Age | Commit message (Collapse) | Author |
|
When we change or remove a HPT (hashed page table) entry, we can do
either a global TLB invalidation (tlbie) that works across the whole
machine, or a local invalidation (tlbiel) that only affects this core.
Currently we do local invalidations if the VM has only one vcpu or if
the guest requests it with the H_LOCAL flag, though the guest Linux
kernel currently doesn't ever use H_LOCAL. Then, to cope with the
possibility that vcpus moving around to different physical cores might
expose stale TLB entries, there is some code in kvmppc_hv_entry to
flush the whole TLB of entries for this VM if either this vcpu is now
running on a different physical core from where it last ran, or if this
physical core last ran a different vcpu.
There are a number of problems on POWER7 with this as it stands:
- The TLB invalidation is done per thread, whereas it only needs to be
done per core, since the TLB is shared between the threads.
- With the possibility of the host paging out guest pages, the use of
H_LOCAL by an SMP guest is dangerous since the guest could possibly
retain and use a stale TLB entry pointing to a page that had been
removed from the guest.
- The TLB invalidations that we do when a vcpu moves from one physical
core to another are unnecessary in the case of an SMP guest that isn't
using H_LOCAL.
- The optimization of using local invalidations rather than global should
apply to guests with one virtual core, not just one vcpu.
(None of this applies on PPC970, since there we always have to
invalidate the whole TLB when entering and leaving the guest, and we
can't support paging out guest memory.)
To fix these problems and simplify the code, we now maintain a simple
cpumask of which cpus need to flush the TLB on entry to the guest.
(This is indexed by cpu, though we only ever use the bits for thread
0 of each core.) Whenever we do a local TLB invalidation, we set the
bits for every cpu except the bit for thread 0 of the core that we're
currently running on. Whenever we enter a guest, we test and clear the
bit for our core, and flush the TLB if it was set.
On initial startup of the VM, and when resetting the HPT, we set all the
bits in the need_tlb_flush cpumask, since any core could potentially have
stale TLB entries from the previous VM to use the same LPID, or the
previous contents of the HPT.
Then, we maintain a count of the number of online virtual cores, and use
that when deciding whether to use a local invalidation rather than the
number of online vcpus. The code to make that decision is extracted out
into a new function, global_invalidates(). For multi-core guests on
POWER7 (i.e. when we are using mmu notifiers), we now never do local
invalidations regardless of the H_LOCAL flag.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Currently, if the guest does an H_PROTECT hcall requesting that the
permissions on a HPT entry be changed to allow writing, we make the
requested change even if the page is marked read-only in the host
Linux page tables. This is a problem since it would for instance
allow a guest to modify a page that KSM has decided can be shared
between multiple guests.
To fix this, if the new permissions for the page allow writing, we need
to look up the memslot for the page, work out the host virtual address,
and look up the Linux page tables to get the PTE for the page. If that
PTE is read-only, we reduce the HPTE permissions to read-only.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This makes a HPTE removal function, kvmppc_do_h_remove(), available
outside book3s_hv_rm_mmu.c. This will be used by the HPT writing
code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This uses a bit in our record of the guest view of the HPTE to record
when the HPTE gets modified. We use a reserved bit for this, and ensure
that this bit is always cleared in HPTE values returned to the guest.
The recording of modified HPTEs is only done if other code indicates
its interest by setting kvm->arch.hpte_mod_interest to a non-zero value.
The reason for this is that when later commits add facilities for
userspace to read the HPT, the first pass of reading the HPT will be
quicker if there are no (or very few) HPTEs marked as modified,
rather than having most HPTEs marked as modified.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This fixes a bug where adding a new guest HPT entry via the H_ENTER
hcall would lose the "changed" bit in the reverse map information
for the guest physical page being mapped. The result was that the
KVM_GET_DIRTY_LOG could return a zero bit for the page even though
the page had been modified by the guest.
This fixes it by only modifying the index and present bits in the
reverse map entry, thus preserving the reference and change bits.
We were also unnecessarily setting the reference bit, and this
fixes that too.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This restructures the code that creates HPT (hashed page table)
entries so that it can be called in situations where we don't have a
struct vcpu pointer, only a struct kvm pointer. It also fixes a bug
where kvmppc_map_vrma() would corrupt the guest R4 value.
