summaryrefslogtreecommitdiff
path: root/drivers/net/sfc/falcon.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/sfc/falcon.c')
-rw-r--r--drivers/net/sfc/falcon.c2722
1 files changed, 2722 insertions, 0 deletions
diff --git a/drivers/net/sfc/falcon.c b/drivers/net/sfc/falcon.c
new file mode 100644
index 0000000..46db549
--- /dev/null
+++ b/drivers/net/sfc/falcon.c
@@ -0,0 +1,2722 @@
+/****************************************************************************
+ * Driver for Solarflare Solarstorm network controllers and boards
+ * Copyright 2005-2006 Fen Systems Ltd.
+ * Copyright 2006-2008 Solarflare Communications Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation, incorporated herein by reference.
+ */
+
+#include <linux/bitops.h>
+#include <linux/delay.h>
+#include <linux/pci.h>
+#include <linux/module.h>
+#include <linux/seq_file.h>
+#include "net_driver.h"
+#include "bitfield.h"
+#include "efx.h"
+#include "mac.h"
+#include "gmii.h"
+#include "spi.h"
+#include "falcon.h"
+#include "falcon_hwdefs.h"
+#include "falcon_io.h"
+#include "mdio_10g.h"
+#include "phy.h"
+#include "boards.h"
+#include "workarounds.h"
+
+/* Falcon hardware control.
+ * Falcon is the internal codename for the SFC4000 controller that is
+ * present in SFE400X evaluation boards
+ */
+
+/**
+ * struct falcon_nic_data - Falcon NIC state
+ * @next_buffer_table: First available buffer table id
+ * @pci_dev2: The secondary PCI device if present
+ */
+struct falcon_nic_data {
+ unsigned next_buffer_table;
+ struct pci_dev *pci_dev2;
+};
+
+/**************************************************************************
+ *
+ * Configurable values
+ *
+ **************************************************************************
+ */
+
+static int disable_dma_stats;
+
+/* This is set to 16 for a good reason. In summary, if larger than
+ * 16, the descriptor cache holds more than a default socket
+ * buffer's worth of packets (for UDP we can only have at most one
+ * socket buffer's worth outstanding). This combined with the fact
+ * that we only get 1 TX event per descriptor cache means the NIC
+ * goes idle.
+ */
+#define TX_DC_ENTRIES 16
+#define TX_DC_ENTRIES_ORDER 0
+#define TX_DC_BASE 0x130000
+
+#define RX_DC_ENTRIES 64
+#define RX_DC_ENTRIES_ORDER 2
+#define RX_DC_BASE 0x100000
+
+/* RX FIFO XOFF watermark
+ *
+ * When the amount of the RX FIFO increases used increases past this
+ * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
+ * This also has an effect on RX/TX arbitration
+ */
+static int rx_xoff_thresh_bytes = -1;
+module_param(rx_xoff_thresh_bytes, int, 0644);
+MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
+
+/* RX FIFO XON watermark
+ *
+ * When the amount of the RX FIFO used decreases below this
+ * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
+ * This also has an effect on RX/TX arbitration
+ */
+static int rx_xon_thresh_bytes = -1;
+module_param(rx_xon_thresh_bytes, int, 0644);
+MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
+
+/* TX descriptor ring size - min 512 max 4k */
+#define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
+#define FALCON_TXD_RING_SIZE 1024
+#define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
+
+/* RX descriptor ring size - min 512 max 4k */
+#define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
+#define FALCON_RXD_RING_SIZE 1024
+#define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
+
+/* Event queue size - max 32k */
+#define FALCON_EVQ_ORDER EVQ_SIZE_4K
+#define FALCON_EVQ_SIZE 4096
+#define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
+
+/* Max number of internal errors. After this resets will not be performed */
+#define FALCON_MAX_INT_ERRORS 4
+
+/* Maximum period that we wait for flush events. If the flush event
+ * doesn't arrive in this period of time then we check if the queue
+ * was disabled anyway. */
+#define FALCON_FLUSH_TIMEOUT 10 /* 10ms */
+
+/**************************************************************************
+ *
+ * Falcon constants
+ *
+ **************************************************************************
+ */
+
+/* DMA address mask (up to 46-bit, avoiding compiler warnings)
+ *
+ * Note that it is possible to have a platform with 64-bit longs and
+ * 32-bit DMA addresses, or vice versa. EFX_DMA_MASK takes care of the
+ * platform DMA mask.
+ */
+#if BITS_PER_LONG == 64
+#define FALCON_DMA_MASK EFX_DMA_MASK(0x00003fffffffffffUL)
+#else
+#define FALCON_DMA_MASK EFX_DMA_MASK(0x00003fffffffffffULL)
+#endif
+
+/* TX DMA length mask (13-bit) */
+#define FALCON_TX_DMA_MASK (4096 - 1)
+
+/* Size and alignment of special buffers (4KB) */
+#define FALCON_BUF_SIZE 4096
+
+/* Dummy SRAM size code */
+#define SRM_NB_BSZ_ONCHIP_ONLY (-1)
+
+/* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
+#define PCI_EXP_DEVCAP_PWR_VAL_LBN 18
+#define PCI_EXP_DEVCAP_PWR_SCL_LBN 26
+#define PCI_EXP_DEVCTL_PAYLOAD_LBN 5
+#define PCI_EXP_LNKSTA_LNK_WID 0x3f0
+#define PCI_EXP_LNKSTA_LNK_WID_LBN 4
+
+#define FALCON_IS_DUAL_FUNC(efx) \
+ (FALCON_REV(efx) < FALCON_REV_B0)
+
+/**************************************************************************
+ *
+ * Falcon hardware access
+ *
+ **************************************************************************/
+
+/* Read the current event from the event queue */
+static inline efx_qword_t *falcon_event(struct efx_channel *channel,
+ unsigned int index)
+{
+ return (((efx_qword_t *) (channel->eventq.addr)) + index);
+}
+
+/* See if an event is present
+ *
+ * We check both the high and low dword of the event for all ones. We
+ * wrote all ones when we cleared the event, and no valid event can
+ * have all ones in either its high or low dwords. This approach is
+ * robust against reordering.
+ *
+ * Note that using a single 64-bit comparison is incorrect; even
+ * though the CPU read will be atomic, the DMA write may not be.
+ */
+static inline int falcon_event_present(efx_qword_t *event)
+{
+ return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
+ EFX_DWORD_IS_ALL_ONES(event->dword[1])));
+}
+
+/**************************************************************************
+ *
+ * I2C bus - this is a bit-bashing interface using GPIO pins
+ * Note that it uses the output enables to tristate the outputs
+ * SDA is the data pin and SCL is the clock
+ *
+ **************************************************************************
+ */
+static void falcon_setsdascl(struct efx_i2c_interface *i2c)
+{
+ efx_oword_t reg;
+
+ falcon_read(i2c->efx, &reg, GPIO_CTL_REG_KER);
+ EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, (i2c->scl ? 0 : 1));
+ EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, (i2c->sda ? 0 : 1));
+ falcon_write(i2c->efx, &reg, GPIO_CTL_REG_KER);
+}
+
+static int falcon_getsda(struct efx_i2c_interface *i2c)
+{
+ efx_oword_t reg;
+
+ falcon_read(i2c->efx, &reg, GPIO_CTL_REG_KER);
+ return EFX_OWORD_FIELD(reg, GPIO3_IN);
+}
+
+static int falcon_getscl(struct efx_i2c_interface *i2c)
+{
+ efx_oword_t reg;
+
+ falcon_read(i2c->efx, &reg, GPIO_CTL_REG_KER);
+ return EFX_DWORD_FIELD(reg, GPIO0_IN);
+}
+
+static struct efx_i2c_bit_operations falcon_i2c_bit_operations = {
+ .setsda = falcon_setsdascl,
+ .setscl = falcon_setsdascl,
+ .getsda = falcon_getsda,
+ .getscl = falcon_getscl,
+ .udelay = 100,
+ .mdelay = 10,
+};
+
+/**************************************************************************
+ *
+ * Falcon special buffer handling
+ * Special buffers are used for event queues and the TX and RX
+ * descriptor rings.
+ *
+ *************************************************************************/
+
+/*
+ * Initialise a Falcon special buffer
+ *
+ * This will define a buffer (previously allocated via
+ * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
+ * it to be used for event queues, descriptor rings etc.
+ */
+static int
+falcon_init_special_buffer(struct efx_nic *efx,
+ struct efx_special_buffer *buffer)
+{
+ efx_qword_t buf_desc;
+ int index;
+ dma_addr_t dma_addr;
+ int i;
+
+ EFX_BUG_ON_PARANOID(!buffer->addr);
+
+ /* Write buffer descriptors to NIC */
+ for (i = 0; i < buffer->entries; i++) {
+ index = buffer->index + i;
+ dma_addr = buffer->dma_addr + (i * 4096);
+ EFX_LOG(efx, "mapping special buffer %d at %llx\n",
+ index, (unsigned long long)dma_addr);
+ EFX_POPULATE_QWORD_4(buf_desc,
+ IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
+ BUF_ADR_REGION, 0,
+ BUF_ADR_FBUF, (dma_addr >> 12),
+ BUF_OWNER_ID_FBUF, 0);
+ falcon_write_sram(efx, &buf_desc, index);
+ }
+
+ return 0;
+}
+
+/* Unmaps a buffer from Falcon and clears the buffer table entries */
+static void
+falcon_fini_special_buffer(struct efx_nic *efx,
+ struct efx_special_buffer *buffer)
+{
+ efx_oword_t buf_tbl_upd;
+ unsigned int start = buffer->index;
+ unsigned int end = (buffer->index + buffer->entries - 1);
+
+ if (!buffer->entries)
+ return;
+
+ EFX_LOG(efx, "unmapping special buffers %d-%d\n",
+ buffer->index, buffer->index + buffer->entries - 1);
+
+ EFX_POPULATE_OWORD_4(buf_tbl_upd,
+ BUF_UPD_CMD, 0,
+ BUF_CLR_CMD, 1,
+ BUF_CLR_END_ID, end,
+ BUF_CLR_START_ID, start);
+ falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
+}
+
+/*
+ * Allocate a new Falcon special buffer
+ *
+ * This allocates memory for a new buffer, clears it and allocates a
+ * new buffer ID range. It does not write into Falcon's buffer table.
+ *
+ * This call will allocate 4KB buffers, since Falcon can't use 8KB
+ * buffers for event queues and descriptor rings.
