Age | Commit message (Collapse) | Author |
|
Erratum A-006184 says that a hang can happen under certain
circumstances when taking an exception. The erratum workaround
gives the use of a watchdog as an option, to get unstuck if a hang
does occur.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Change-Id: Ib63bea70bb2ad7ea4cee9b96ec4f7aefc21ea3b3
Reviewed-on: http://git.am.freescale.net:8181/1113
Tested-by: Fleming Andrew-AFLEMING <AFLEMING@freescale.com>
Reviewed-by: Fleming Andrew-AFLEMING <AFLEMING@freescale.com>
|
|
With lazy interrupt, we always call __check_irq_replaysome with
decrementers_next_tb to check if we need to replay timer interrupt.
So in hotplug case we also need to set decrementers_next_tb as MAX
to make sure __check_irq_replay don't replay timer interrupt
when return as we expect, otherwise we'll trap here infinitely.
Signed-off-by: Tiejun Chen <tiejun.chen@windriver.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The locking in update_vsyscall_tz() is not only unnecessary because the vdso
code copies the data unproteced in __kernel_gettimeofday() but also
introduces a hard to reproduce race condition between update_vsyscall()
and update_vsyscall_tz(), which causes user space process to loop
forever in vdso code.
The following patch removes the locking from update_vsyscall_tz().
Locking is not only unnecessary because the vdso code copies the data
unprotected in __kernel_gettimeofday() but also erroneous because updating
the tb_update_count is not atomic and introduces a hard to reproduce race
condition between update_vsyscall() and update_vsyscall_tz(), which further
causes user space process to loop forever in vdso code.
The below scenario describes the race condition,
x==0 Boot CPU other CPU
proc_P: x==0
timer interrupt
update_vsyscall
x==1 x++;sync settimeofday
update_vsyscall_tz
x==2 x++;sync
x==3 sync;x++
sync;x++
proc_P: x==3 (loops until x becomes even)
Because the ++ operator would be implemented as three instructions and not
atomic on powerpc.
A similar change was made for x86 in commit 6c260d58634
("x86: vdso: Remove bogus locking in update_vsyscall_tz")
Signed-off-by: Shan Hai <shan.hai@windriver.com>
CC: <stable@vger.kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
System time accounting APIs such as vtime_account_system() and
vtime_account_idle() need to be irqsafe. Current callers include
irq entry, exit and kvm, all of which have been checked against that
requirement. Now it's better to grow that with an automatic check
in case we have further callers or we missed something.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
On ia64 and powerpc, vtime context switch only consists
in flushing system and user pending time, plus a few
arch housekeeping.
Consolidate that into a generic implementation. s390 is
a special case because pending user and system time accounting
there is hard to dissociate. So it's keeping its own implementation.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
All vtime implementations just flush the user time on process
tick. Consolidate that in generic code by calling a user time
accounting helper. This avoids an indirect call in ia64 and
prepare to also consolidate vtime context switch code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
Prepending irq-unsafe vtime APIs with underscores was actually
a bad idea as the result is a big mess in the API namespace that
is even waiting to be further extended. Also these helpers
are always called from irq safe callers except kvm. Just
provide a vtime_account_system_irqsafe() for this specific
case so that we can remove the underscore prefix on other
vtime functions.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
vtime_account_system() currently has only one caller with
vtime_account() which is irq safe.
Now we are going to call it from other places like kvm where
irqs are not always disabled by the time we account the cputime.
So let's make it irqsafe. The arch implementation part is now
prefixed with "__".
vtime_account_idle() arch implementation is prefixed accordingly
to stay consistent.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer core update from Thomas Gleixner:
- Bug fixes (one for a longstanding dead loop issue)
- Rework of time related vsyscalls
- Alarm timer updates
- Jiffies updates to remove compile time dependencies
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timekeeping: Cast raw_interval to u64 to avoid shift overflow
timers: Fix endless looping between cascade() and internal_add_timer()
time/jiffies: bring back unconditional LATCH definition
time: Convert x86_64 to using new update_vsyscall
time: Only do nanosecond rounding on GENERIC_TIME_VSYSCALL_OLD systems
time: Introduce new GENERIC_TIME_VSYSCALL
time: Convert CONFIG_GENERIC_TIME_VSYSCALL to CONFIG_GENERIC_TIME_VSYSCALL_OLD
time: Move update_vsyscall definitions to timekeeper_internal.h
time: Move timekeeper structure to timekeeper_internal.h for vsyscall changes
jiffies: Remove compile time assumptions about CLOCK_TICK_RATE
jiffies: Kill unused TICK_USEC_TO_NSEC
alarmtimer: Rename alarmtimer_remove to alarmtimer_dequeue
alarmtimer: Remove unused helpers & defines
alarmtimer: Use hrtimer per-alarm instead of per-base
alarmtimer: Implement minimum alarm interval for allowing suspend
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc updates from Benjamin Herrenschmidt:
"Some highlights in addition to the usual batch of fixes:
- 64TB address space support for 64-bit processes by Aneesh Kumar
- Gavin Shan did a major cleanup & re-organization of our EEH support
code (IBM fancy PCI error handling & recovery infrastructure) which
paves the way for supporting different platform backends, along
with some rework of the PCIe code for the PowerNV platform in order
to remove home made resource allocations and instead use the
generic code (which is possible after some small improvements to it
done by Gavin).
