further details.
- crashkernel_low=size[KMG]
- [KNL, x86] parts under 4G.
-
crashkernel=range1:size1[,range2:size2,...][@offset]
[KNL] Same as above, but depends on the memory
in the running system. The syntax of range is
@@ -606,6 +603,26 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
a memory unit (amount[KMG]). See also
Documentation/kdump/kdump.txt for an example.
+ crashkernel=size[KMG],high
+ [KNL, x86_64] range could be above 4G. Allow kernel
+ to allocate physical memory region from top, so could
+ be above 4G if system have more than 4G ram installed.
+ Otherwise memory region will be allocated below 4G, if
+ available.
+ It will be ignored if crashkernel=X is specified.
+ crashkernel=size[KMG],low
+ [KNL, x86_64] range under 4G. When crashkernel=X,high
+ is passed, kernel could allocate physical memory region
+ above 4G, that cause second kernel crash on system
+ that require some amount of low memory, e.g. swiotlb
+ requires at least 64M+32K low memory. Kernel would
+ try to allocate 72M below 4G automatically.
+ This one let user to specify own low range under 4G
+ for second kernel instead.
+ 0: to disable low allocation.
+ It will be ignored when crashkernel=X,high is not used
+ or memory reserved is below 4G.
+
cs89x0_dma= [HW,NET]
Format: <dma>
@@ -788,6 +805,12 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
edd= [EDD]
Format: {"off" | "on" | "skip[mbr]"}
+ efi_no_storage_paranoia [EFI; X86]
+ Using this parameter you can use more than 50% of
+ your efi variable storage. Use this parameter only if
+ you are really sure that your UEFI does sane gc and
+ fulfills the spec otherwise your board may brick.
+
eisa_irq_edge= [PARISC,HW]
See header of drivers/parisc/eisa.c.
diff --git a/Documentation/networking/ipvs-sysctl.txt b/Documentation/networking/ipvs-sysctl.txt
index f2a2488..9573d0c 100644
--- a/Documentation/networking/ipvs-sysctl.txt
+++ b/Documentation/networking/ipvs-sysctl.txt
@@ -15,6 +15,13 @@ amemthresh - INTEGER
enabled and the variable is automatically set to 2, otherwise
the strategy is disabled and the variable is set to 1.
+backup_only - BOOLEAN
+ 0 - disabled (default)
+ not 0 - enabled
+
+ If set, disable the director function while the server is
+ in backup mode to avoid packet loops for DR/TUN methods.
+
conntrack - BOOLEAN
0 - disabled (default)
not 0 - enabled
diff --git a/Documentation/networking/tuntap.txt b/Documentation/networking/tuntap.txt
index c0aab98..949d5dc 100644
--- a/Documentation/networking/tuntap.txt
+++ b/Documentation/networking/tuntap.txt
@@ -105,6 +105,83 @@ Copyright (C) 1999-2000 Maxim Krasnyansky <max_mk@yahoo.com>
Proto [2 bytes]
Raw protocol(IP, IPv6, etc) frame.
+ 3.3 Multiqueue tuntap interface:
+
+ From version 3.8, Linux supports multiqueue tuntap which can uses multiple
+ file descriptors (queues) to parallelize packets sending or receiving. The
+ device allocation is the same as before, and if user wants to create multiple
+ queues, TUNSETIFF with the same device name must be called many times with
+ IFF_MULTI_QUEUE flag.
+
+ char *dev should be the name of the device, queues is the number of queues to
+ be created, fds is used to store and return the file descriptors (queues)
+ created to the caller. Each file descriptor were served as the interface of a
+ queue which could be accessed by userspace.
+
+ #include <linux/if.h>
+ #include <linux/if_tun.h>
+
+ int tun_alloc_mq(char *dev, int queues, int *fds)
+ {
+ struct ifreq ifr;
+ int fd, err, i;
+
+ if (!dev)
+ return -1;
+
+ memset(&ifr, 0, sizeof(ifr));
+ /* Flags: IFF_TUN - TUN device (no Ethernet headers)
+ * IFF_TAP - TAP device
+ *
+ * IFF_NO_PI - Do not provide packet information
+ * IFF_MULTI_QUEUE - Create a queue of multiqueue device
+ */
+ ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_MULTI_QUEUE;
+ strcpy(ifr.ifr_name, dev);
+
+ for (i = 0; i < queues; i++) {
+ if ((fd = open("/dev/net/tun", O_RDWR)) < 0)
+ goto err;
+ err = ioctl(fd, TUNSETIFF, (void *)&ifr);
+ if (err) {
+ close(fd);
+ goto err;
+ }
+ fds[i] = fd;
+ }
+
+ return 0;
+ err:
+ for (--i; i >= 0; i--)
+ close(fds[i]);
+ return err;
+ }
+
+ A new ioctl(TUNSETQUEUE) were introduced to enable or disable a queue. When
+ calling it with IFF_DETACH_QUEUE flag, the queue were disabled. And when
+ calling it with IFF_ATTACH_QUEUE flag, the queue were enabled. The queue were
+ enabled by default after it was created through TUNSETIFF.