+ */
+static int falcon_alloc_special_buffer(struct efx_nic *efx,
+ struct efx_special_buffer *buffer,
+ unsigned int len)
+{
+ struct falcon_nic_data *nic_data = efx->nic_data;
+
+ len = ALIGN(len, FALCON_BUF_SIZE);
+
+ buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
+ &buffer->dma_addr);
+ if (!buffer->addr)
+ return -ENOMEM;
+ buffer->len = len;
+ buffer->entries = len / FALCON_BUF_SIZE;
+ BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
+
+ /* All zeros is a potentially valid event so memset to 0xff */
+ memset(buffer->addr, 0xff, len);
+
+ /* Select new buffer ID */
+ buffer->index = nic_data->next_buffer_table;
+ nic_data->next_buffer_table += buffer->entries;
+
+ EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
+ "(virt %p phys %lx)\n", buffer->index,
+ buffer->index + buffer->entries - 1,
+ (unsigned long long)buffer->dma_addr, len,
+ buffer->addr, virt_to_phys(buffer->addr));
+
+ return 0;
+}
+
+static void falcon_free_special_buffer(struct efx_nic *efx,
+ struct efx_special_buffer *buffer)
+{
+ if (!buffer->addr)
+ return;
+
+ EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
+ "(virt %p phys %lx)\n", buffer->index,
+ buffer->index + buffer->entries - 1,
+ (unsigned long long)buffer->dma_addr, buffer->len,
+ buffer->addr, virt_to_phys(buffer->addr));
+
+ pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
+ buffer->dma_addr);
+ buffer->addr = NULL;
+ buffer->entries = 0;
+}
+
+/**************************************************************************
+ *
+ * Falcon generic buffer handling
+ * These buffers are used for interrupt status and MAC stats
+ *
+ **************************************************************************/
+
+static int falcon_alloc_buffer(struct efx_nic *efx,
+ struct efx_buffer *buffer, unsigned int len)
+{
+ buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
+ &buffer->dma_addr);
+ if (!buffer->addr)
+ return -ENOMEM;
+ buffer->len = len;
+ memset(buffer->addr, 0, len);
+ return 0;
+}
+
+static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
+{
+ if (buffer->addr) {
+ pci_free_consistent(efx->pci_dev, buffer->len,
+ buffer->addr, buffer->dma_addr);
+ buffer->addr = NULL;
+ }
+}
+
+/**************************************************************************
+ *
+ * Falcon TX path
+ *
+ **************************************************************************/
+
+/* Returns a pointer to the specified transmit descriptor in the TX
+ * descriptor queue belonging to the specified channel.
+ */
+static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
+ unsigned int index)
+{
+ return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
+}
+
+/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
+static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
+{
+ unsigned write_ptr;
+ efx_dword_t reg;
+
+ write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
+ EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
+ falcon_writel_page(tx_queue->efx, &reg,
+ TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
+}
+
+
+/* For each entry inserted into the software descriptor ring, create a
+ * descriptor in the hardware TX descriptor ring (in host memory), and
+ * write a doorbell.
+ */
+void falcon_push_buffers(struct efx_tx_queue *tx_queue)
+{
+
+ struct efx_tx_buffer *buffer;
+ efx_qword_t *txd;
+ unsigned write_ptr;
+
+ BUG_ON(tx_queue->write_count == tx_queue->insert_count);
+
+ do {
+ write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
+ buffer = &tx_queue->buffer[write_ptr];
+ txd = falcon_tx_desc(tx_queue, write_ptr);
+ ++tx_queue->write_count;
+
+ /* Create TX descriptor ring entry */
+ EFX_POPULATE_QWORD_5(*txd,
+ TX_KER_PORT, 0,
+ TX_KER_CONT, buffer->continuation,
+ TX_KER_BYTE_CNT, buffer->len,
+ TX_KER_BUF_REGION, 0,
+ TX_KER_BUF_ADR, buffer->dma_addr);
+ } while (tx_queue->write_count != tx_queue->insert_count);
+
+ wmb(); /* Ensure descriptors are written before they are fetched */
+ falcon_notify_tx_desc(tx_queue);
+}
+
+/* Allocate hardware resources for a TX queue */
+int falcon_probe_tx(struct efx_tx_queue *tx_queue)
+{
+ struct efx_nic *efx = tx_queue->efx;
+ return falcon_alloc_special_buffer(efx, &tx_queue->txd,
+ FALCON_TXD_RING_SIZE *
+ sizeof(efx_qword_t));
+}
+
+int falcon_init_tx(struct efx_tx_queue *tx_queue)
+{
+ efx_oword_t tx_desc_ptr;
+ struct efx_nic *efx = tx_queue->efx;
+ int rc;
+
+ /* Pin TX descriptor ring */
+ rc = falcon_init_special_buffer(efx, &tx_queue->txd);
+ if (rc)
+ return rc;
+
+ /* Push TX descriptor ring to card */
+ EFX_POPULATE_OWORD_10(tx_desc_ptr,
+ TX_DESCQ_EN, 1,
+ TX_ISCSI_DDIG_EN, 0,
+ TX_ISCSI_HDIG_EN, 0,
+ TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
+ TX_DESCQ_EVQ_ID, tx_queue->channel->evqnum,
+ TX_DESCQ_OWNER_ID, 0,
+ TX_DESCQ_LABEL, tx_queue->queue,
+ TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
+ TX_DESCQ_TYPE, 0,
+ TX_NON_IP_DROP_DIS_B0, 1);
+
+ if (FALCON_REV(efx) >= FALCON_REV_B0) {
+ int csum = !(efx->net_dev->features & NETIF_F_IP_CSUM);
+ EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, csum);
+ EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, csum);
+ }
+
+ falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
+ tx_queue->queue);
+
+ if (FALCON_REV(efx) < FALCON_REV_B0) {
+ efx_oword_t reg;
+
+ BUG_ON(tx_queue->queue >= 128); /* HW limit */
+
+ falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
+ if (efx->net_dev->features & NETIF_F_IP_CSUM)
+ clear_bit_le(tx_queue->queue, (void *)&reg);
+ else
+ set_bit_le(tx_queue->queue, (void *)&reg);
+ falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
+ }
+
+ return 0;
+}
+
+static int falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
+{
+ struct efx_nic *efx = tx_queue->efx;
+ struct efx_channel *channel = &efx->channel[0];
+ efx_oword_t tx_flush_descq;
+ unsigned int read_ptr, i;
+
+ /* Post a flush command */
+ EFX_POPULATE_OWORD_2(tx_flush_descq,
+ TX_FLUSH_DESCQ_CMD, 1,
+ TX_FLUSH_DESCQ, tx_queue->queue);
+ falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
+ msleep(FALCON_FLUSH_TIMEOUT);
+
+ if (EFX_WORKAROUND_7803(efx))
+ return 0;
+
+ /* Look for a flush completed event */
+ read_ptr = channel->eventq_read_ptr;
+ for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
+ efx_qword_t *event = falcon_event(channel, read_ptr);
+ int ev_code, ev_sub_code, ev_queue;
+ if (!falcon_event_present(event))
+ break;
+
+ ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
+ ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
+ ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_TX_DESCQ_ID);
+ if ((ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) &&
+ (ev_queue == tx_queue->queue)) {
+ EFX_LOG(efx, "tx queue %d flush command succesful\n",
+ tx_queue->queue);
+ return 0;
+ }
+
+ read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
+ }
+
+ if (EFX_WORKAROUND_11557(efx)) {
+ efx_oword_t reg;
+ int enabled;
+
+ falcon_read_table(efx, &reg, efx->type->txd_ptr_tbl_base,
+ tx_queue->queue);
+ enabled = EFX_OWORD_FIELD(reg, TX_DESCQ_EN);
+ if (!enabled) {
+ EFX_LOG(efx, "tx queue %d disabled without a "
+ "flush event seen\n", tx_queue->queue);
+ return 0;
+ }
+ }
+
+ EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue);
+ return -ETIMEDOUT;
+}
+
+void falcon_fini_tx(struct efx_tx_queue *tx_queue)
+{
+ struct efx_nic *efx = tx_queue->efx;
+ efx_oword_t tx_desc_ptr;
+
+ /* Stop the hardware using the queue */
+ if (falcon_flush_tx_queue(tx_queue))
+ EFX_ERR(efx, "failed to flush tx queue %d\n", tx_queue->queue);
+
+ /* Remove TX descriptor ring from card */
+ EFX_ZERO_OWORD(tx_desc_ptr);
+ falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
+ tx_queue->queue);
+
+ /* Unpin TX descriptor ring */
+ falcon_fini_special_buffer(efx, &tx_queue->txd);
+}
+
+/* Free buffers backing TX queue */
+void falcon_remove_tx(struct efx_tx_queue *tx_queue)
+{
+ falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
+}
+
+/**************************************************************************
+ *
+ * Falcon RX path
+ *
+ **************************************************************************/
+
+/* Returns a pointer to the specified descriptor in the RX descriptor queue */
+static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
+ unsigned int index)
+{
+ return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
+}
+
+/* This creates an entry in the RX descriptor queue */
+static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
+ unsigned index)
+{
+ struct efx_rx_buffer *rx_buf;
+ efx_qword_t *rxd;
+
+ rxd = falcon_rx_desc(rx_queue, index);
+ rx_buf = efx_rx_buffer(rx_queue, index);
+ EFX_POPULATE_QWORD_3(*rxd,
+ RX_KER_BUF_SIZE,
+ rx_buf->len -
+ rx_queue->efx->type->rx_buffer_padding,
+ RX_KER_BUF_REGION, 0,
+ RX_KER_BUF_ADR, rx_buf->dma_addr);
+}
+
+/* This writes to the RX_DESC_WPTR register for the specified receive
+ * descriptor ring.