- Uprobes support by Ananth N Mavinakayanahalli
- A pile of embedded updates from Freescale folks, including new SoC
and board supports, more KVM stuff including preparing for 64-bit
BookE KVM support, ePAPR 1.1 updates, etc..."
Fixup trivial conflicts in drivers/scsi/ipr.c
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (146 commits)
powerpc/iommu: Fix multiple issues with IOMMU pools code
powerpc: Fix VMX fix for memcpy case
driver/mtd:IFC NAND:Initialise internal SRAM before any write
powerpc/fsl-pci: use 'Header Type' to identify PCIE mode
powerpc/eeh: Don't release eeh_mutex in eeh_phb_pe_get
powerpc: Remove tlb batching hack for nighthawk
powerpc: Set paca->data_offset = 0 for boot cpu
powerpc/perf: Sample only if SIAR-Valid bit is set in P7+
powerpc/fsl-pci: fix warning when CONFIG_SWIOTLB is disabled
powerpc/mpc85xx: Update interrupt handling for IFC controller
powerpc/85xx: Enable USB support in p1023rds_defconfig
powerpc/smp: Do not disable IPI interrupts during suspend
powerpc/eeh: Fix crash on converting OF node to edev
powerpc/eeh: Lock module while handling EEH event
powerpc/kprobe: Don't emulate store when kprobe stwu r1
powerpc/kprobe: Complete kprobe and migrate exception frame
powerpc/kprobe: Introduce a new thread flag
powerpc: Remove unused __get_user64() and __put_user64()
powerpc/eeh: Global mutex to protect PE tree
powerpc/eeh: Remove EEH PE for normal PCI hotplug
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler changes from Ingo Molnar:
"Continued quest to clean up and enhance the cputime code by Frederic
Weisbecker, in preparation for future tickless kernel features.
Other than that, smallish changes."
Fix up trivial conflicts due to additions next to each other in arch/{x86/}Kconfig
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
cputime: Make finegrained irqtime accounting generally available
cputime: Gather time/stats accounting config options into a single menu
ia64: Reuse system and user vtime accounting functions on task switch
ia64: Consolidate user vtime accounting
vtime: Consolidate system/idle context detection
cputime: Use a proper subsystem naming for vtime related APIs
sched: cpu_power: enable ARCH_POWER
sched/nohz: Clean up select_nohz_load_balancer()
sched: Fix load avg vs. cpu-hotplug
sched: Remove __ARCH_WANT_INTERRUPTS_ON_CTXSW
sched: Fix nohz_idle_balance()
sched: Remove useless code in yield_to()
sched: Add time unit suffix to sched sysctl knobs
sched/debug: Limit sd->*_idx range on sysctl
sched: Remove AFFINE_WAKEUPS feature flag
s390: Remove leftover account_tick_vtime() header
cputime: Consolidate vtime handling on context switch
sched: Move cputime code to its own file
cputime: Generalize CONFIG_VIRT_CPU_ACCOUNTING
tile: Remove SD_PREFER_LOCAL leftover
...
|
|
Move the code that finds out to which context we account the
cputime into generic layer.
Archs that consider the whole time spent in the idle task as idle
time (ia64, powerpc) can rely on the generic vtime_account()
and implement vtime_account_system() and vtime_account_idle(),
letting the generic code to decide when to call which API.
Archs that have their own meaning of idle time, such as s390
that only considers the time spent in CPU low power mode as idle
time, can just override vtime_account().
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
|
|
Use a naming based on vtime as a prefix for virtual based
cputime accounting APIs:
- account_system_vtime() -> vtime_account()
- account_switch_vtime() -> vtime_task_switch()
It makes it easier to allow for further declension such
as vtime_account_system(), vtime_account_idle(), ... if we
want to find out the context we account to from generic code.
This also make it better to know on which subsystem these APIs
refer to.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
|
|
To help migrate archtectures over to the new update_vsyscall method,
redfine CONFIG_GENERIC_TIME_VSYSCALL as CONFIG_GENERIC_TIME_VSYSCALL_OLD
Cc: Tony Luck <tony.luck@intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
Since users will need to include timekeeper_internal.h, move
update_vsyscall definitions to timekeeper_internal.h.