+
+ fd is the file descriptor (queue) that we want to enable or disable, when
+ enable is true we enable it, otherwise we disable it
+
+ #include <linux/if.h>
+ #include <linux/if_tun.h>
+
+ int tun_set_queue(int fd, int enable)
+ {
+ struct ifreq ifr;
+
+ memset(&ifr, 0, sizeof(ifr));
+
+ if (enable)
+ ifr.ifr_flags = IFF_ATTACH_QUEUE;
+ else
+ ifr.ifr_flags = IFF_DETACH_QUEUE;
+
+ return ioctl(fd, TUNSETQUEUE, (void *)&ifr);
+ }
+
Universal TUN/TAP device driver Frequently Asked Question.
1. What platforms are supported by TUN/TAP driver ?
diff --git a/Documentation/scsi/LICENSE.qla2xxx b/Documentation/scsi/LICENSE.qla2xxx
index 27a91cf..5020b7b 100644
--- a/Documentation/scsi/LICENSE.qla2xxx
+++ b/Documentation/scsi/LICENSE.qla2xxx
@@ -1,4 +1,4 @@
-Copyright (c) 2003-2012 QLogic Corporation
+Copyright (c) 2003-2013 QLogic Corporation
QLogic Linux FC-FCoE Driver
This program includes a device driver for Linux 3.x.
diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt
index ce6581c..95731a0 100644
--- a/Documentation/sound/alsa/ALSA-Configuration.txt
+++ b/Documentation/sound/alsa/ALSA-Configuration.txt
@@ -890,9 +890,8 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
enable_msi - Enable Message Signaled Interrupt (MSI) (default = off)
power_save - Automatic power-saving timeout (in second, 0 =
disable)
- power_save_controller - Support runtime D3 of HD-audio controller
- (-1 = on for supported chip (default), false = off,
- true = force to on even for unsupported hardware)
+ power_save_controller - Reset HD-audio controller in power-saving mode
+ (default = on)
align_buffer_size - Force rounding of buffer/period sizes to multiples
of 128 bytes. This is more efficient in terms of memory
access but isn't required by the HDA spec and prevents
@@ -912,7 +911,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
models depending on the codec chip. The list of available models
is found in HD-Audio-Models.txt
- The model name "genric" is treated as a special case. When this
+ The model name "generic" is treated as a special case. When this
model is given, the driver uses the generic codec parser without
"codec-patch". It's sometimes good for testing and debugging.
diff --git a/Documentation/sound/alsa/seq_oss.html b/Documentation/sound/alsa/seq_oss.html
index d9776cf..9663b45 100644
--- a/Documentation/sound/alsa/seq_oss.html
+++ b/Documentation/sound/alsa/seq_oss.html
@@ -285,7 +285,7 @@ sample data.
<H4>
7.2.4 Close Callback</H4>
The <TT>close</TT> callback is called when this device is closed by the
-applicaion. If any private data was allocated in open callback, it must
+application. If any private data was allocated in open callback, it must
be released in the close callback. The deletion of ALSA port should be
done here, too. This callback must not be NULL.
<H4>
diff --git a/Documentation/trace/ftrace.txt b/Documentation/trace/ftrace.txt
index 53d6a3c..a372304 100644
--- a/Documentation/trace/ftrace.txt
+++ b/Documentation/trace/ftrace.txt
@@ -1873,7 +1873,7 @@ feature:
status\input | 0 | 1 | else |
--------------+------------+------------+------------+
- not allocated |(do nothing)| alloc+swap | EINVAL |
+ not allocated |(do nothing)| alloc+swap |(do nothing)|
--------------+------------+------------+------------+
allocated | free | swap | clear |
--------------+------------+------------+------------+