Age | Commit message (Collapse) | Author |
|
Originally 'efi_enabled' indicated whether a kernel was booted from
EFI firmware. Over time its semantics have changed, and it now
indicates whether or not we are booted on an EFI machine with
bit-native firmware, e.g. 64-bit kernel with 64-bit firmware.
The immediate motivation for this patch is the bug report at,
https://bugs.launchpad.net/ubuntu-cdimage/+bug/1040557
which details how running a platform driver on an EFI machine that is
designed to run under BIOS can cause the machine to become
bricked. Also, the following report,
https://bugzilla.kernel.org/show_bug.cgi?id=47121
details how running said driver can also cause Machine Check
Exceptions. Drivers need a new means of detecting whether they're
running on an EFI machine, as sadly the expression,
if (!efi_enabled)
hasn't been a sufficient condition for quite some time.
Users actually want to query 'efi_enabled' for different reasons -
what they really want access to is the list of available EFI
facilities.
For instance, the x86 reboot code needs to know whether it can invoke
the ResetSystem() function provided by the EFI runtime services, while
the ACPI OSL code wants to know whether the EFI config tables were
mapped successfully. There are also checks in some of the platform
driver code to simply see if they're running on an EFI machine (which
would make it a bad idea to do BIOS-y things).
This patch is a prereq for the samsung-laptop fix patch.
Cc: David Airlie <airlied@linux.ie>
Cc: Corentin Chary <corentincj@iksaif.net>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Olof Johansson <olof@lixom.net>
Cc: Peter Jones <pjones@redhat.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: Steve Langasek <steve.langasek@canonical.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Konrad Rzeszutek Wilk <konrad@kernel.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
This reverts commit bd52276fa1d4 ("x86-64/efi: Use EFI to deal with
platform wall clock (again)"), and the two supporting commits:
da5a108d05b4: "x86/kernel: remove tboot 1:1 page table creation code"
185034e72d59: "x86, efi: 1:1 pagetable mapping for virtual EFI calls")
as they all depend semantically on commit 53b87cf088e2 ("x86, mm:
Include the entire kernel memory map in trampoline_pgd") that got
reverted earlier due to the problems it caused.
This was pointed out by Yinghai Lu, and verified by me on my Macbook Air
that uses EFI.
Pointed-out-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 EFI update from Peter Anvin:
"EFI tree, from Matt Fleming. Most of the patches are the new efivarfs
filesystem by Matt Garrett & co. The balance are support for EFI
wallclock in the absence of a hardware-specific driver, and various
fixes and cleanups."
* 'core-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
efivarfs: Make efivarfs_fill_super() static
x86, efi: Check table header length in efi_bgrt_init()
efivarfs: Use query_variable_info() to limit kmalloc()
efivarfs: Fix return value of efivarfs_file_write()
efivarfs: Return a consistent error when efivarfs_get_inode() fails
efivarfs: Make 'datasize' unsigned long
efivarfs: Add unique magic number
efivarfs: Replace magic number with sizeof(attributes)
efivarfs: Return an error if we fail to read a variable
efi: Clarify GUID length calculations
efivarfs: Implement exclusive access for {get,set}_variable
efivarfs: efivarfs_fill_super() ensure we clean up correctly on error
efivarfs: efivarfs_fill_super() ensure we free our temporary name
efivarfs: efivarfs_fill_super() fix inode reference counts
efivarfs: efivarfs_create() ensure we drop our reference on inode on error
efivarfs: efivarfs_file_read ensure we free data in error paths
x86-64/efi: Use EFI to deal with platform wall clock (again)
x86/kernel: remove tboot 1:1 page table creation code
x86, efi: 1:1 pagetable mapping for virtual EFI calls
x86, mm: Include the entire kernel memory map in trampoline_pgd
...
|
|
Some firmware still needs a 1:1 (virt->phys) mapping even after we've
called SetVirtualAddressMap(). So install the mapping alongside our
existing kernel mapping whenever we make EFI calls in virtual mode.
This bug was discovered on ASUS machines where the firmware
implementation of GetTime() accesses the RTC device via physical
addresses, even though that's bogus per the UEFI spec since we've
informed the firmware via SetVirtualAddressMap() that the boottime
memory map is no longer valid.