Most of the work of kvmppc_virtmode_h_enter is now done by a new
function, kvmppc_virtmode_do_h_enter, which itself calls another new
function, kvmppc_do_h_enter, which contains most of the old
kvmppc_h_enter. The new kvmppc_do_h_enter takes explicit arguments
for the place to return the HPTE index, the Linux page tables to use,
and whether it is being called in real mode, thus removing the need
for it to have the vcpu as an argument.
Currently kvmppc_map_vrma creates the VRMA (virtual real mode area)
HPTEs by calling kvmppc_virtmode_h_enter, which is designed primarily
to handle H_ENTER hcalls from the guest that need to pin a page of
memory. Since H_ENTER returns the index of the created HPTE in R4,
kvmppc_virtmode_h_enter updates the guest R4, corrupting the guest R4
in the case when it gets called from kvmppc_map_vrma on the first
VCPU_RUN ioctl. With this, kvmppc_map_vrma instead calls
kvmppc_virtmode_do_h_enter with the address of a dummy word as the
place to store the HPTE index, thus avoiding corrupting the guest R4.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The mmu_notifier_retry is not specific to any vcpu (and never will be)
so only take struct kvm as a parameter.
The motivation is the ARM mmu code that needs to call this from
somewhere where we long let go of the vcpu pointer.
Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This adds an implementation of kvm_arch_flush_shadow_memslot for
Book3S HV, and arranges for kvmppc_core_commit_memory_region to
flush the dirty log when modifying an existing slot. With this,
we can handle deletion and modification of memory slots.
kvm_arch_flush_shadow_memslot calls kvmppc_core_flush_memslot, which
on Book3S HV now traverses the reverse map chains to remove any HPT
(hashed page table) entries referring to pages in the memslot. This
gets called by generic code whenever deleting a memslot or changing
the guest physical address for a memslot.
We flush the dirty log in kvmppc_core_commit_memory_region for
consistency with what x86 does. We only need to flush when an
existing memslot is being modified, because for a new memslot the
rmap array (which stores the dirty bits) is all zero, meaning that
every page is considered clean already, and when deleting a memslot
we obviously don't care about the dirty bits any more.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Now that we have an architecture-specific field in the kvm_memory_slot
structure, we can use it to store the array of page physical addresses
that we need for Book3S HV KVM on PPC970 processors. This reduces the
size of struct kvm_arch for Book3S HV, and also reduces the size of
struct kvm_arch_memory_slot for other PPC KVM variants since the fields
in it are now only compiled in for Book3S HV.
This necessitates making the kvm_arch_create_memslot and
kvm_arch_free_memslot operations specific to each PPC KVM variant.
That in turn means that we now don't allocate the rmap arrays on
Book3S PR and Book E.
Since we now unpin pages and free the slot_phys array in
kvmppc_core_free_memslot, we no longer need to do it in
kvmppc_core_destroy_vm, since the generic code takes care to free
all the memslots when destroying a VM.
We now need the new memslot to be passed in to
kvmppc_core_prepare_memory_region, since we need to initialize its
arch.slot_phys member on Book3S HV.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The build error was caused by that builtin functions are calling
the functions implemented in modules. This error was introduced by
commit 4d8b81abc4 ("KVM: introduce readonly memslot").
The patch fixes the build error by moving function __gfn_to_hva_memslot()
from kvm_main.c to kvm_host.h and making that "inline" so that the
builtin function (kvmppc_h_enter) can use that.
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
|
Two reasons:
- x86 can integrate rmap and rmap_pde and remove heuristics in
__gfn_to_rmap().
- Some architectures do not need rmap.
Since rmap is one of the most memory consuming stuff in KVM, ppc'd
better restrict the allocation to Book3S HV.
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This adds a new ioctl to enable userspace to control the size of the guest
hashed page table (HPT) and to clear it out when resetting the guest.
The KVM_PPC_ALLOCATE_HTAB ioctl is a VM ioctl and takes as its parameter
a pointer to a u32 containing the desired order of the HPT (log base 2
of the size in bytes), which is updated on successful return to the
actual order of the HPT which was allocated.
There must be no vcpus running at the time of this ioctl. To enforce
this, we now keep a count of the number of vcpus running in
kvm->arch.vcpus_running.