Cc: Tony Luck <tony.luck@intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
|
|
There are a few tracepoints in the interrupt code path, which is before
irq_enter(), or after irq_exit(), like
trace_irq_entry()/trace_irq_exit() in do_IRQ(),
trace_timer_interrupt_entry()/trace_timer_interrupt_exit() in
timer_interrupt().
If the interrupt is from idle(), and because tracepoint contains RCU
read-side critical section, we could see following suspicious RCU usage
reported:
[ 145.127743] ===============================
[ 145.127747] [ INFO: suspicious RCU usage. ]
[ 145.127752] 3.6.0-rc3+ #1 Not tainted
[ 145.127755] -------------------------------
[ 145.127759] /root/.workdir/linux/arch/powerpc/include/asm/trace.h:33
suspicious rcu_dereference_check() usage!
[ 145.127765]
[ 145.127765] other info that might help us debug this:
[ 145.127765]
[ 145.127771]
[ 145.127771] RCU used illegally from idle CPU!
[ 145.127771] rcu_scheduler_active = 1, debug_locks = 0
[ 145.127777] RCU used illegally from extended quiescent state!
[ 145.127781] no locks held by swapper/0/0.
[ 145.127785]
[ 145.127785] stack backtrace:
[ 145.127789] Call Trace:
[ 145.127796] [c00000000108b530] [c000000000013c40] .show_stack
+0x70/0x1c0 (unreliable)
[ 145.127806] [c00000000108b5e0]
[c0000000000f59d8] .lockdep_rcu_suspicious+0x118/0x150
[ 145.127813] [c00000000108b680] [c00000000000fc58] .do_IRQ+0x498/0x500
[ 145.127820] [c00000000108b750] [c000000000003950]
hardware_interrupt_common+0x150/0x180
[ 145.127828] --- Exception: 501 at .plpar_hcall_norets+0x84/0xd4
[ 145.127828] LR = .check_and_cede_processor+0x38/0x70
[ 145.127836] [c00000000108bab0] [c0000000000665dc] .shared_cede_loop
+0x5c/0x100
[ 145.127844] [c00000000108bb70] [c000000000588ab0] .cpuidle_enter
+0x30/0x50
[ 145.127850] [c00000000108bbe0]
[c000000000588b0c] .cpuidle_enter_state+0x3c/0xb0
[ 145.127857] [c00000000108bc60] [c000000000589730] .cpuidle_idle_call
+0x150/0x6c0
[ 145.127863] [c00000000108bd30] [c000000000058440] .pSeries_idle
+0x10/0x40
[ 145.127870] [c00000000108bda0] [c00000000001683c] .cpu_idle
+0x18c/0x2d0
[ 145.127876] [c00000000108be60] [c00000000000b434] .rest_init
+0x124/0x1b0
[ 145.127884] [c00000000108bef0] [c0000000009d0d28] .start_kernel
+0x568/0x588
[ 145.127890] [c00000000108bf90] [c000000000009660] .start_here_common
+0x20/0x40
This is because the RCU usage in interrupt context should be used in
area marked by rcu_irq_enter()/rcu_irq_exit(), called in
irq_enter()/irq_exit() respectively.
Move them into the irq_enter()/irq_exit() area to avoid the reporting.
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
At the moment the handler for hypervisor decrementer interrupts is
the same as for decrementer interrupts, i.e. timer_interrupt().
This is bogus; if we ever do get a hypervisor decrementer interrupt
it won't have anything to do with the next timer event. In fact
the only time we get hypervisor decrementer interrupts is when one
is left pending on exit from a KVM guest.
When we get a hypervisor decrementer interrupt we don't need to do
anything special to clear it, since they are edge-triggered on the
transition of HDEC from 0 to -1. Thus this adds an empty handler
function for them. We don't need to have them masked when interrupts
are soft-disabled, so we use STD_EXCEPTION_HV instead of
MASKABLE_EXCEPTION_HV.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The archs that implement virtual cputime accounting all
flush the cputime of a task when it gets descheduled
and sometimes set up some ground initialization for the
next task to account its cputime.
These archs all put their own hooks in their context
switch callbacks and handle the off-case themselves.
Consolidate this by creating a new account_switch_vtime()
callback called in generic code right after a context switch
and that these archs must implement to flush the prev task
cputime and initialize the next task cputime related state.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
|
|
This reverts 68568add2c ("powerpc/time: Remove unnecessary sanity check
of decrementer expiration"). We do need to check whether we have reached
the expiration time of the next event, because we sometimes get an early
decrementer interrupt, most notably when we set the decrementer to 1 in
arch_irq_work_raise(). The effect of not having the sanity check is that
if timer_interrupt() gets called early, we leave the decrementer set to
its maximum value, which means we then don't get any more decrementer
interrupts for about 4 seconds (or longer, depending on timebase
frequency). I saw these pauses as a consequence of getting a stray
hypervisor decrementer interrupt left over from exiting a KVM guest.