+ */
+void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
+{
+ efx_dword_t reg;
+ unsigned write_ptr;
+
+ while (rx_queue->notified_count != rx_queue->added_count) {
+ falcon_build_rx_desc(rx_queue,
+ rx_queue->notified_count &
+ FALCON_RXD_RING_MASK);
+ ++rx_queue->notified_count;
+ }
+
+ wmb();
+ write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
+ EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
+ falcon_writel_page(rx_queue->efx, &reg,
+ RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
+}
+
+int falcon_probe_rx(struct efx_rx_queue *rx_queue)
+{
+ struct efx_nic *efx = rx_queue->efx;
+ return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
+ FALCON_RXD_RING_SIZE *
+ sizeof(efx_qword_t));
+}
+
+int falcon_init_rx(struct efx_rx_queue *rx_queue)
+{
+ efx_oword_t rx_desc_ptr;
+ struct efx_nic *efx = rx_queue->efx;
+ int rc;
+ int is_b0 = FALCON_REV(efx) >= FALCON_REV_B0;
+ int iscsi_digest_en = is_b0;
+
+ EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
+ rx_queue->queue, rx_queue->rxd.index,
+ rx_queue->rxd.index + rx_queue->rxd.entries - 1);
+
+ /* Pin RX descriptor ring */
+ rc = falcon_init_special_buffer(efx, &rx_queue->rxd);
+ if (rc)
+ return rc;
+
+ /* Push RX descriptor ring to card */
+ EFX_POPULATE_OWORD_10(rx_desc_ptr,
+ RX_ISCSI_DDIG_EN, iscsi_digest_en,
+ RX_ISCSI_HDIG_EN, iscsi_digest_en,
+ RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
+ RX_DESCQ_EVQ_ID, rx_queue->channel->evqnum,
+ RX_DESCQ_OWNER_ID, 0,
+ RX_DESCQ_LABEL, rx_queue->queue,
+ RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
+ RX_DESCQ_TYPE, 0 /* kernel queue */ ,
+ /* For >=B0 this is scatter so disable */
+ RX_DESCQ_JUMBO, !is_b0,
+ RX_DESCQ_EN, 1);
+ falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
+ rx_queue->queue);
+ return 0;
+}
+
+static int falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
+{
+ struct efx_nic *efx = rx_queue->efx;
+ struct efx_channel *channel = &efx->channel[0];
+ unsigned int read_ptr, i;
+ efx_oword_t rx_flush_descq;
+
+ /* Post a flush command */
+ EFX_POPULATE_OWORD_2(rx_flush_descq,
+ RX_FLUSH_DESCQ_CMD, 1,
+ RX_FLUSH_DESCQ, rx_queue->queue);
+ falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
+ msleep(FALCON_FLUSH_TIMEOUT);
+
+ if (EFX_WORKAROUND_7803(efx))
+ return 0;
+
+ /* Look for a flush completed event */
+ read_ptr = channel->eventq_read_ptr;
+ for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
+ efx_qword_t *event = falcon_event(channel, read_ptr);
+ int ev_code, ev_sub_code, ev_queue, ev_failed;
+ if (!falcon_event_present(event))
+ break;
+
+ ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
+ ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
+ ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_DESCQ_ID);
+ ev_failed = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_FLUSH_FAIL);
+
+ if ((ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) &&
+ (ev_queue == rx_queue->queue)) {
+ if (ev_failed) {
+ EFX_INFO(efx, "rx queue %d flush command "
+ "failed\n", rx_queue->queue);
+ return -EAGAIN;
+ } else {
+ EFX_LOG(efx, "rx queue %d flush command "
+ "succesful\n", rx_queue->queue);
+ return 0;
+ }
+ }
+
+ read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
+ }
+
+ if (EFX_WORKAROUND_11557(efx)) {
+ efx_oword_t reg;
+ int enabled;
+
+ falcon_read_table(efx, &reg, efx->type->rxd_ptr_tbl_base,
+ rx_queue->queue);
+ enabled = EFX_OWORD_FIELD(reg, RX_DESCQ_EN);
+ if (!enabled) {
+ EFX_LOG(efx, "rx queue %d disabled without a "
+ "flush event seen\n", rx_queue->queue);
+ return 0;
+ }
+ }
+
+ EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue);
+ return -ETIMEDOUT;
+}
+
+void falcon_fini_rx(struct efx_rx_queue *rx_queue)
+{
+ efx_oword_t rx_desc_ptr;
+ struct efx_nic *efx = rx_queue->efx;
+ int i, rc;
+
+ /* Try and flush the rx queue. This may need to be repeated */
+ for (i = 0; i < 5; i++) {
+ rc = falcon_flush_rx_queue(rx_queue);
+ if (rc == -EAGAIN)
+ continue;
+ break;
+ }
+ if (rc)
+ EFX_ERR(efx, "failed to flush rx queue %d\n", rx_queue->queue);
+
+ /* Remove RX descriptor ring from card */
+ EFX_ZERO_OWORD(rx_desc_ptr);
+ falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
+ rx_queue->queue);
+
+ /* Unpin RX descriptor ring */
+ falcon_fini_special_buffer(efx, &rx_queue->rxd);
+}
+
+/* Free buffers backing RX queue */
+void falcon_remove_rx(struct efx_rx_queue *rx_queue)
+{
+ falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
+}
+
+/**************************************************************************
+ *
+ * Falcon event queue processing
+ * Event queues are processed by per-channel tasklets.
+ *
+ **************************************************************************/
+
+/* Update a channel's event queue's read pointer (RPTR) register
+ *
+ * This writes the EVQ_RPTR_REG register for the specified channel's
+ * event queue.
+ *
+ * Note that EVQ_RPTR_REG contains the index of the "last read" event,
+ * whereas channel->eventq_read_ptr contains the index of the "next to
+ * read" event.
+ */
+void falcon_eventq_read_ack(struct efx_channel *channel)
+{
+ efx_dword_t reg;
+ struct efx_nic *efx = channel->efx;
+
+ EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
+ falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
+ channel->evqnum);
+}
+
+/* Use HW to insert a SW defined event */
+void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
+{
+ efx_oword_t drv_ev_reg;
+
+ EFX_POPULATE_OWORD_2(drv_ev_reg,
+ DRV_EV_QID, channel->evqnum,
+ DRV_EV_DATA,
+ EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
+ falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
+}
+
+/* Handle a transmit completion event
+ *
+ * Falcon batches TX completion events; the message we receive is of
+ * the form "complete all TX events up to this index".
+ */
+static inline void falcon_handle_tx_event(struct efx_channel *channel,
+ efx_qword_t *event)
+{
+ unsigned int tx_ev_desc_ptr;
+ unsigned int tx_ev_q_label;
+ struct efx_tx_queue *tx_queue;
+ struct efx_nic *efx = channel->efx;
+
+ if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
+ /* Transmit completion */
+ tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
+ tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
+ tx_queue = &efx->tx_queue[tx_ev_q_label];
+ efx_xmit_done(tx_queue, tx_ev_desc_ptr);
+ } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
+ /* Rewrite the FIFO write pointer */
+ tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
+ tx_queue = &efx->tx_queue[tx_ev_q_label];
+
+ if (NET_DEV_REGISTERED(efx))
+ netif_tx_lock(efx->net_dev);
+ falcon_notify_tx_desc(tx_queue);
+ if (NET_DEV_REGISTERED(efx))
+ netif_tx_unlock(efx->net_dev);
+ } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
+ EFX_WORKAROUND_10727(efx)) {
+ efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
+ } else {
+ EFX_ERR(efx, "channel %d unexpected TX event "
+ EFX_QWORD_FMT"\n", channel->channel,
+ EFX_QWORD_VAL(*event));
+ }
+}
+
+/* Check received packet's destination MAC address. */
+static int check_dest_mac(struct efx_rx_queue *rx_queue,
+ const efx_qword_t *event)
+{
+ struct efx_rx_buffer *rx_buf;
+ struct efx_nic *efx = rx_queue->efx;
+ int rx_ev_desc_ptr;
+ struct ethhdr *eh;
+
+ if (efx->promiscuous)
+ return 1;
+
+ rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
+ rx_buf = efx_rx_buffer(rx_queue, rx_ev_desc_ptr);
+ eh = (struct ethhdr *)rx_buf->data;
+ if (memcmp(eh->h_dest, efx->net_dev->dev_addr, ETH_ALEN))
+ return 0;
+ return 1;
+}
+
+/* Detect errors included in the rx_evt_pkt_ok bit. */
+static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
+ const efx_qword_t *event,
+ unsigned *rx_ev_pkt_ok,
+ int *discard, int byte_count)
+{
+ struct efx_nic *efx = rx_queue->efx;
+ unsigned rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
+ unsigned rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
+ unsigned rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
+ unsigned rx_ev_pkt_type, rx_ev_other_err, rx_ev_pause_frm;
+ unsigned rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
+ int snap, non_ip;
+
+ rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
+ rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
+ rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
+ rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
+ rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
+ RX_EV_BUF_OWNER_ID_ERR);
+ rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
+ rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
+ RX_EV_IP_HDR_CHKSUM_ERR);
+ rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
+ RX_EV_TCP_UDP_CHKSUM_ERR);
+ rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
+ rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
+ rx_ev_drib_nib = ((FALCON_REV(efx) >= FALCON_REV_B0) ?
+ 0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
+ rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
+
+ /* Every error apart from tobe_disc and pause_frm */
+ rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
+ rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
+ rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
+
+ snap = (rx_ev_pkt_type == RX_EV_PKT_TYPE_LLC_DECODE) ||
+ (rx_ev_pkt_type == RX_EV_PKT_TYPE_VLAN_LLC_DECODE);
+ non_ip = (rx_ev_hdr_type == RX_EV_HDR_TYPE_NON_IP_DECODE);
+
+ /* SFC bug 5475/8970: The Falcon XMAC incorrectly calculates the
+ * length field of an LLC frame, which sets TOBE_DISC. We could set
+ * PASS_LEN_ERR, but we want the MAC to filter out short frames (to
+ * protect the RX block).
+ *
+ * bug5475 - LLC/SNAP: Falcon identifies SNAP packets.
+ * bug8970 - LLC/noSNAP: Falcon does not provide an LLC flag.
+ * LLC can't encapsulate IP, so by definition
+ * these packets are NON_IP.
+ *
+ * Unicast mismatch will also cause TOBE_DISC, so the driver needs
+ * to check this.
+ */
+ if (EFX_WORKAROUND_5475(efx) && rx_ev_tobe_disc && (snap || non_ip)) {
+ /* If all the other flags are zero then we can state the
+ * entire packet is ok, which will flag to the kernel not
+ * to recalculate checksums.
+ */
+ if (!(non_ip | rx_ev_other_err | rx_ev_pause_frm))
+ *rx_ev_pkt_ok = 1;
+
+ rx_ev_tobe_disc = 0;
+
+ /* TOBE_DISC is set for unicast mismatch. But given that
+ * we can't trust TOBE_DISC here, we must validate the dest
+ * MAC address ourselves.
+ */
+ if (!rx_ev_mcast_pkt && !check_dest_mac(rx_queue, event))
+ rx_ev_tobe_disc = 1;
+ }
+
+ /* Count errors that are not in MAC stats. */
+ if (rx_ev_frm_trunc)
+ ++rx_queue->channel->n_rx_frm_trunc;
+ else if (rx_ev_tobe_disc)
+ ++rx_queue->channel->n_rx_tobe_disc;
+ else if (rx_ev_ip_hdr_chksum_err)
+ ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
+ else if (rx_ev_tcp_udp_chksum_err)
+ ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
+ if (rx_ev_ip_frag_err)
+ ++rx_queue->channel->n_rx_ip_frag_err;
+
+ /* The frame must be discarded if any of these are true. */
+ *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
+ rx_ev_tobe_disc | rx_ev_pause_frm);
+
+ /* TOBE_DISC is expected on unicast mismatches; don't print out an
+ * error message. FRM_TRUNC indicates RXDP dropped the packet due
+ * to a FIFO overflow.