If the ioctl is called when a HPT has already been allocated, we don't
reallocate the HPT but just clear it out. We first clear the
kvm->arch.rma_setup_done flag, which has two effects: (a) since we hold
the kvm->lock mutex, it will prevent any vcpus from starting to run until
we're done, and (b) it means that the first vcpu to run after we're done
will re-establish the VRMA if necessary.
If userspace doesn't call this ioctl before running the first vcpu, the
kernel will allocate a default-sized HPT at that point. We do it then
rather than when creating the VM, as the code did previously, so that
userspace has a chance to do the ioctl if it wants.
When allocating the HPT, we can allocate either from the kernel page
allocator, or from the preallocated pool. If userspace is asking for
a different size from the preallocated HPTs, we first try to allocate
using the kernel page allocator. Then we try to allocate from the
preallocated pool, and then if that fails, we try allocating decreasing
sizes from the kernel page allocator, down to the minimum size allowed
(256kB). Note that the kernel page allocator limits allocations to
1 << CONFIG_FORCE_MAX_ZONEORDER pages, which by default corresponds to
16MB (on 64-bit powerpc, at least).
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix module compilation]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
When handling the H_BULK_REMOVE hypercall, we were forgetting to
invalidate and unlock the hashed page table entry (HPTE) in the case
where the page had been paged out. This fixes it by clearing the
first doubleword of the HPTE in that case.
This fixes a regression introduced in commit a92bce95f0 ("KVM: PPC:
Book3S HV: Keep HPTE locked when invalidating"). The effect of the
regression is that the host kernel will sometimes hang when under
memory pressure.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This moves __gfn_to_memslot() and search_memslots() from kvm_main.c to
kvm_host.h to reduce the code duplication caused by the need for
non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c to call
gfn_to_memslot() in real mode.
Rather than putting gfn_to_memslot() itself in a header, which would
lead to increased code size, this puts __gfn_to_memslot() in a header.
Then, the non-modular uses of gfn_to_memslot() are changed to call
__gfn_to_memslot() instead. This way there is only one place in the
source code that needs to be changed should the gfn_to_memslot()
implementation need to be modified.
On powerpc, the Book3S HV style of KVM has code that is called from
real mode which needs to call gfn_to_memslot() and thus needs this.
(Module code is allocated in the vmalloc region, which can't be
accessed in real mode.)
With this, we can remove builtin_gfn_to_memslot() from book3s_hv_rm_mmu.c.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This uses the host view of the hardware R (referenced) bit to speed
up kvm_age_hva() and kvm_test_age_hva(). Instead of removing all
the relevant HPTEs in kvm_age_hva(), we now just reset their R bits
if set. Also, kvm_test_age_hva() now scans the relevant HPTEs to
see if any of them have R set.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This allows both the guest and the host to use the referenced (R) and
changed (C) bits in the guest hashed page table. The guest has a view
of R and C that is maintained in the guest_rpte field of the revmap
entry for the HPTE, and the host has a view that is maintained in the
rmap entry for the associated gfn.
Both view are updated from the guest HPT. If a bit (R or C) is zero
in either view, it will be initially set to zero in the HPTE (or HPTEs),
until set to 1 by hardware. When an HPTE is removed for any reason,
the R and C bits from the HPTE are ORed into both views. We have to
be careful to read the R and C bits from the HPTE after invalidating
it, but before unlocking it, in case of any late updates by the hardware.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This reworks the implementations of the H_REMOVE and H_BULK_REMOVE
hcalls to make sure that we keep the HPTE locked and in the reverse-
mapping chain until we have finished invalidating it. Previously
we would remove it from the chain and unlock it before invalidating
it, leaving a tiny window when the guest could access the page even
though we believe we have removed it from the guest (e.g.,
kvm_unmap_hva() has been called for the page and has found no HPTEs
in the chain). In addition, we'll need this for future patches where
we will need to read the R and C bits in the HPTE after invalidating
it.
Doing this required restructuring kvmppc_h_bulk_remove() substantially.
Since we want to batch up the tlbies, we now need to keep several
HPTEs locked simultaneously. In order to avoid possible deadlocks,
we don't spin on the HPTE bitlock for any except the first HPTE in
a batch. If we can't acquire the HPTE bitlock for the second or
subsequent HPTE, we terminate the batch at that point, do the tlbies
that we have accumulated so far, unlock those HPTEs, and then start
a new batch to do the remaining invalidations.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
With this, if a guest does an H_ENTER with a read/write HPTE on a page
which is currently read-only, we make the actual HPTE inserted be a
read-only version of the HPTE. We now intercept protection faults as
well as HPTE not found faults, and for a protection fault we work out
whether it should be reflected to the guest (e.g. because the guest HPTE
didn't allow write access to usermode) or handled by switching to
kernel context and calling kvmppc_book3s_hv_page_fault, which will then
request write access to the page and update the actual HPTE.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7. Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page. Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.
Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970. We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out. If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This provides the low-level support for MMIO emulation in Book3S HV
guests. When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page. Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page. An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.
When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.
This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This expands the reverse mapping array to contain two links for each
HPTE which are used to link together HPTEs that correspond to the
same guest logical page. Each circular list of HPTEs is pointed to
by the rmap array entry for the guest logical page, pointed to by
the relevant memslot. Links are 32-bit HPT entry indexes rather than
full 64-bit pointers, to save space. We use 3 of the remaining 32
bits in the rmap array entries as a lock bit, a referenced bit and
a present bit (the present bit is needed since HPTE index 0 is valid).
The bit lock for the rmap chain nests inside the HPTE lock bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This provides for the case where userspace maps an I/O device into the
address range of a memory slot using a VM_PFNMAP mapping. In that
case, we work out the pfn from vma->vm_pgoff, and record the cache
enable bits from vma->vm_page_prot in two low-order bits in the
slot_phys array entries. Then, in kvmppc_h_enter() we check that the
cache bits in the HPTE that the guest wants to insert match the cache
bits in the slot_phys array entry. However, we do allow the guest to
create what it thinks is a non-cacheable or write-through mapping to
memory that is actually cacheable, so that we can use normal system
memory as part of an emulated device later on. In that case the actual
HPTE we insert is a cacheable HPTE.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This relaxes the requirement that the guest memory be provided as
16MB huge pages, allowing it to be provided as normal memory, i.e.
in pages of PAGE_SIZE bytes (4k or 64k). To allow this, we index
the kvm->arch.slot_phys[] arrays with a small page index, even if
huge pages are being used, and use the low-order 5 bits of each
entry to store the order of the enclosing page with respect to
normal pages, i.e. log_2(enclosing_page_size / PAGE_SIZE).
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This removes the code from kvmppc_core_prepare_memory_region() that
looked up the VMA for the region being added and called hva_to_page
to get the pfns for the memory. We have no guarantee that there will
be anything mapped there at the time of the KVM_SET_USER_MEMORY_REGION
ioctl call; userspace can do that ioctl and then map memory into the
region later.
Instead we defer looking up the pfn for each memory page until it is
needed, which generally means when the guest does an H_ENTER hcall on
the page. Since we can't call get_user_pages in real mode, if we don't
already have the pfn for the page, kvmppc_h_enter() will return
H_TOO_HARD and we then call kvmppc_virtmode_h_enter() once we get back
to kernel context. That calls kvmppc_get_guest_page() to get the pfn
for the page, and then calls back to kvmppc_h_enter() to redo the HPTE
insertion.
When the first vcpu starts executing, we need to have the RMO or VRMA
region mapped so that the guest's real mode accesses will work. Thus
we now have a check in kvmppc_vcpu_run() to see if the RMO/VRMA is set
up and if not, call kvmppc_hv_setup_rma(). It checks if the memslot
starting at guest physical 0 now has RMO memory mapped there; if so it
sets it up for the guest, otherwise on POWER7 it sets up the VRMA.
The function that does that, kvmppc_map_vrma, is now a bit simpler,
as it calls kvmppc_virtmode_h_enter instead of creating the HPTE itself.
Since we are now potentially updating entries in the slot_phys[]
arrays from multiple vcpu threads, we now have a spinlock protecting
those updates to ensure that we don't lose track of any references
to pages.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
At present, our implementation of H_ENTER only makes one try at locking
each slot that it looks at, and doesn't even retry the ldarx/stdcx.
atomic update sequence that it uses to attempt to lock the slot. Thus
it can return the H_PTEG_FULL error unnecessarily, particularly when
the H_EXACT flag is set, meaning that the caller wants a specific PTEG
slot.
This improves the situation by making a second pass when no free HPTE
slot is found, where we spin until we succeed in locking each slot in
turn and then check whether it is full while we hold the lock. If the
second pass fails, then we return H_PTEG_FULL.