This isn't quite a straight revert because of changes to the surrounding
code, but it restores the same algorithm as was previously used.
Cc: stable@vger.kernel.org
Acked-by: Anton Blanchard <anton@samba.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Time for which the hrtimer is started for decrementer emulation is calculated
using tb_ticks_per_usec. While hrtimer uses the clockevent for DEC
reprogramming (if needed) and which calculate timebase ticks using the
multiplier and shifter mechanism implemented within clockevent layer.
It was observed that this conversion (timebase->time->timebase) are not
correct because the mechanism are not consistent.
In our setup it adds 2% jitter.
With this patch clockevent multiplier and shifter mechanism are used when
starting hrtimer for decrementer emulation. Now the jitter is < 0.5%.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This is no longer selectable, so just remove all the dependent code.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The current implementation of lazy interrupts handling has some
issues that this tries to address.
We don't do the various workarounds we need to do when re-enabling
interrupts in some cases such as when returning from an interrupt
and thus we may still lose or get delayed decrementer or doorbell
interrupts.
The current scheme also makes it much harder to handle the external
"edge" interrupts provided by some BookE processors when using the
EPR facility (External Proxy) and the Freescale Hypervisor.
Additionally, we tend to keep interrupts hard disabled in a number
of cases, such as decrementer interrupts, external interrupts, or
when a masked decrementer interrupt is pending. This is sub-optimal.
This is an attempt at fixing it all in one go by reworking the way
we do the lazy interrupt disabling from the ground up.
The base idea is to replace the "hard_enabled" field with a
"irq_happened" field in which we store a bit mask of what interrupt
occurred while soft-disabled.
When re-enabling, either via arch_local_irq_restore() or when returning
from an interrupt, we can now decide what to do by testing bits in that
field.
We then implement replaying of the missed interrupts either by
re-using the existing exception frame (in exception exit case) or via
the creation of a new one from an assembly trampoline (in the
arch_local_irq_enable case).
This removes the need to play with the decrementer to try to create
fake interrupts, among others.
In addition, this adds a few refinements:
- We no longer hard disable decrementer interrupts that occur
while soft-disabled. We now simply bump the decrementer back to max
(on BookS) or leave it stopped (on BookE) and continue with hard interrupts
enabled, which means that we'll potentially get better sample quality from
performance monitor interrupts.
- Timer, decrementer and doorbell interrupts now hard-enable
shortly after removing the source of the interrupt, which means
they no longer run entirely hard disabled. Again, this will improve
perf sample quality.
- On Book3E 64-bit, we now make the performance monitor interrupt
act as an NMI like Book3S (the necessary C code for that to work
appear to already be present in the FSL perf code, notably calling
nmi_enter instead of irq_enter). (This also fixes a bug where BookE
perfmon interrupts could clobber r14 ... oops)
- We could make "masked" decrementer interrupts act as NMIs when doing
timer-based perf sampling to improve the sample quality.
Signed-off-by-yet: Benjamin Herrenschmidt <benh@kernel.crashing.org>
---
v2:
- Add hard-enable to decrementer, timer and doorbells
- Fix CR clobber in masked irq handling on BookE
- Make embedded perf interrupt act as an NMI
- Add a PACA_HAPPENED_EE_EDGE for use by FSL if they want
to retrigger an interrupt without preventing hard-enable
v3:
- Fix or vs. ori bug on Book3E
- Fix enabling of interrupts for some exceptions on Book3E
v4:
- Fix resend of doorbells on return from interrupt on Book3E
v5:
- Rebased on top of my latest series, which involves some significant
rework of some aspects of the patch.
v6:
- 32-bit compile fix
- more compile fixes with various .config combos
- factor out the asm code to soft-disable interrupts
- remove the C wrapper around preempt_schedule_irq
v7:
- Fix a bug with hard irq state tracking on native power7
|
|
Commit d57af9b (taskstats: use real microsecond granularity for CPU times)
renamed msecs_to_cputime to usecs_to_cputime, but failed to update all
numbers on the way. This causes nonsensical cpu idle/iowait values to be
displayed in /proc/stat (the only user of usecs_to_cputime so far).
This also renames __cputime_msec_factor to __cputime_usec_factor, adapting
its value and using it directly in cputime_to_usecs instead of doing two
multiplications.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
Acked-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
decrementer_check_overflow is called from arch_local_irq_restore so
we want to make it as light weight as possible. As such, turn
decrementer_check_overflow into an inline function.