+ */
+#ifdef EFX_ENABLE_DEBUG
+ if (rx_ev_other_err) {
+ EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
+ EFX_QWORD_FMT "%s%s%s%s%s%s%s%s%s\n",
+ rx_queue->queue, EFX_QWORD_VAL(*event),
+ rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
+ rx_ev_ip_hdr_chksum_err ?
+ " [IP_HDR_CHKSUM_ERR]" : "",
+ rx_ev_tcp_udp_chksum_err ?
+ " [TCP_UDP_CHKSUM_ERR]" : "",
+ rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
+ rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
+ rx_ev_drib_nib ? " [DRIB_NIB]" : "",
+ rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
+ rx_ev_pause_frm ? " [PAUSE]" : "",
+ snap ? " [SNAP/LLC]" : "");
+ }
+#endif
+
+ if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
+ efx->phy_type == PHY_TYPE_10XPRESS))
+ tenxpress_crc_err(efx);
+}
+
+/* Handle receive events that are not in-order. */
+static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
+ unsigned index)
+{
+ struct efx_nic *efx = rx_queue->efx;
+ unsigned expected, dropped;
+
+ expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
+ dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
+ FALCON_RXD_RING_MASK);
+ EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
+ dropped, index, expected);
+
+ efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
+ RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
+}
+
+/* Handle a packet received event
+ *
+ * Falcon silicon gives a "discard" flag if it's a unicast packet with the
+ * wrong destination address
+ * Also "is multicast" and "matches multicast filter" flags can be used to
+ * discard non-matching multicast packets.
+ */
+static inline int falcon_handle_rx_event(struct efx_channel *channel,
+ const efx_qword_t *event)
+{
+ unsigned int rx_ev_q_label, rx_ev_desc_ptr, rx_ev_byte_cnt;
+ unsigned int rx_ev_pkt_ok, rx_ev_hdr_type, rx_ev_mcast_pkt;
+ unsigned expected_ptr;
+ int discard = 0, checksummed;
+ struct efx_rx_queue *rx_queue;
+ struct efx_nic *efx = channel->efx;
+
+ /* Basic packet information */
+ rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
+ rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
+ rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
+ WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
+ WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
+
+ rx_ev_q_label = EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL);
+ rx_queue = &efx->rx_queue[rx_ev_q_label];
+
+ rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
+ expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
+ if (unlikely(rx_ev_desc_ptr != expected_ptr)) {
+ falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
+ return rx_ev_q_label;
+ }
+
+ if (likely(rx_ev_pkt_ok)) {
+ /* If packet is marked as OK and packet type is TCP/IPv4 or
+ * UDP/IPv4, then we can rely on the hardware checksum.
+ */
+ checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
+ } else {
+ falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
+ &discard, rx_ev_byte_cnt);
+ checksummed = 0;
+ }
+
+ /* Detect multicast packets that didn't match the filter */
+ rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
+ if (rx_ev_mcast_pkt) {
+ unsigned int rx_ev_mcast_hash_match =
+ EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
+
+ if (unlikely(!rx_ev_mcast_hash_match))
+ discard = 1;
+ }
+
+ /* Handle received packet */
+ efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
+ checksummed, discard);
+
+ return rx_ev_q_label;
+}
+
+/* Global events are basically PHY events */
+static void falcon_handle_global_event(struct efx_channel *channel,
+ efx_qword_t *event)
+{
+ struct efx_nic *efx = channel->efx;
+ int is_phy_event = 0, handled = 0;
+
+ /* Check for interrupt on either port. Some boards have a
+ * single PHY wired to the interrupt line for port 1. */
+ if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
+ EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
+ EFX_QWORD_FIELD(*event, XG_PHY_INTR))
+ is_phy_event = 1;
+
+ if ((FALCON_REV(efx) >= FALCON_REV_B0) &&
+ EFX_OWORD_FIELD(*event, XG_MNT_INTR_B0))
+ is_phy_event = 1;
+
+ if (is_phy_event) {
+ efx->phy_op->clear_interrupt(efx);
+ queue_work(efx->workqueue, &efx->reconfigure_work);
+ handled = 1;
+ }
+
+ if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
+ EFX_ERR(efx, "channel %d seen global RX_RESET "
+ "event. Resetting.\n", channel->channel);
+
+ atomic_inc(&efx->rx_reset);
+ efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
+ RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
+ handled = 1;
+ }
+
+ if (!handled)
+ EFX_ERR(efx, "channel %d unknown global event "
+ EFX_QWORD_FMT "\n", channel->channel,
+ EFX_QWORD_VAL(*event));
+}
+
+static void falcon_handle_driver_event(struct efx_channel *channel,
+ efx_qword_t *event)
+{
+ struct efx_nic *efx = channel->efx;
+ unsigned int ev_sub_code;
+ unsigned int ev_sub_data;
+
+ ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
+ ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
+
+ switch (ev_sub_code) {
+ case TX_DESCQ_FLS_DONE_EV_DECODE:
+ EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
+ channel->channel, ev_sub_data);
+ break;
+ case RX_DESCQ_FLS_DONE_EV_DECODE:
+ EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
+ channel->channel, ev_sub_data);
+ break;
+ case EVQ_INIT_DONE_EV_DECODE:
+ EFX_LOG(efx, "channel %d EVQ %d initialised\n",
+ channel->channel, ev_sub_data);
+ break;
+ case SRM_UPD_DONE_EV_DECODE:
+ EFX_TRACE(efx, "channel %d SRAM update done\n",
+ channel->channel);
+ break;
+ case WAKE_UP_EV_DECODE:
+ EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
+ channel->channel, ev_sub_data);
+ break;
+ case TIMER_EV_DECODE:
+ EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
+ channel->channel, ev_sub_data);
+ break;
+ case RX_RECOVERY_EV_DECODE:
+ EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
+ "Resetting.\n", channel->channel);
+ efx_schedule_reset(efx,
+ EFX_WORKAROUND_6555(efx) ?
+ RESET_TYPE_RX_RECOVERY :
+ RESET_TYPE_DISABLE);
+ break;
+ case RX_DSC_ERROR_EV_DECODE:
+ EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
+ " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
+ efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
+ break;
+ case TX_DSC_ERROR_EV_DECODE:
+ EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
+ " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
+ efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
+ break;
+ default:
+ EFX_TRACE(efx, "channel %d unknown driver event code %d "
+ "data %04x\n", channel->channel, ev_sub_code,
+ ev_sub_data);
+ break;
+ }
+}
+
+int falcon_process_eventq(struct efx_channel *channel, int *rx_quota)
+{
+ unsigned int read_ptr;
+ efx_qword_t event, *p_event;
+ int ev_code;
+ int rxq;
+ int rxdmaqs = 0;
+
+ read_ptr = channel->eventq_read_ptr;
+
+ do {
+ p_event = falcon_event(channel, read_ptr);
+ event = *p_event;
+
+ if (!falcon_event_present(&event))
+ /* End of events */
+ break;
+
+ EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
+ channel->channel, EFX_QWORD_VAL(event));
+
+ /* Clear this event by marking it all ones */
+ EFX_SET_QWORD(*p_event);
+
+ ev_code = EFX_QWORD_FIELD(event, EV_CODE);
+
+ switch (ev_code) {
+ case RX_IP_EV_DECODE:
+ rxq = falcon_handle_rx_event(channel, &event);
+ rxdmaqs |= (1 << rxq);
+ (*rx_quota)--;
+ break;
+ case TX_IP_EV_DECODE:
+ falcon_handle_tx_event(channel, &event);
+ break;
+ case DRV_GEN_EV_DECODE:
+ channel->eventq_magic
+ = EFX_QWORD_FIELD(event, EVQ_MAGIC);
+ EFX_LOG(channel->efx, "channel %d received generated "
+ "event "EFX_QWORD_FMT"\n", channel->channel,
+ EFX_QWORD_VAL(event));
+ break;
+ case GLOBAL_EV_DECODE:
+ falcon_handle_global_event(channel, &event);
+ break;
+ case DRIVER_EV_DECODE:
+ falcon_handle_driver_event(channel, &event);
+ break;
+ default:
+ EFX_ERR(channel->efx, "channel %d unknown event type %d"
+ " (data " EFX_QWORD_FMT ")\n", channel->channel,
+ ev_code, EFX_QWORD_VAL(event));
+ }
+
+ /* Increment read pointer */
+ read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
+
+ } while (*rx_quota);
+
+ channel->eventq_read_ptr = read_ptr;
+ return rxdmaqs;
+}
+
+void falcon_set_int_moderation(struct efx_channel *channel)
+{
+ efx_dword_t timer_cmd;
+ struct efx_nic *efx = channel->efx;
+
+ /* Set timer register */
+ if (channel->irq_moderation) {
+ /* Round to resolution supported by hardware. The value we
+ * program is based at 0. So actual interrupt moderation
+ * achieved is ((x + 1) * res).
+ */
+ unsigned int res = 5;
+ channel->irq_moderation -= (channel->irq_moderation % res);
+ if (channel->irq_moderation < res)
+ channel->irq_moderation = res;
+ EFX_POPULATE_DWORD_2(timer_cmd,
+ TIMER_MODE, TIMER_MODE_INT_HLDOFF,
+ TIMER_VAL,
+ (channel->irq_moderation / res) - 1);
+ } else {
+ EFX_POPULATE_DWORD_2(timer_cmd,
+ TIMER_MODE, TIMER_MODE_DIS,
+ TIMER_VAL, 0);
+ }
+ falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
+ channel->evqnum);
+
+}
+
+/* Allocate buffer table entries for event queue */
+int falcon_probe_eventq(struct efx_channel *channel)
+{
+ struct efx_nic *efx = channel->efx;
+ unsigned int evq_size;
+
+ evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
+ return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
+}
+
+int falcon_init_eventq(struct efx_channel *channel)
+{
+ efx_oword_t evq_ptr;
+ struct efx_nic *efx = channel->efx;
+ int rc;
+
+ EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
+ channel->channel, channel->eventq.index,
+ channel->eventq.index + channel->eventq.entries - 1);
+
+ /* Pin event queue buffer */
+ rc = falcon_init_special_buffer(efx, &channel->eventq);
+ if (rc)
+ return rc;
+
+ /* Fill event queue with all ones (i.e. empty events) */
+ memset(channel->eventq.addr, 0xff, channel->eventq.len);
+
+ /* Push event queue to card */
+ EFX_POPULATE_OWORD_3(evq_ptr,
+ EVQ_EN, 1,
+ EVQ_SIZE, FALCON_EVQ_ORDER,
+ EVQ_BUF_BASE_ID, channel->eventq.index);
+ falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
+ channel->evqnum);
+
+ falcon_set_int_moderation(channel);
+
+ return 0;
+}
+
+void falcon_fini_eventq(struct efx_channel *channel)
+{
+ efx_oword_t eventq_ptr;
+ struct efx_nic *efx = channel->efx;
+
+ /* Remove event queue from card */
+ EFX_ZERO_OWORD(eventq_ptr);
+ falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
+ channel->evqnum);
+
+ /* Unpin event queue */
+ falcon_fini_special_buffer(efx, &channel->eventq);
+}
+
+/* Free buffers backing event queue */
+void falcon_remove_eventq(struct efx_channel *channel)
+{
+ falcon_free_special_buffer(channel->efx, &channel->eventq);
+}
+
+
+/* Generates a test event on the event queue. A subsequent call to
+ * process_eventq() should pick up the event and place the value of
+ * "magic" into channel->eventq_magic;
+ */
+void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
+{
+ efx_qword_t test_event;
+
+ EFX_POPULATE_QWORD_2(test_event,
+ EV_CODE, DRV_GEN_EV_DECODE,
+ EVQ_MAGIC, magic);
+ falcon_generate_event(channel, &test_event);
+}
+
+
+/**************************************************************************
+ *
+ * Falcon hardware interrupts
+ * The hardware interrupt handler does very little work; all the event
+ * queue processing is carried out by per-channel tasklets.
