summaryrefslogtreecommitdiff
path: root/arch/arm/mm/mmap.c
AgeCommit message (Collapse)Author
2009-03-12[ARM] Fix virtual to physical translation macro corner casesRussell King
The current use of these macros works well when the conversion is entirely linear. In this case, we can be assured that the following holds true: __va(p + s) - s = __va(p) However, this is not always the case, especially when there is a non-linear conversion (eg, when there is a 3.5GB hole in memory.) In this case, if 's' is the size of the region (eg, PAGE_SIZE) and 'p' is the final page, the above is most definitely not true. So, we must ensure that __va() and __pa() are only used with valid kernel direct mapped RAM addresses. This patch tweaks the code to achieve this. Tested-by: Charles Moschel <fred99@carolina.rr.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-09-05[ARM] sparse: fix several warningsRussell King
arch/arm/kernel/process.c:270:6: warning: symbol 'show_fpregs' was not declared. Should it be static? This function isn't used, so can be removed. arch/arm/kernel/setup.c:532:9: warning: symbol 'len' shadows an earlier one arch/arm/kernel/setup.c:524:6: originally declared here A function containing two 'len's. arch/arm/mm/fault-armv.c:188:13: warning: symbol 'check_writebuffer_bugs' was not declared. Should it be static? arch/arm/mm/mmap.c:122:5: warning: symbol 'valid_phys_addr_range' was not declared. Should it be static? arch/arm/mm/mmap.c:137:5: warning: symbol 'valid_mmap_phys_addr_range' was not declared. Should it be static? Missing includes. arch/arm/kernel/traps.c:71:77: warning: Using plain integer as NULL pointer arch/arm/mm/ioremap.c:355:46: error: incompatible types in comparison expression (different address spaces) Sillies. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-09-01[ARM] cputype: separate definitions, use themRussell King
Add asm/cputype.h, moving functions and definitions from asm/system.h there. Convert all users of 'processor_id' to the more efficient read_cpuid_id() function. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-02-29[ARM] 4839/1: fixes kernel Oops in /dev/mem device driver for memory map ↵Alexandre Rusev
with PHYS_OFF "cat /dev/mem" may cause kernel Oops for boards with PHYS_OFFSET != 0 because character device is mapped to addresses starting from zero and there is no protection against such situation. Patch just add this. Signed-off-by: Alexandre Rusev <arusev@ru.mvista.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2007-05-21Detach sched.h from mm.hAlexey Dobriyan
First thing mm.h does is including sched.h solely for can_do_mlock() inline function which has "current" dereference inside. By dealing with can_do_mlock() mm.h can be detached from sched.h which is good. See below, why. This patch a) removes unconditional inclusion of sched.h from mm.h b) makes can_do_mlock() normal function in mm/mlock.c c) exports can_do_mlock() to not break compilation d) adds sched.h inclusions back to files that were getting it indirectly. e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were getting them indirectly Net result is: a) mm.h users would get less code to open, read, preprocess, parse, ... if they don't need sched.h b) sched.h stops being dependency for significant number of files: on x86_64 allmodconfig touching sched.h results in recompile of 4083 files, after patch it's only 3744 (-8.3%). Cross-compile tested on all arm defconfigs, all mips defconfigs, all powerpc defconfigs, alpha alpha-up arm i386 i386-up i386-defconfig i386-allnoconfig ia64 ia64-up m68k mips parisc parisc-up powerpc powerpc-up s390 s390-up sparc sparc-up sparc64 sparc64-up um-x86_64 x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig as well as my two usual configs. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07get_unmapped_area handles MAP_FIXED on armBenjamin Herrenschmidt
ARM already had a case for MAP_FIXED in arch_get_unmapped_area() though it was not called before. Fix the comment to reflect that it will now be called. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-09-25[ARM] 3813/1: prevent >= 4G /dev/mem mmap()Lennert Buytenhek
Prevent userland from mapping in physical address regions >= 4G by checking for that in valid_mmap_phys_addr_range(). Unfortunately, we cannot override valid_mmap_phys_addr_range() without also overriding valid_phys_addr_range(), so copy drivers/char/mem.c's version of valid_phys_addr_range() over to arch/arm/mm/mmap.c as well. Signed-off-by: Lennert Buytenhek <buytenh@wantstofly.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-06-30Remove obsolete #include <linux/config.h>Jörn Engel
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: Adrian Bunk <bunk@stusta.de>
2005-06-22[PATCH] Avoiding mmap fragmentationWolfgang Wander
Ingo recently introduced a great speedup for allocating new mmaps using the free_area_cache pointer which boosts the specweb SSL benchmark by 4-5% and causes huge performance increases in thread creation. The downside of this patch is that it does lead to fragmentation in the mmap-ed areas (visible via /proc/self/maps), such that some applications that work fine under 2.4 kernels quickly run out of memory on any 2.6 kernel. The problem is twofold: 1) the free_area_cache is used to continue a search for memory where the last search ended. Before the change new areas were always searched from the base address on. So now new small areas are cluttering holes of all sizes throughout the whole mmap-able region whereas before small holes tended to close holes near the base leaving holes far from the base large and available for larger requests. 2) the free_area_cache also is set to the location of the last munmap-ed area so in scenarios where we allocate e.g. five regions of 1K each, then free regions 4 2 3 in this order the next request for 1K will be placed in the position of the old region 3, whereas before we appended it to the still active region 1, placing it at the location of the old region 2. Before we had 1 free region of 2K, now we only get two free regions of 1K -> fragmentation. The patch addresses thes issues by introducing yet another cache descriptor cached_hole_size that contains the largest known hole size below the current free_area_cache. If a new request comes in the size is compared against the cached_hole_size and if the request can be filled with a hole below free_area_cache the search is started from the base instead. The results look promising: Whereas 2.6.12-rc4 fragments quickly and my (earlier posted) leakme.c test program terminates after 50000+ iterations with 96 distinct and fragmented maps in /proc/self/maps it performs nicely (as expected) with thread creation, Ingo's test_str02 with 20000 threads requires 0.7s system time. Taking out Ingo's patch (un-patch available per request) by basically deleting all mentions of free_area_cache from the kernel and starting the search for new memory always at the respective bases we observe: leakme terminates successfully with 11 distinctive hardly fragmented areas in /proc/self/maps but thread creating is gringdingly slow: 30+s(!) system time for Ingo's test_str02 with 20000 threads. Now - drumroll ;-) the appended patch works fine with leakme: it ends with only 7 distinct areas in /proc/self/maps and also thread creation seems sufficiently fast with 0.71s for 20000 threads. Signed-off-by: Wolfgang Wander <wwc@rentec.com> Credit-to: "Richard Purdie" <rpurdie@rpsys.net> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> (partly) Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!