To avoid a circular mess of includes, separate out the two components
of struct decrementer_clock and keep the struct clock_event_device
part local to time.c.
The fast path improves from:
arch_local_irq_restore
0: mflr r0
4: std r0,16(r1)
8: stdu r1,-112(r1)
c: stb r3,578(r13)
10: cmpdi cr7,r3,0
14: beq- cr7,24 <.arch_local_irq_restore+0x24>
...
24: addi r1,r1,112
28: ld r0,16(r1)
2c: mtlr r0
30: blr
to:
arch_local_irq_restore
0: std r30,-16(r1)
4: ld r30,0(r2)
8: stb r3,578(r13)
c: cmpdi cr7,r3,0
10: beq- cr7,6c <.arch_local_irq_restore+0x6c>
...
6c: ld r30,-16(r1)
70: blr
Unfortunately we still setup a local TOC (due to -mminimal-toc). Yet
another sign we should be moving to -mcmodel=medium.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Fix some formatting issues and use the DECREMENTER_MAX
define instead of 0x7fffffff.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The clockevents code uses max_delta_ns to avoid calling a
clockevent with too large a value.
Remove the redundant version of this in the timer_interrupt
code.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Use clocksource_register_hz which calculates the shift/mult
factors for us. Also remove the shift = 22 assumption in
vsyscall_update - thanks to Paul Mackerras and John Stultz for
catching that.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
We can use clockevents_calc_mult_shift instead of doing all
the work ourselves.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
When re-enabling interrupts we have code to handle edge sensitive
decrementers by resetting the decrementer to 1 whenever it is negative.
If interrupts were disabled long enough that the decrementer wrapped to
positive we do nothing. This means interrupts can be delayed for a long
time until it finally goes negative again.
While we hope interrupts are never be disabled long enough for the
decrementer to go positive, we have a very good test team that can
drive any kernel into the ground. The softlockup data we get back
from these fails could be seconds in the future, completely missing
the cause of the lockup.
We already keep track of the timebase of the next event so use that
to work out if we should trigger a decrementer exception.
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: stable@kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
All these files were including module.h just for the basic
EXPORT_SYMBOL infrastructure. We can shift them off to the
export.h header which is a way smaller footprint and thus
realize some compile time gains.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
Commit e360adbe29 ("irq_work: Add generic hardirq context
callbacks") fouled up the ppc bit, not properly naming the
arch specific function that raises the 'self-IPI'.
Cc: Huang Ying <ying.huang@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Anton Blanchard <anton@samba.org>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: stable@kernel.org # 37+
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-eg0aqien8p1aqvzu9dft6dtv@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
We currently enable interrupts before the dispatch log for the boot
cpu is setup. If a timer interrupt comes in early enough we oops in
scan_dispatch_log:
Unable to handle kernel paging request for data at address 0x00000010
...
.scan_dispatch_log+0xb0/0x170
.account_system_vtime+0xa0/0x220
.irq_enter+0x88/0xc0
.do_IRQ+0x48/0x230
The patch below adds a check to scan_dispatch_log to ensure the
dispatch log has been allocated.
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: <stable@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
With some implementations, it is possible that a timer interrupt
occurs every few seconds on an offline CPU. In this case, just
re-arm the decrementer and return immediately
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
commit cf9efce0ce31 (powerpc: Account time using timebase rather
than PURR) used in_irq() to detect if the time was spent in
interrupt processing. This only catches hardirq context so if we
are in softirq context and in the idle loop we end up accounting it
as idle time. If we instead use in_interrupt() we catch both softirq
and hardirq time.
The issue was found when running a network intensive workload. top
showed the following:
0.0%us, 1.1%sy, 0.0%ni, 85.7%id, 0.0%wa, 9.9%hi, 3.3%si, 0.0%st
85.7% idle. But this was wildly different to the perf events data.
To confirm the suspicion I ran something to keep the core busy:
# yes > /dev/null &
8.2%us, 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 10.3%hi, 81.4%si, 0.0%st
We only got 8.2% of the CPU for the userspace task and softirq has
shot up to 81.4%.
With the patch below top shows the correct stats:
0.0%us, 0.0%sy, 0.0%ni, 5.3%id, 0.0%wa, 13.3%hi, 81.3%si, 0.0%st
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: stable@kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
With cmwq, there's no reason to use a separate workqueue in
cpufreq_spudemand. Use system_wq instead. The work items are already
sync canceled on stop, so it's already guaranteed that no work is
running when spu_gov_exit() is entered.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Dave Jones <davej@redhat.com>
Cc: cpufreq@vger.kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
problem:
I see sometimes on my mpc5200 based board such printk timing
information:
[ 0.000000] NR_IRQS:512 nr_irqs:512 16
[ 0.000000] MPC52xx PIC is up and running!