+ *
+ **************************************************************************/
+
+/* Enable/disable/generate Falcon interrupts */
+static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
+ int force)
+{
+ efx_oword_t int_en_reg_ker;
+
+ EFX_POPULATE_OWORD_2(int_en_reg_ker,
+ KER_INT_KER, force,
+ DRV_INT_EN_KER, enabled);
+ falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
+}
+
+void falcon_enable_interrupts(struct efx_nic *efx)
+{
+ efx_oword_t int_adr_reg_ker;
+ struct efx_channel *channel;
+
+ EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
+ wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
+
+ /* Program address */
+ EFX_POPULATE_OWORD_2(int_adr_reg_ker,
+ NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
+ INT_ADR_KER, efx->irq_status.dma_addr);
+ falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
+
+ /* Enable interrupts */
+ falcon_interrupts(efx, 1, 0);
+
+ /* Force processing of all the channels to get the EVQ RPTRs up to
+ date */
+ efx_for_each_channel_with_interrupt(channel, efx)
+ efx_schedule_channel(channel);
+}
+
+void falcon_disable_interrupts(struct efx_nic *efx)
+{
+ /* Disable interrupts */
+ falcon_interrupts(efx, 0, 0);
+}
+
+/* Generate a Falcon test interrupt
+ * Interrupt must already have been enabled, otherwise nasty things
+ * may happen.
+ */
+void falcon_generate_interrupt(struct efx_nic *efx)
+{
+ falcon_interrupts(efx, 1, 1);
+}
+
+/* Acknowledge a legacy interrupt from Falcon
+ *
+ * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
+ *
+ * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
+ * BIU. Interrupt acknowledge is read sensitive so must write instead
+ * (then read to ensure the BIU collector is flushed)
+ *
+ * NB most hardware supports MSI interrupts
+ */
+static inline void falcon_irq_ack_a1(struct efx_nic *efx)
+{
+ efx_dword_t reg;
+
+ EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
+ falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
+ falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
+}
+
+/* Process a fatal interrupt
+ * Disable bus mastering ASAP and schedule a reset
+ */
+static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
+{
+ struct falcon_nic_data *nic_data = efx->nic_data;
+ efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr;
+ efx_oword_t fatal_intr;
+ int error, mem_perr;
+ static int n_int_errors;
+
+ falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
+ error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
+
+ EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
+ EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
+ EFX_OWORD_VAL(fatal_intr),
+ error ? "disabling bus mastering" : "no recognised error");
+ if (error == 0)
+ goto out;
+
+ /* If this is a memory parity error dump which blocks are offending */
+ mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
+ if (mem_perr) {
+ efx_oword_t reg;
+ falcon_read(efx, &reg, MEM_STAT_REG_KER);
+ EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
+ EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
+ }
+
+ /* Disable DMA bus mastering on both devices */
+ pci_disable_device(efx->pci_dev);
+ if (FALCON_IS_DUAL_FUNC(efx))
+ pci_disable_device(nic_data->pci_dev2);
+
+ if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
+ EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
+ efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
+ } else {
+ EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
+ "NIC will be disabled\n");
+ efx_schedule_reset(efx, RESET_TYPE_DISABLE);
+ }
+out:
+ return IRQ_HANDLED;
+}
+
+/* Handle a legacy interrupt from Falcon
+ * Acknowledges the interrupt and schedule event queue processing.
+ */
+static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
+{
+ struct efx_nic *efx = (struct efx_nic *)dev_id;
+ efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr;
+ struct efx_channel *channel;
+ efx_dword_t reg;
+ u32 queues;
+ int syserr;
+
+ /* Read the ISR which also ACKs the interrupts */
+ falcon_readl(efx, &reg, INT_ISR0_B0);
+ queues = EFX_EXTRACT_DWORD(reg, 0, 31);
+
+ /* Check to see if we have a serious error condition */
+ syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
+ if (unlikely(syserr))
+ return falcon_fatal_interrupt(efx);
+
+ if (queues == 0)
+ return IRQ_NONE;
+
+ efx->last_irq_cpu = raw_smp_processor_id();
+ EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
+ irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
+
+ /* Schedule processing of any interrupting queues */
+ channel = &efx->channel[0];
+ while (queues) {
+ if (queues & 0x01)
+ efx_schedule_channel(channel);
+ channel++;
+ queues >>= 1;
+ }
+
+ return IRQ_HANDLED;
+}
+
+
+static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
+{
+ struct efx_nic *efx = (struct efx_nic *)dev_id;
+ efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr;
+ struct efx_channel *channel;
+ int syserr;
+ int queues;
+
+ /* Check to see if this is our interrupt. If it isn't, we
+ * exit without having touched the hardware.
+ */
+ if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
+ EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
+ raw_smp_processor_id());
+ return IRQ_NONE;
+ }
+ efx->last_irq_cpu = raw_smp_processor_id();
+ EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
+ irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
+
+ /* Check to see if we have a serious error condition */
+ syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
+ if (unlikely(syserr))
+ return falcon_fatal_interrupt(efx);
+
+ /* Determine interrupting queues, clear interrupt status
+ * register and acknowledge the device interrupt.
+ */
+ BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
+ queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
+ EFX_ZERO_OWORD(*int_ker);
+ wmb(); /* Ensure the vector is cleared before interrupt ack */
+ falcon_irq_ack_a1(efx);
+
+ /* Schedule processing of any interrupting queues */
+ channel = &efx->channel[0];
+ while (queues) {
+ if (queues & 0x01)
+ efx_schedule_channel(channel);
+ channel++;
+ queues >>= 1;
+ }
+
+ return IRQ_HANDLED;
+}
+
+/* Handle an MSI interrupt from Falcon
+ *
+ * Handle an MSI hardware interrupt. This routine schedules event
+ * queue processing. No interrupt acknowledgement cycle is necessary.
+ * Also, we never need to check that the interrupt is for us, since
+ * MSI interrupts cannot be shared.
+ */
+static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
+{
+ struct efx_channel *channel = (struct efx_channel *)dev_id;
+ struct efx_nic *efx = channel->efx;
+ efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr;
+ int syserr;
+
+ efx->last_irq_cpu = raw_smp_processor_id();
+ EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
+ irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
+
+ /* Check to see if we have a serious error condition */
+ syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
+ if (unlikely(syserr))
+ return falcon_fatal_interrupt(efx);
+
+ /* Schedule processing of the channel */
+ efx_schedule_channel(channel);
+
+ return IRQ_HANDLED;
+}
+
+
+/* Setup RSS indirection table.
+ * This maps from the hash value of the packet to RXQ
+ */
+static void falcon_setup_rss_indir_table(struct efx_nic *efx)
+{
+ int i = 0;
+ unsigned long offset;
+ efx_dword_t dword;
+
+ if (FALCON_REV(efx) < FALCON_REV_B0)
+ return;
+
+ for (offset = RX_RSS_INDIR_TBL_B0;
+ offset < RX_RSS_INDIR_TBL_B0 + 0x800;
+ offset += 0x10) {
+ EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
+ i % efx->rss_queues);
+ falcon_writel(efx, &dword, offset);
+ i++;
+ }
+}
+
+/* Hook interrupt handler(s)
+ * Try MSI and then legacy interrupts.