This also moves lock_hpte to a header file (since later commits in this
series will need to use it from other source files) and renames it to
try_lock_hpte, which is a somewhat less misleading name.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This allocates an array for each memory slot that is added to store
the physical addresses of the pages in the slot. This array is
vmalloc'd and accessed in kvmppc_h_enter using real_vmalloc_addr().
This allows us to remove the ram_pginfo field from the kvm_arch
struct, and removes the 64GB guest RAM limit that we had.
We use the low-order bits of the array entries to store a flag
indicating that we have done get_page on the corresponding page,
and therefore need to call put_page when we are finished with the
page. Currently this is set for all pages except those in our
special RMO regions.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
This adds an array that parallels the guest hashed page table (HPT),
that is, it has one entry per HPTE, used to store the guest's view
of the second doubleword of the corresponding HPTE. The first
doubleword in the HPTE is the same as the guest's idea of it, so we
don't need to store a copy, but the second doubleword in the HPTE has
the real page number rather than the guest's logical page number.
This allows us to remove the back_translate() and reverse_xlate()
functions.
This "reverse mapping" array is vmalloc'd, meaning that to access it
in real mode we have to walk the kernel's page tables explicitly.
That is done by the new real_vmalloc_addr() function. (In fact this
returns an address in the linear mapping, so the result is usable
both in real mode and in virtual mode.)
There are also some minor cleanups here: moving the definitions of
HPT_ORDER etc. to a header file and defining HPT_NPTE for HPT_NPTEG << 3.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
We need the compute_tlbie_rb in _pr and _hv implementations for papr
soon, so let's move it over to a common header file that both
implementations can leverage.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This adds support for running KVM guests in supervisor mode on those
PPC970 processors that have a usable hypervisor mode. Unfortunately,
Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to
1), but the YDL PowerStation does have a usable hypervisor mode.
There are several differences between the PPC970 and POWER7 in how
guests are managed. These differences are accommodated using the
CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature
bits. Notably, on PPC970:
* The LPCR, LPID or RMOR registers don't exist, and the functions of
those registers are provided by bits in HID4 and one bit in HID0.
* External interrupts can be directed to the hypervisor, but unlike
POWER7 they are masked by MSR[EE] in non-hypervisor modes and use
SRR0/1 not HSRR0/1.
* There is no virtual RMA (VRMA) mode; the guest must use an RMO
(real mode offset) area.
* The TLB entries are not tagged with the LPID, so it is necessary to
flush the whole TLB on partition switch. Furthermore, when switching
partitions we have to ensure that no other CPU is executing the tlbie
or tlbsync instructions in either the old or the new partition,
otherwise undefined behaviour can occur.
* The PMU has 8 counters (PMC registers) rather than 6.
* The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist.
* The SLB has 64 entries rather than 32.
* There is no mediated external interrupt facility, so if we switch to
a guest that has a virtual external interrupt pending but the guest
has MSR[EE] = 0, we have to arrange to have an interrupt pending for
it so that we can get control back once it re-enables interrupts. We
do that by sending ourselves an IPI with smp_send_reschedule after
hard-disabling interrupts.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This adds the infrastructure for handling PAPR hcalls in the kernel,
either early in the guest exit path while we are still in real mode,
or later once the MMU has been turned back on and we are in the full
kernel context. The advantage of handling hcalls in real mode if
possible is that we avoid two partition switches -- and this will
become more important when we support SMT4 guests, since a partition
switch means we have to pull all of the threads in the core out of
the guest. The disadvantage is that we can only access the kernel
linear mapping, not anything vmalloced or ioremapped, since the MMU
is off.
This also adds code to handle the following hcalls in real mode:
H_ENTER Add an HPTE to the hashed page table
H_REMOVE Remove an HPTE from the hashed page table
H_READ Read HPTEs from the hashed page table
H_PROTECT Change the protection bits in an HPTE
H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table
H_SET_DABR Set the data address breakpoint register
Plus code to handle the following hcalls in the kernel:
H_CEDE Idle the vcpu until an interrupt or H_PROD hcall arrives
H_PROD Wake up a ceded vcpu
H_REGISTER_VPA Register a virtual processor area (VPA)
The code that runs in real mode has to be in the base kernel, not in
the module, if KVM is compiled as a module. The real-mode code can
only access the kernel linear mapping, not vmalloc or ioremap space.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|