[ 0.000000] clocksource: timebase mult[79364d9] shift[22] registered
[ 0.000000] console [ttyPSC0] enabled
[ 130.300633] pid_max: default: 32768 minimum: 301
[ 130.305647] Mount-cache hash table entries: 512
[ 130.315818] NET: Registered protocol family 16
reason:
if the tbu not starts from 0 when linux boots, boot_tb
maybe could not store the real 64 bit tbu value, because
boot_tp is only a 32 bit unsigned long.
solution:
change boot_tb to u64
[BenH: Made it u64 instead of unsigned long long]
Signed-off-by: Heiko Schocher <hs@denx.de>
cc: Wolfgang Denk <wd@denx.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (71 commits)
powerpc/44x: Update ppc44x_defconfig
powerpc/watchdog: Make default timeout for Book-E watchdog a Kconfig option
fsl_rio: Add comments for sRIO registers.
powerpc/fsl-booke: Add e55xx (64-bit) smp defconfig
powerpc/fsl-booke: Add p5020 DS board support
powerpc/fsl-booke64: Use TLB CAMs to cover linear mapping on FSL 64-bit chips
powerpc/fsl-booke: Add support for FSL Arch v1.0 MMU in setup_page_sizes
powerpc/fsl-booke: Add support for FSL 64-bit e5500 core
powerpc/85xx: add cache-sram support
powerpc/85xx: add ngPIXIS FPGA device tree node to the P1022DS board
powerpc: Fix compile error with paca code on ppc64e
powerpc/fsl-booke: Add p3041 DS board support
oprofile/fsl emb: Don't set MSR[PMM] until after clearing the interrupt.
powerpc/fsl-booke: Add PCI device ids for P2040/P3041/P5010/P5020 QoirQ chips
powerpc/mpc8xxx_gpio: Add support for 'qoriq-gpio' controllers
powerpc/fsl_booke: Add support to boot from core other than 0
powerpc/p1022: Add probing for individual DMA channels
powerpc/fsl_soc: Search all global-utilities nodes for rstccr
powerpc: Fix invalid page flags in create TLB CAM path for PTE_64BIT
powerpc/mpc83xx: Support for MPC8308 P1M board
...
Fix up conflict with the generic irq_work changes in arch/powerpc/kernel/time.c
|
|
Provide a mechanism that allows running code in IRQ context. It is
most useful for NMI code that needs to interact with the rest of the
system -- like wakeup a task to drain buffers.
Perf currently has such a mechanism, so extract that and provide it as
a generic feature, independent of perf so that others may also
benefit.
The IRQ context callback is generated through self-IPIs where
possible, or on architectures like powerpc the decrementer (the
built-in timer facility) is set to generate an interrupt immediately.
Architectures that don't have anything like this get to do with a
callback from the timer tick. These architectures can call
irq_work_run() at the tail of any IRQ handlers that might enqueue such
work (like the perf IRQ handler) to avoid undue latencies in
processing the work.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
[ various fixes ]
Signed-off-by: Huang Ying <ying.huang@intel.com>
LKML-Reference: <1287036094.7768.291.camel@yhuang-dev>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Export the global variable 'ppc_tb_freq', so that modules (like the Book-E
watchdog driver) can use it. To maintain consistency, ppc_proc_freq is
changed to a GPL-only export. This is okay, because any module that needs
this symbol should be an actual Linux driver, which must be GPL-licensed.
Signed-off-by: Timur Tabi <timur@freescale.com>
Acked-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
|
Since the cpu accounting code uses the hypervisor dispatch trace log
now when CONFIG_VIRT_CPU_ACCOUNTING = y, the previous commit disabled
access to it via files in the /sys/kernel/debug/powerpc/dtl/ directory
in that case. This restores those files.
To do this, we now have a hook that the cpu accounting code will call
as it processes each entry from the hypervisor dispatch trace log.
The code in dtl.c now uses that to fill up its ring buffer, rather
than having the hypervisor fill the ring buffer directly.
This also fixes dtl_file_read() to handle overflow conditions a bit
better and adds a spinlock to ensure that race conditions (multiple
processes opening or reading the file concurrently) are handled
correctly.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Currently, when CONFIG_VIRT_CPU_ACCOUNTING is enabled, we use the
PURR register for measuring the user and system time used by
processes, as well as other related times such as hardirq and
softirq times. This turns out to be quite confusing for users
because it means that a program will often be measured as taking
less time when run on a multi-threaded processor (SMT2 or SMT4 mode)
than it does when run on a single-threaded processor (ST mode), even
though the program takes longer to finish. The discrepancy is
accounted for as stolen time, which is also confusing, particularly
when there are no other partitions running.