+ */
+int falcon_init_interrupt(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+ int rc;
+
+ if (!EFX_INT_MODE_USE_MSI(efx)) {
+ irq_handler_t handler;
+ if (FALCON_REV(efx) >= FALCON_REV_B0)
+ handler = falcon_legacy_interrupt_b0;
+ else
+ handler = falcon_legacy_interrupt_a1;
+
+ rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
+ efx->name, efx);
+ if (rc) {
+ EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
+ efx->pci_dev->irq);
+ goto fail1;
+ }
+ return 0;
+ }
+
+ /* Hook MSI or MSI-X interrupt */
+ efx_for_each_channel_with_interrupt(channel, efx) {
+ rc = request_irq(channel->irq, falcon_msi_interrupt,
+ IRQF_PROBE_SHARED, /* Not shared */
+ efx->name, channel);
+ if (rc) {
+ EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
+ goto fail2;
+ }
+ }
+
+ return 0;
+
+ fail2:
+ efx_for_each_channel_with_interrupt(channel, efx)
+ free_irq(channel->irq, channel);
+ fail1:
+ return rc;
+}
+
+void falcon_fini_interrupt(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+ efx_oword_t reg;
+
+ /* Disable MSI/MSI-X interrupts */
+ efx_for_each_channel_with_interrupt(channel, efx)
+ if (channel->irq)
+ free_irq(channel->irq, channel);
+
+ /* ACK legacy interrupt */
+ if (FALCON_REV(efx) >= FALCON_REV_B0)
+ falcon_read(efx, &reg, INT_ISR0_B0);
+ else
+ falcon_irq_ack_a1(efx);
+
+ /* Disable legacy interrupt */
+ if (efx->legacy_irq)
+ free_irq(efx->legacy_irq, efx);
+}
+
+/**************************************************************************
+ *
+ * EEPROM/flash
+ *
+ **************************************************************************
+ */
+
+#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
+
+/* Wait for SPI command completion */
+static int falcon_spi_wait(struct efx_nic *efx)
+{
+ efx_oword_t reg;
+ int cmd_en, timer_active;
+ int count;
+
+ count = 0;
+ do {
+ falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
+ cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN);
+ timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE);
+ if (!cmd_en && !timer_active)
+ return 0;
+ udelay(10);
+ } while (++count < 10000); /* wait upto 100msec */
+ EFX_ERR(efx, "timed out waiting for SPI\n");
+ return -ETIMEDOUT;
+}
+
+static int
+falcon_spi_read(struct efx_nic *efx, int device_id, unsigned int command,
+ unsigned int address, unsigned int addr_len,
+ void *data, unsigned int len)
+{
+ efx_oword_t reg;
+ int rc;
+
+ BUG_ON(len > FALCON_SPI_MAX_LEN);
+
+ /* Check SPI not currently being accessed */
+ rc = falcon_spi_wait(efx);
+ if (rc)
+ return rc;
+
+ /* Program address register */
+ EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
+ falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
+
+ /* Issue read command */
+ EFX_POPULATE_OWORD_7(reg,
+ EE_SPI_HCMD_CMD_EN, 1,
+ EE_SPI_HCMD_SF_SEL, device_id,
+ EE_SPI_HCMD_DABCNT, len,
+ EE_SPI_HCMD_READ, EE_SPI_READ,
+ EE_SPI_HCMD_DUBCNT, 0,
+ EE_SPI_HCMD_ADBCNT, addr_len,
+ EE_SPI_HCMD_ENC, command);
+ falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
+
+ /* Wait for read to complete */
+ rc = falcon_spi_wait(efx);
+ if (rc)
+ return rc;
+
+ /* Read data */
+ falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
+ memcpy(data, &reg, len);
+ return 0;
+}
+
+/**************************************************************************
+ *
+ * MAC wrapper
+ *
+ **************************************************************************
+ */
+void falcon_drain_tx_fifo(struct efx_nic *efx)
+{
+ efx_oword_t temp;
+ int count;
+
+ if (FALCON_REV(efx) < FALCON_REV_B0)
+ return;
+
+ falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
+ /* There is no point in draining more than once */
+ if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
+ return;
+
+ /* MAC stats will fail whilst the TX fifo is draining. Serialise
+ * the drain sequence with the statistics fetch */
+ spin_lock(&efx->stats_lock);
+
+ EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
+ falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
+
+ /* Reset the MAC and EM block. */
+ falcon_read(efx, &temp, GLB_CTL_REG_KER);
+ EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
+ EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
+ EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
+ falcon_write(efx, &temp, GLB_CTL_REG_KER);
+
+ count = 0;
+ while (1) {
+ falcon_read(efx, &temp, GLB_CTL_REG_KER);
+ if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
+ !EFX_OWORD_FIELD(temp, RST_XGRX) &&
+ !EFX_OWORD_FIELD(temp, RST_EM)) {
+ EFX_LOG(efx, "Completed MAC reset after %d loops\n",
+ count);
+ break;
+ }
+ if (count > 20) {
+ EFX_ERR(efx, "MAC reset failed\n");
+ break;
+ }
+ count++;
+ udelay(10);
+ }
+
+ spin_unlock(&efx->stats_lock);
+
+ /* If we've reset the EM block and the link is up, then
+ * we'll have to kick the XAUI link so the PHY can recover */
+ if (efx->link_up && EFX_WORKAROUND_5147(efx))
+ falcon_reset_xaui(efx);
+}
+
+void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
+{
+ efx_oword_t temp;
+
+ if (FALCON_REV(efx) < FALCON_REV_B0)
+ return;
+
+ /* Isolate the MAC -> RX */
+ falcon_read(efx, &temp, RX_CFG_REG_KER);
+ EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
+ falcon_write(efx, &temp, RX_CFG_REG_KER);
+
+ if (!efx->link_up)
+ falcon_drain_tx_fifo(efx);
+}
+
+void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
+{
+ efx_oword_t reg;
+ int link_speed;
+ unsigned int tx_fc;
+
+ if (efx->link_options & GM_LPA_10000)
+ link_speed = 0x3;
+ else if (efx->link_options & GM_LPA_1000)
+ link_speed = 0x2;
+ else if (efx->link_options & GM_LPA_100)
+ link_speed = 0x1;
+ else
+ link_speed = 0x0;
+ /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
+ * as advertised. Disable to ensure packets are not
+ * indefinitely held and TX queue can be flushed at any point
+ * while the link is down. */
+ EFX_POPULATE_OWORD_5(reg,
+ MAC_XOFF_VAL, 0xffff /* max pause time */,
+ MAC_BCAD_ACPT, 1,
+ MAC_UC_PROM, efx->promiscuous,
+ MAC_LINK_STATUS, 1, /* always set */
+ MAC_SPEED, link_speed);
+ /* On B0, MAC backpressure can be disabled and packets get
+ * discarded. */
+ if (FALCON_REV(efx) >= FALCON_REV_B0) {
+ EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
+ !efx->link_up);
+ }
+
+ falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
+
+ /* Restore the multicast hash registers. */
+ falcon_set_multicast_hash(efx);
+
+ /* Transmission of pause frames when RX crosses the threshold is
+ * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
+ * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
+ tx_fc = (efx->flow_control & EFX_FC_TX) ? 1 : 0;
+ falcon_read(efx, &reg, RX_CFG_REG_KER);
+ EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
+
+ /* Unisolate the MAC -> RX */
+ if (FALCON_REV(efx) >= FALCON_REV_B0)
+ EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
+ falcon_write(efx, &reg, RX_CFG_REG_KER);
+}
+
+int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
+{
+ efx_oword_t reg;
+ u32 *dma_done;
+ int i;
+
+ if (disable_dma_stats)
+ return 0;
+
+ /* Statistics fetch will fail if the MAC is in TX drain */
+ if (FALCON_REV(efx) >= FALCON_REV_B0) {
+ efx_oword_t temp;
+ falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
+ if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
+ return 0;
+ }
+
+ dma_done = (efx->stats_buffer.addr + done_offset);
+ *dma_done = FALCON_STATS_NOT_DONE;
+ wmb(); /* ensure done flag is clear */
+
+ /* Initiate DMA transfer of stats */
+ EFX_POPULATE_OWORD_2(reg,
+ MAC_STAT_DMA_CMD, 1,
+ MAC_STAT_DMA_ADR,
+ efx->stats_buffer.dma_addr);
+ falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
+
+ /* Wait for transfer to complete */
+ for (i = 0; i < 400; i++) {
+ if (*(volatile u32 *)dma_done == FALCON_STATS_DONE)
+ return 0;
+ udelay(10);
+ }
+
+ EFX_ERR(efx, "timed out waiting for statistics\n");
+ return -ETIMEDOUT;
+}
+
+/**************************************************************************
+ *
+ * PHY access via GMII
+ *
+ **************************************************************************
+ */
+
+/* Use the top bit of the MII PHY id to indicate the PHY type
+ * (1G/10G), with the remaining bits as the actual PHY id.
+ *
+ * This allows us to avoid leaking information from the mii_if_info
+ * structure into other data structures.
+ */
+#define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR)
+#define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
+#define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1)
+#define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1)
+#define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1))
+
+
+/* Packing the clause 45 port and device fields into a single value */
+#define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
+#define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH
+#define MD_DEV_ADR_COMP_LBN 0
+#define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH
+
+
+/* Wait for GMII access to complete */
+static int falcon_gmii_wait(struct efx_nic *efx)
+{
+ efx_dword_t md_stat;
+ int count;
+
+ for (count = 0; count < 1000; count++) { /* wait upto 10ms */
+ falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
+ if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
+ if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
+ EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
+ EFX_ERR(efx, "error from GMII access "
+ EFX_DWORD_FMT"\n",
+ EFX_DWORD_VAL(md_stat));
+ return -EIO;
+ }
+ return 0;
+ }
+ udelay(10);
+ }
+ EFX_ERR(efx, "timed out waiting for GMII\n");
+ return -ETIMEDOUT;
+}
+
+/* Writes a GMII register of a PHY connected to Falcon using MDIO. */
+static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
+ int addr, int value)
+{
+ struct efx_nic *efx = (struct efx_nic *)net_dev->priv;
+ unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
+ efx_oword_t reg;
+
+ /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
+ * chosen so that the only current user, Falcon, can take the
+ * packed value and use them directly.
+ * Fail to build if this assumption is broken.
+ */
+ BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
+ BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
+ BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
+ BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
+
+ if (phy_id2 == PHY_ADDR_INVALID)
+ return;
+
+ /* See falcon_mdio_read for an explanation. */
+ if (!(phy_id & FALCON_PHY_ID_10G)) {
+ int mmd = ffs(efx->phy_op->mmds) - 1;
+ EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
+ phy_id2 = mdio_clause45_pack(phy_id2, mmd)
+ & FALCON_PHY_ID_ID_MASK;
+ }
+
+ EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
+ addr, value);
+
+ spin_lock_bh(&efx->phy_lock);
+
+ /* Check MII not currently being accessed */
+ if (falcon_gmii_wait(efx) != 0)
+ goto out;
+
+ /* Write the address/ID register */
+ EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
+ falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
+
+ EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
+ falcon_write(efx, &reg, MD_ID_REG_KER);
+
+ /* Write data */
+ EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
+ falcon_write(efx, &reg, MD_TXD_REG_KER);
+
+ EFX_POPULATE_OWORD_2(reg,
+ MD_WRC, 1,
+ MD_GC, 0);
+ falcon_write(efx, &reg, MD_CS_REG_KER);
+
+ /* Wait for data to be written */
+ if (falcon_gmii_wait(efx) != 0) {
+ /* Abort the write operation */
+ EFX_POPULATE_OWORD_2(reg,
+ MD_WRC, 0,
+ MD_GC, 1);
+ falcon_write(efx, &reg, MD_CS_REG_KER);
+ udelay(10);
+ }
+
+ out:
+ spin_unlock_bh(&efx->phy_lock);
+}
+
+/* Reads a GMII register from a PHY connected to Falcon. If no value
+ * could be read, -1 will be returned. */
+static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
+{
+ struct efx_nic *efx = (struct efx_nic *)net_dev->priv;
+ unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
+ efx_oword_t reg;
+ int value = -1;
+
+ if (phy_addr == PHY_ADDR_INVALID)
+ return -1;
+
+ /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
+ * but the generic Linux code does not make any distinction or have
+ * any state for this.
+ * We spot the case where someone tried to talk 22 to a 45 PHY and
+ * redirect the request to the lowest numbered MMD as a clause45
+ * request. This is enough to allow simple queries like id and link
+ * state to succeed. TODO: We may need to do more in future.