This bug seems to be present in a lot of consumer devices, so there's
not a lot we can do about this spec violation apart from workaround
it.
Cc: JérômeCarretero <cJ-ko@zougloub.eu>
Cc: Vasco Dias <rafa.vasco@gmail.com>
Acked-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent
Pull EFI fixes from Matt Fleming:
"Fix oops with EFI variables on mixed 32/64-bit firmware/kernels and
document EFI git repository location on kernel.org."
Conflicts:
arch/x86/include/asm/efi.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When 32-bit EFI is used with 64-bit kernel (or vice versa), turn off
efi_enabled once setup is done. Beyond setup, it is normally used to
determine if runtime services are available and we will have none.
This will resolve issues stemming from efivars modprobe panicking on a
32/64-bit setup, as well as some reboot issues on similar setups.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=45991
Reported-by: Marko Kohtala <marko.kohtala@gmail.com>
Reported-by: Maxim Kammerer <mk@dee.su>
Signed-off-by: Olof Johansson <olof@lixom.net>
Acked-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>
Cc: stable@kernel.org # 3.4 - 3.6
Cc: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Calling __pa() with an ioremap'd address is invalid. If we
encounter an efi_memory_desc_t without EFI_MEMORY_WB set in
->attribute we currently call set_memory_uc(), which in turn
calls __pa() on a potentially ioremap'd address.
On CONFIG_X86_32 this results in the following oops:
BUG: unable to handle kernel paging request at f7f22280
IP: [<c10257b9>] reserve_ram_pages_type+0x89/0x210
*pdpt = 0000000001978001 *pde = 0000000001ffb067 *pte = 0000000000000000
Oops: 0000 [#1] PREEMPT SMP
Modules linked in:
Pid: 0, comm: swapper Not tainted 3.0.0-acpi-efi-0805 #3
EIP: 0060:[<c10257b9>] EFLAGS: 00010202 CPU: 0
EIP is at reserve_ram_pages_type+0x89/0x210
EAX: 0070e280 EBX: 38714000 ECX: f7814000 EDX: 00000000
ESI: 00000000 EDI: 38715000 EBP: c189fef0 ESP: c189fea8
DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068
Process swapper (pid: 0, ti=c189e000 task=c18bbe60 task.ti=c189e000)
Stack:
80000200 ff108000 00000000 c189ff00 00038714 00000000 00000000 c189fed0
c104f8ca 00038714 00000000 00038715 00000000 00000000 00038715 00000000
00000010 38715000 c189ff48 c1025aff 38715000 00000000 00000010 00000000
Call Trace:
[<c104f8ca>] ? page_is_ram+0x1a/0x40
[<c1025aff>] reserve_memtype+0xdf/0x2f0
[<c1024dc9>] set_memory_uc+0x49/0xa0
[<c19334d0>] efi_enter_virtual_mode+0x1c2/0x3aa
[<c19216d4>] start_kernel+0x291/0x2f2
[<c19211c7>] ? loglevel+0x1b/0x1b
[<c19210bf>] i386_start_kernel+0xbf/0xc8
The only time we can call set_memory_uc() for a memory region is
when it is part of the direct kernel mapping. For the case where
we ioremap a memory region we must leave it alone.
This patch reimplements the fix from e8c7106280a3 ("x86, efi:
Calling __pa() with an ioremap()ed address is invalid") which
was reverted in e1ad783b12ec because it caused a regression on
some MacBooks (they hung at boot). The regression was caused
because the commit only marked EFI_RUNTIME_SERVICES_DATA as
E820_RESERVED_EFI, when it should have marked all regions that
have the EFI_MEMORY_RUNTIME attribute.
Despite first impressions, it's not possible to use
ioremap_cache() to map all cached memory regions on
CONFIG_X86_64 because of the way that the memory map might be
configured as detailed in the following bug report,
https://bugzilla.redhat.com/show_bug.cgi?id=748516
e.g. some of the EFI memory regions *need* to be mapped as part
of the direct kernel mapping.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Cc: Matthew Garrett <mjg@redhat.com>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Huang Ying <huang.ying.caritas@gmail.com>
Cc: Keith Packard <keithp@keithp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1350649546-23541-1-git-send-email-matt@console-pimps.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Traditionally the kernel has refused to setup EFI at all if there's been
a mismatch in 32/64-bit mode between EFI and the kernel.