This changes the accounting to use the timebase instead, meaning that
the reported user and system times are the actual number of real-time
seconds that the program was executing on the processor thread,
regardless of which SMT mode the processor is in. Thus a program will
generally show greater user and system times when run on a
multi-threaded processor than on a single-threaded processor.
On pSeries systems on POWER5 or later processors, we measure the
stolen time (time when this partition wasn't running) using the
hypervisor dispatch trace log. We check for new entries in the
log on every entry from user mode and on every transition from
kernel process context to soft or hard IRQ context (i.e. when
account_system_vtime() gets called). So that we can correctly
distinguish time stolen from user time and time stolen from system
time, without having to check the log on every exit to user mode,
we store separate timestamps for exit to user mode and entry from
user mode.
On systems that have a SPURR (POWER6 and POWER7), we read the SPURR
in account_system_vtime() (as before), and then apportion the SPURR
ticks since the last time we read it between scaled user time and
scaled system time according to the relative proportions of user
time and system time over the same interval. This avoids having to
read the SPURR on every kernel entry and exit. On systems that have
PURR but not SPURR (i.e., POWER5), we do the same using the PURR
rather than the SPURR.
This disables the DTL user interface in /sys/debug/kernel/powerpc/dtl
for now since it conflicts with the use of the dispatch trace log
by the time accounting code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Commit 0fe1ac48 ("powerpc/perf_event: Fix oops due to
perf_event_do_pending call") moved the call to perf_event_do_pending
in timer_interrupt() down so that it was after the irq_enter() call.
Unfortunately this moved it after the code that checks whether it
is time for the next decrementer clock event. The result is that
the call to perf_event_do_pending() won't happen until the next
decrementer clock event is due. This was pointed out by Milton
Miller.
This fixes it by moving the check for whether it's time for the
next decrementer clock event down to the point where we're about
to call the event handler, after we've called perf_event_do_pending.
This has the side effect that on old pre-Core99 Powermacs where we
use the ppc_n_lost_interrupts mechanism to replay interrupts, a
replayed interrupt will incur a little more latency since it will
now do the code from the irq_enter down to the irq_exit, that it
used to skip. However, these machines are now old and rare enough
that this doesn't matter. To make it clear that ppc_n_lost_interrupts
is only used on Powermacs, and to speed up the code slightly on
non-Powermac ppc32 machines, the code that tests ppc_n_lost_interrupts
is now conditional on CONFIG_PMAC as well as CONFIG_PPC32.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: stable@kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Conflicts:
arch/powerpc/kernel/time.c
Reason: The powerpc next tree contains two commits which conflict with
the timekeeping changes:
8fd63a9e powerpc: Rework VDSO gettimeofday to prevent time going backwards
c1aa687d powerpc: Clean up obsolete code relating to decrementer and timebase
John Stultz identified them and provided the conflict resolution.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Since the decrementer and timekeeping code was moved over to using
the generic clockevents and timekeeping infrastructure, several
variables and functions have been obsolete and effectively unused.
This deletes them.
In particular, wakeup_decrementer() is no longer needed since the
generic code reprograms the decrementer as part of the process of
resuming the timekeeping code, which happens during sysdev resume.
Thus the wakeup_decrementer calls in the suspend_enter methods for
52xx platforms have been removed. The call in the powermac cpu
frequency change code has been replaced by set_dec(1), which will
cause a timer interrupt as soon as interrupts are enabled, and the
generic code will then reprogram the decrementer with the correct
value.
This also simplifies the generic_suspend_en/disable_irqs functions
and makes them static since they are not referenced outside time.c.
The preempt_enable/disable calls are removed because the generic
code has disabled all but the boot cpu at the point where these
functions are called, so we can't be moved to another cpu.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Currently it is possible for userspace to see the result of
gettimeofday() going backwards by 1 microsecond, assuming that
userspace is using the gettimeofday() in the VDSO. The VDSO
gettimeofday() algorithm computes the time in "xsecs", which are
units of 2^-20 seconds, or approximately 0.954 microseconds,
using the algorithm
now = (timebase - tb_orig_stamp) * tb_to_xs + stamp_xsec
and then converts the time in xsecs to seconds and microseconds.
The kernel updates the tb_orig_stamp and stamp_xsec values every
tick in update_vsyscall(). If the length of the tick is not an
integer number of xsecs, then some precision is lost in converting
the current time to xsecs. For example, with CONFIG_HZ=1000, the
tick is 1ms long, which is 1048.576 xsecs. That means that
stamp_xsec will advance by either 1048 or 1049 on each tick.