+ */
+ if (!(phy_id & FALCON_PHY_ID_10G)) {
+ int mmd = ffs(efx->phy_op->mmds) - 1;
+ EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
+ phy_addr = mdio_clause45_pack(phy_addr, mmd)
+ & FALCON_PHY_ID_ID_MASK;
+ }
+
+ spin_lock_bh(&efx->phy_lock);
+
+ /* Check MII not currently being accessed */
+ if (falcon_gmii_wait(efx) != 0)
+ goto out;
+
+ EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
+ falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
+
+ EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
+ falcon_write(efx, &reg, MD_ID_REG_KER);
+
+ /* Request data to be read */
+ EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
+ falcon_write(efx, &reg, MD_CS_REG_KER);
+
+ /* Wait for data to become available */
+ value = falcon_gmii_wait(efx);
+ if (value == 0) {
+ falcon_read(efx, &reg, MD_RXD_REG_KER);
+ value = EFX_OWORD_FIELD(reg, MD_RXD);
+ EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
+ phy_id, addr, value);
+ } else {
+ /* Abort the read operation */
+ EFX_POPULATE_OWORD_2(reg,
+ MD_RIC, 0,
+ MD_GC, 1);
+ falcon_write(efx, &reg, MD_CS_REG_KER);
+
+ EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
+ "error %d\n", phy_id, addr, value);
+ }
+
+ out:
+ spin_unlock_bh(&efx->phy_lock);
+
+ return value;
+}
+
+static void falcon_init_mdio(struct mii_if_info *gmii)
+{
+ gmii->mdio_read = falcon_mdio_read;
+ gmii->mdio_write = falcon_mdio_write;
+ gmii->phy_id_mask = FALCON_PHY_ID_MASK;
+ gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
+}
+
+static int falcon_probe_phy(struct efx_nic *efx)
+{
+ switch (efx->phy_type) {
+ case PHY_TYPE_10XPRESS:
+ efx->phy_op = &falcon_tenxpress_phy_ops;
+ break;
+ case PHY_TYPE_XFP:
+ efx->phy_op = &falcon_xfp_phy_ops;
+ break;
+ default:
+ EFX_ERR(efx, "Unknown PHY type %d\n",
+ efx->phy_type);
+ return -1;
+ }
+ return 0;
+}
+
+/* This call is responsible for hooking in the MAC and PHY operations */
+int falcon_probe_port(struct efx_nic *efx)
+{
+ int rc;
+
+ /* Hook in PHY operations table */
+ rc = falcon_probe_phy(efx);
+ if (rc)
+ return rc;
+
+ /* Set up GMII structure for PHY */
+ efx->mii.supports_gmii = 1;
+ falcon_init_mdio(&efx->mii);
+
+ /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
+ if (FALCON_REV(efx) >= FALCON_REV_B0)
+ efx->flow_control = EFX_FC_RX | EFX_FC_TX;
+ else
+ efx->flow_control = EFX_FC_RX;
+
+ /* Allocate buffer for stats */
+ rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
+ FALCON_MAC_STATS_SIZE);
+ if (rc)
+ return rc;
+ EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
+ (unsigned long long)efx->stats_buffer.dma_addr,
+ efx->stats_buffer.addr,
+ virt_to_phys(efx->stats_buffer.addr));
+
+ return 0;
+}
+
+void falcon_remove_port(struct efx_nic *efx)
+{
+ falcon_free_buffer(efx, &efx->stats_buffer);
+}
+
+/**************************************************************************
+ *
+ * Multicast filtering
+ *
+ **************************************************************************
+ */
+
+void falcon_set_multicast_hash(struct efx_nic *efx)
+{
+ union efx_multicast_hash *mc_hash = &efx->multicast_hash;
+
+ /* Broadcast packets go through the multicast hash filter.
+ * ether_crc_le() of the broadcast address is 0xbe2612ff
+ * so we always add bit 0xff to the mask.
+ */
+ set_bit_le(0xff, mc_hash->byte);
+
+ falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
+ falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
+}
+
+/**************************************************************************
+ *
+ * Device reset
+ *
+ **************************************************************************
+ */
+
+/* Resets NIC to known state. This routine must be called in process
+ * context and is allowed to sleep. */
+int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
+{
+ struct falcon_nic_data *nic_data = efx->nic_data;
+ efx_oword_t glb_ctl_reg_ker;
+ int rc;
+
+ EFX_LOG(efx, "performing hardware reset (%d)\n", method);
+
+ /* Initiate device reset */
+ if (method == RESET_TYPE_WORLD) {
+ rc = pci_save_state(efx->pci_dev);
+ if (rc) {
+ EFX_ERR(efx, "failed to backup PCI state of primary "
+ "function prior to hardware reset\n");
+ goto fail1;
+ }
+ if (FALCON_IS_DUAL_FUNC(efx)) {
+ rc = pci_save_state(nic_data->pci_dev2);
+ if (rc) {
+ EFX_ERR(efx, "failed to backup PCI state of "
+ "secondary function prior to "
+ "hardware reset\n");
+ goto fail2;
+ }
+ }
+
+ EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
+ EXT_PHY_RST_DUR, 0x7,
+ SWRST, 1);
+ } else {
+ int reset_phy = (method == RESET_TYPE_INVISIBLE ?
+ EXCLUDE_FROM_RESET : 0);
+
+ EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
+ EXT_PHY_RST_CTL, reset_phy,
+ PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
+ PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
+ PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
+ EE_RST_CTL, EXCLUDE_FROM_RESET,
+ EXT_PHY_RST_DUR, 0x7 /* 10ms */,
+ SWRST, 1);
+ }
+ falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
+
+ EFX_LOG(efx, "waiting for hardware reset\n");
+ schedule_timeout_uninterruptible(HZ / 20);
+
+ /* Restore PCI configuration if needed */
+ if (method == RESET_TYPE_WORLD) {
+ if (FALCON_IS_DUAL_FUNC(efx)) {
+ rc = pci_restore_state(nic_data->pci_dev2);
+ if (rc) {
+ EFX_ERR(efx, "failed to restore PCI config for "
+ "the secondary function\n");
+ goto fail3;
+ }
+ }
+ rc = pci_restore_state(efx->pci_dev);
+ if (rc) {
+ EFX_ERR(efx, "failed to restore PCI config for the "
+ "primary function\n");
+ goto fail4;
+ }
+ EFX_LOG(efx, "successfully restored PCI config\n");
+ }
+
+ /* Assert that reset complete */
+ falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
+ if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
+ rc = -ETIMEDOUT;
+ EFX_ERR(efx, "timed out waiting for hardware reset\n");
+ goto fail5;
+ }
+ EFX_LOG(efx, "hardware reset complete\n");
+
+ return 0;
+
+ /* pci_save_state() and pci_restore_state() MUST be called in pairs */
+fail2:
+fail3:
+ pci_restore_state(efx->pci_dev);
+fail1:
+fail4:
+fail5:
+ return rc;
+}
+
+/* Zeroes out the SRAM contents. This routine must be called in
+ * process context and is allowed to sleep.
+ */
+static int falcon_reset_sram(struct efx_nic *efx)
+{
+ efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
+ int count;
+
+ /* Set the SRAM wake/sleep GPIO appropriately. */
+ falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
+ EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
+ EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
+ falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
+
+ /* Initiate SRAM reset */
+ EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
+ SRAM_OOB_BT_INIT_EN, 1,
+ SRM_NUM_BANKS_AND_BANK_SIZE, 0);
+ falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
+
+ /* Wait for SRAM reset to complete */
+ count = 0;
+ do {
+ EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
+
+ /* SRAM reset is slow; expect around 16ms */
+ schedule_timeout_uninterruptible(HZ / 50);
+
+ /* Check for reset complete */
+ falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
+ if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
+ EFX_LOG(efx, "SRAM reset complete\n");
+
+ return 0;
+ }
+ } while (++count < 20); /* wait upto 0.4 sec */
+
+ EFX_ERR(efx, "timed out waiting for SRAM reset\n");
+ return -ETIMEDOUT;
+}
+
+/* Extract non-volatile configuration */
+static int falcon_probe_nvconfig(struct efx_nic *efx)
+{
+ struct falcon_nvconfig *nvconfig;
+ efx_oword_t nic_stat;
+ int device_id;
+ unsigned addr_len;
+ size_t offset, len;
+ int magic_num, struct_ver, board_rev;
+ int rc;
+
+ /* Find the boot device. */
+ falcon_read(efx, &nic_stat, NIC_STAT_REG);
+ if (EFX_OWORD_FIELD(nic_stat, SF_PRST)) {
+ device_id = EE_SPI_FLASH;
+ addr_len = 3;
+ } else if (EFX_OWORD_FIELD(nic_stat, EE_PRST)) {
+ device_id = EE_SPI_EEPROM;
+ addr_len = 2;
+ } else {
+ return -ENODEV;
+ }
+
+ nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
+
+ /* Read the whole configuration structure into memory. */
+ for (offset = 0; offset < sizeof(*nvconfig); offset += len) {
+ len = min(sizeof(*nvconfig) - offset,
+ (size_t) FALCON_SPI_MAX_LEN);
+ rc = falcon_spi_read(efx, device_id, SPI_READ,
+ NVCONFIG_BASE + offset, addr_len,
+ (char *)nvconfig + offset, len);
+ if (rc)
+ goto out;
+ }
+
+ /* Read the MAC addresses */
+ memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
+
+ /* Read the board configuration. */
+ magic_num = le16_to_cpu(nvconfig->board_magic_num);
+ struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
+
+ if (magic_num != NVCONFIG_BOARD_MAGIC_NUM || struct_ver < 2) {
+ EFX_ERR(efx, "Non volatile memory bad magic=%x ver=%x "
+ "therefore using defaults\n", magic_num, struct_ver);
+ efx->phy_type = PHY_TYPE_NONE;
+ efx->mii.phy_id = PHY_ADDR_INVALID;
+ board_rev = 0;
+ } else {
+ struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
+
+ efx->phy_type = v2->port0_phy_type;
+ efx->mii.phy_id = v2->port0_phy_addr;
+ board_rev = le16_to_cpu(v2->board_revision);
+ }
+
+ EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
+
+ efx_set_board_info(efx, board_rev);
+
+ out:
+ kfree(nvconfig);
+ return rc;
+}
+
+/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
+ * count, port speed). Set workaround and feature flags accordingly.
+ */
+static int falcon_probe_nic_variant(struct efx_nic *efx)
+{
+ efx_oword_t altera_build;
+
+ falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
+ if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
+ EFX_ERR(efx, "Falcon FPGA not supported\n");
+ return -ENODEV;
+ }
+
+ switch (FALCON_REV(efx)) {
+ case FALCON_REV_A0:
+ case 0xff:
+ EFX_ERR(efx, "Falcon rev A0 not supported\n");
+ return -ENODEV;
+
+ case FALCON_REV_A1:{
+ efx_oword_t nic_stat;
+
+ falcon_read(efx, &nic_stat, NIC_STAT_REG);
+
+ if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
+ EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
+ return -ENODEV;
+ }
+ if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
+ EFX_ERR(efx, "1G mode not supported\n");
+ return -ENODEV;
+ }
+ break;
+ }
+
+ case FALCON_REV_B0:
+ break;
+
+ default:
+ EFX_ERR(efx, "Unknown Falcon rev %d\n", FALCON_REV(efx));
+ return -ENODEV;
+ }
+
+ return 0;
+}
+
+int falcon_probe_nic(struct efx_nic *efx)
+{
+ struct falcon_nic_data *nic_data;
+ int rc;
+
+ /* Initialise I2C interface state */
+ efx->i2c.efx = efx;
+ efx->i2c.op = &falcon_i2c_bit_operations;
+ efx->i2c.sda = 1;
+ efx->i2c.scl = 1;
+
+ /* Allocate storage for hardware specific data */
+ nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
+ efx->nic_data = (void *) nic_data;
+
+ /* Determine number of ports etc. */
+ rc = falcon_probe_nic_variant(efx);
+ if (rc)
+ goto fail1;
+
+ /* Probe secondary function if expected */
+ if (FALCON_IS_DUAL_FUNC(efx)) {
+ struct pci_dev *dev = pci_dev_get(efx->pci_dev);
+
+ while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
+ dev))) {
+ if (dev->bus == efx->pci_dev->bus &&
+ dev->devfn == efx->pci_dev->devfn + 1) {
+ nic_data->pci_dev2 = dev;
+ break;
+ }
+ }
+ if (!nic_data->pci_dev2) {
+ EFX_ERR(efx, "failed to find secondary function\n");
+ rc = -ENODEV;
+ goto fail2;
+ }
+ }
+
+ /* Now we can reset the NIC */
+ rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
+ if (rc) {
+ EFX_ERR(efx, "failed to reset NIC\n");
+ goto fail3;
+ }
+
+ /* Allocate memory for INT_KER */
+ rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
+ if (rc)
+ goto fail4;
+ BUG_ON(efx->irq_status.dma_addr & 0x0f);
+
+ EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
+ (unsigned long long)efx->irq_status.dma_addr,
+ efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
+
+ /* Read in the non-volatile configuration */
+ rc = falcon_probe_nvconfig(efx);
+ if (rc)
+ goto fail5;
+
+ return 0;
+
+ fail5:
+ falcon_free_buffer(efx, &efx->irq_status);
+ fail4:
+ /* fall-thru */
+ fail3:
+ if (nic_data->pci_dev2) {
+ pci_dev_put(nic_data->pci_dev2);
+ nic_data->pci_dev2 = NULL;
+ }
+ fail2:
+ /* fall-thru */
+ fail1:
+ kfree(efx->nic_data);
+ return rc;
+}
+
+/* This call performs hardware-specific global initialisation, such as
+ * defining the descriptor cache sizes and number of RSS channels.
+ * It does not set up any buffers, descriptor rings or event queues.
+ */
+int falcon_init_nic(struct efx_nic *efx)
+{
+ struct falcon_nic_data *data;
+ efx_oword_t temp;
+ unsigned thresh;
+ int rc;
+
+ data = (struct falcon_nic_data *)efx->nic_data;
+
+ /* Set up the address region register. This is only needed
+ * for the B0 FPGA, but since we are just pushing in the
+ * reset defaults this may as well be unconditional. */
+ EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0,
+ ADR_REGION1, (1 << 16),
+ ADR_REGION2, (2 << 16),
+ ADR_REGION3, (3 << 16));
+ falcon_write(efx, &temp, ADR_REGION_REG_KER);
+
+ /* Use on-chip SRAM */
+ falcon_read(efx, &temp, NIC_STAT_REG);
+ EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
+ falcon_write(efx, &temp, NIC_STAT_REG);
+
+ /* Set buffer table mode */
+ EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
+ falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
+
+ rc = falcon_reset_sram(efx);
+ if (rc)
+ return rc;
+
+ /* Set positions of descriptor caches in SRAM. */
+ EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
+ falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
+ EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
+ falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
+
+ /* Set TX descriptor cache size. */
+ BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
+ EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
+ falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
+
+ /* Set RX descriptor cache size. Set low watermark to size-8, as
+ * this allows most efficient prefetching.
+ */
+ BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
+ EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
+ falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
+ EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
+ falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
+
+ /* Clear the parity enables on the TX data fifos as
+ * they produce false parity errors because of timing issues
+ */
+ if (EFX_WORKAROUND_5129(efx)) {
+ falcon_read(efx, &temp, SPARE_REG_KER);
+ EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
+ falcon_write(efx, &temp, SPARE_REG_KER);
+ }
+
+ /* Enable all the genuinely fatal interrupts. (They are still
+ * masked by the overall interrupt mask, controlled by
+ * falcon_interrupts()).
+ *
+ * Note: All other fatal interrupts are enabled
+ */
+ EFX_POPULATE_OWORD_3(temp,
+ ILL_ADR_INT_KER_EN, 1,
+ RBUF_OWN_INT_KER_EN, 1,
+ TBUF_OWN_INT_KER_EN, 1);
+ EFX_INVERT_OWORD(temp);
+ falcon_write(efx, &temp, FATAL_INTR_REG_KER);
+
+ /* Set number of RSS queues for receive path. */
+ falcon_read(efx, &temp, RX_FILTER_CTL_REG);
+ if (FALCON_REV(efx) >= FALCON_REV_B0)
+ EFX_SET_OWORD_FIELD(temp, NUM_KER, 0);
+ else
+ EFX_SET_OWORD_FIELD(temp, NUM_KER, efx->rss_queues - 1);
+ if (EFX_WORKAROUND_7244(efx)) {
+ EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
+ EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
+ EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
+ EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
+ }
+ falcon_write(efx, &temp, RX_FILTER_CTL_REG);
+
+ falcon_setup_rss_indir_table(efx);
+
+ /* Setup RX. Wait for descriptor is broken and must
+ * be disabled. RXDP recovery shouldn't be needed, but is.
+ */
+ falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
+ EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
+ EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
+ if (EFX_WORKAROUND_5583(efx))
+ EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
+ falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
+
+ /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
+ * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
+ */
+ falcon_read(efx, &temp, TX_CFG2_REG_KER);
+ EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
+ EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
+ EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
+ EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
+ EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
+ /* Enable SW_EV to inherit in char driver - assume harmless here */
+ EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
+ /* Prefetch threshold 2 => fetch when descriptor cache half empty */
+ EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
+ /* Squash TX of packets of 16 bytes or less */
+ if (FALCON_REV(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
+ EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
+ falcon_write(efx, &temp, TX_CFG2_REG_KER);
+
+ /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
+ * descriptors (which is bad).
+ */
+ falcon_read(efx, &temp, TX_CFG_REG_KER);
+ EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
+ falcon_write(efx, &temp, TX_CFG_REG_KER);
+
+ /* RX config */
+ falcon_read(efx, &temp, RX_CFG_REG_KER);
+ EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
+ if (EFX_WORKAROUND_7575(efx))
+ EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
+ (3 * 4096) / 32);
+ if (FALCON_REV(efx) >= FALCON_REV_B0)
+ EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
+
+ /* RX FIFO flow control thresholds */
+ thresh = ((rx_xon_thresh_bytes >= 0) ?
+ rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
+ EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
+ thresh = ((rx_xoff_thresh_bytes >= 0) ?
+ rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
+ EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
+ /* RX control FIFO thresholds [32 entries] */
+ EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 25);
+ EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 20);
+ falcon_write(efx, &temp, RX_CFG_REG_KER);
+
+ /* Set destination of both TX and RX Flush events */
+ if (FALCON_REV(efx) >= FALCON_REV_B0) {
+ EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
+ falcon_write(efx, &temp, DP_CTRL_REG);
+ }
+
+ return 0;
+}
+
+void falcon_remove_nic(struct efx_nic *efx)
+{
+ struct falcon_nic_data *nic_data = efx->nic_data;
+
+ falcon_free_buffer(efx, &efx->irq_status);
+
+ (void) falcon_reset_hw(efx, RESET_TYPE_ALL);
+
+ /* Release the second function after the reset */
+ if (nic_data->pci_dev2) {
+ pci_dev_put(nic_data->pci_dev2);
+ nic_data->pci_dev2 = NULL;
+ }
+
+ /* Tear down the private nic state */
+ kfree(efx->nic_data);
+ efx->nic_data = NULL;
+}
+
+void falcon_update_nic_stats(struct efx_nic *efx)
+{
+ efx_oword_t cnt;
+
+ falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
+ efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
+}
+
+/**************************************************************************
+ *
+ * Revision-dependent attributes used by efx.c
+ *
+ **************************************************************************
+ */
+
+struct efx_nic_type falcon_a_nic_type = {
+ .mem_bar = 2,
+ .mem_map_size = 0x20000,
+ .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
+ .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
+ .buf_tbl_base = BUF_TBL_KER_A1,
+ .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
+ .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
+ .txd_ring_mask = FALCON_TXD_RING_MASK,
+ .rxd_ring_mask = FALCON_RXD_RING_MASK,
+ .evq_size = FALCON_EVQ_SIZE,
+ .max_dma_mask = FALCON_DMA_MASK,
+ .tx_dma_mask = FALCON_TX_DMA_MASK,
+ .bug5391_mask = 0xf,
+ .rx_xoff_thresh = 2048,
+ .rx_xon_thresh = 512,
+ .rx_buffer_padding = 0x24,
+ .max_interrupt_mode = EFX_INT_MODE_MSI,
+ .phys_addr_channels = 4,
+};
+
+struct efx_nic_type falcon_b_nic_type = {
+ .mem_bar = 2,
+ /* Map everything up to and including the RSS indirection
+ * table. Don't map MSI-X table, MSI-X PBA since Linux
+ * requires that they not be mapped. */
+ .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
+ .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
+ .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
+ .buf_tbl_base = BUF_TBL_KER_B0,
+ .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
+ .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
+ .txd_ring_mask = FALCON_TXD_RING_MASK,
+ .rxd_ring_mask = FALCON_RXD_RING_MASK,
+ .evq_size = FALCON_EVQ_SIZE,
+ .max_dma_mask = FALCON_DMA_MASK,
+ .tx_dma_mask = FALCON_TX_DMA_MASK,
+ .bug5391_mask = 0,
+ .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
+ .rx_xon_thresh = 27648, /* ~3*max MTU */
+ .rx_buffer_padding = 0,
+ .max_interrupt_mode = EFX_INT_MODE_MSIX,
+ .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
+ * interrupt handler only supports 32
+ * channels */
+};
+