With the right conditions, it is possible for userspace to get
(timebase - tb_orig_stamp) * tb_to_xs being 1049 if the kernel is
slightly late in updating the vdso_datapage, and then for stamp_xsec
to advance by 1048 when the kernel does update it, and for userspace
to then see (timebase - tb_orig_stamp) * tb_to_xs being zero due to
integer truncation. The result is that time appears to go backwards
by 1 microsecond.
To fix this we change the VDSO gettimeofday to use a new field in the
VDSO datapage which stores the nanoseconds part of the time as a
fractional number of seconds in a 0.32 binary fraction format.
(Or put another way, as a 32-bit number in units of 0.23283 ns.)
This is convenient because we can use the mulhwu instruction to
convert it to either microseconds or nanoseconds.
Since it turns out that computing the time of day using this new field
is simpler than either using stamp_xsec (as gettimeofday does) or
stamp_xtime.tv_nsec (as clock_gettime does), this converts both
gettimeofday and clock_gettime to use the new field. The existing
__do_get_tspec function is converted to use the new field and take
a parameter in r7 that indicates the desired resolution, 1,000,000
for microseconds or 1,000,000,000 for nanoseconds. The __do_get_xsec
function is then unused and is deleted.
The new algorithm is
now = ((timebase - tb_orig_stamp) << 12) * tb_to_xs
+ (stamp_xtime_seconds << 32) + stamp_sec_fraction
with 'now' in units of 2^-32 seconds. That is then converted to
seconds and either microseconds or nanoseconds with
seconds = now >> 32
partseconds = ((now & 0xffffffff) * resolution) >> 32
The 32-bit VDSO code also makes a further simplification: it ignores
the bottom 32 bits of the tb_to_xs value, which is a 0.64 format binary
fraction. Doing so gets rid of 4 multiply instructions. Assuming
a timebase frequency of 1GHz or less and an update interval of no
more than 10ms, the upper 32 bits of tb_to_xs will be at least
4503599, so the error from ignoring the low 32 bits will be at most
2.2ns, which is more than an order of magnitude less than the time
taken to do gettimeofday or clock_gettime on our fastest processors,
so there is no possibility of seeing inconsistent values due to this.
This also moves update_gtod() down next to its only caller, and makes
update_vsyscall use the time passed in via the wall_time argument rather
than accessing xtime directly. At present, wall_time always points to
xtime, but that could change in future.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
update_vsyscall() did not provide the wall_to_monotoinc offset,
so arch specific implementations tend to reference wall_to_monotonic
directly. This limits future cleanups in the timekeeping core, so
this patch fixes the update_vsyscall interface to provide
wall_to_monotonic, allowing wall_to_monotonic to be made static
as planned in Documentation/feature-removal-schedule.txt
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Tony Luck <tony.luck@intel.com>
LKML-Reference: <1279068988-21864-7-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
This removes powerpc's direct xtime usage, allowing for further
generic timeekeping cleanups
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Anton Blanchard <anton@samba.org>
LKML-Reference: <1279068988-21864-6-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Currently powerpc's update_vsyscall calls an inline update_gtod.
However, both are straightforward, and there are no other users,
so this patch merges update_gtod into update_vsyscall.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1279068988-21864-5-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Anton Blanchard found that large POWER systems would occasionally
crash in the exception exit path when profiling with perf_events.
The symptom was that an interrupt would occur late in the exit path
when the MSR[RI] (recoverable interrupt) bit was clear. Interrupts
should be hard-disabled at this point but they were enabled. Because
the interrupt was not recoverable the system panicked.
The reason is that the exception exit path was calling
perf_event_do_pending after hard-disabling interrupts, and
perf_event_do_pending will re-enable interrupts.
The simplest and cleanest fix for this is to use the same mechanism
that 32-bit powerpc does, namely to cause a self-IPI by setting the
decrementer to 1. This means we can remove the tests in the exception
exit path and raw_local_irq_restore.
This also makes sure that the call to perf_event_do_pending from
timer_interrupt() happens within irq_enter/irq_exit. (Note that
calling perf_event_do_pending from timer_interrupt does not mean that
there is a possible 1/HZ latency; setting the decrementer to 1 ensures
that the timer interrupt will happen immediately, i.e. within one
timebase tick, which is a few nanoseconds or 10s of nanoseconds.)
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: stable@kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
/proc/interrupts
With NO_HZ it is useful to know how often the decrementer is going off. The
patch below adds an entry for it and also adds it into the /proc/stat
summaries.
While here, I added performance monitoring and machine check exceptions.
I found it useful to keep an eye on the PMU exception rate
when using the perf tool. Since it's possible to take a completely
handled machine check on a System p box it also sounds like a good idea to
keep a machine check summary.
The event naming matches x86 to keep gratuitous differences to a minimum.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|