On some platforms that boot natively through EFI (Chrome OS being one),
we still need to get at least some of the static data such as memory
configuration out of EFI. Runtime services aren't as critical, and
it's a significant amount of work to implement switching between the
operating modes to call between kernel and firmware for thise cases. So
I'm ignoring it for now.
v5:
* Fixed some printk strings based on feedback
* Renamed 32/64-bit specific types to not have _ prefix
* Fixed bug in printout of efi runtime disablement
v4:
* Some of the earlier cleanup was accidentally reverted by this patch, fixed.
* Reworded some messages to not have to line wrap printk strings
v3:
* Reorganized to a series of patches to make it easier to review, and
do some of the cleanups I had left out before.
v2:
* Added graceful error handling for 32-bit kernel that gets passed
EFI data above 4GB.
* Removed some warnings that were missed in first version.
Signed-off-by: Olof Johansson <olof@lixom.net>
Link: http://lkml.kernel.org/r/1329081869-20779-6-git-send-email-olof@lixom.net
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
* 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, efi: Break up large initrd reads
x86, efi: EFI boot stub support
efi: Add EFI file I/O data types
efi.h: Add boottime->locate_handle search types
efi.h: Add graphics protocol guids
efi.h: Add allocation types for boottime->allocate_pages()
efi.h: Add efi_image_loaded_t
efi.h: Add struct definition for boot time services
x86: Don't use magic strings for EFI loader signature
x86: Add missing bzImage fields to struct setup_header
|
|
This hangs my MacBook Air at boot time; I get no console
messages at all. I reverted this on top of -rc5 and my machine
boots again.
This reverts commit e8c7106280a305e1ff2a3a8a4dfce141469fb039.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Keith Packard <keithp@keithp.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Matthew Garrett <mjg@redhat.com>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Huang Ying <huang.ying.caritas@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1321621751-3650-1-git-send-email-matt@console
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Introduce a symbol, EFI_LOADER_SIGNATURE instead of using the magic
strings, which also helps to reduce the amount of ifdeffery.
Cc: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/1318848017-12301-1-git-send-email-matt@console-pimps.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
If we encounter an efi_memory_desc_t without EFI_MEMORY_WB set
in ->attribute we currently call set_memory_uc(), which in turn
calls __pa() on a potentially ioremap'd address.
On CONFIG_X86_32 this is invalid, resulting in the following
oops on some machines:
BUG: unable to handle kernel paging request at f7f22280
IP: [<c10257b9>] reserve_ram_pages_type+0x89/0x210
[...]
Call Trace:
[<c104f8ca>] ? page_is_ram+0x1a/0x40
[<c1025aff>] reserve_memtype+0xdf/0x2f0
[<c1024dc9>] set_memory_uc+0x49/0xa0
[<c19334d0>] efi_enter_virtual_mode+0x1c2/0x3aa
[<c19216d4>] start_kernel+0x291/0x2f2
[<c19211c7>] ? loglevel+0x1b/0x1b
[<c19210bf>] i386_start_kernel+0xbf/0xc8
A better approach to this problem is to map the memory region
with the correct attributes from the start, instead of modifying
it after the fact. The uncached case can be handled by
ioremap_nocache() and the cached by ioremap_cache().
Despite first impressions, it's not possible to use
ioremap_cache() to map all cached memory regions on
CONFIG_X86_64 because EFI_RUNTIME_SERVICES_DATA regions really
don't like being mapped into the vmalloc space, as detailed in
the following bug report,
https://bugzilla.redhat.com/show_bug.cgi?id=748516
Therefore, we need to ensure that any EFI_RUNTIME_SERVICES_DATA
regions are covered by the direct kernel mapping table on
CONFIG_X86_64. To accomplish this we now map E820_RESERVED_EFI
regions via the direct kernel mapping with the initial call to
init_memory_mapping() in setup_arch(), whereas previously these
regions wouldn't be mapped if they were after the last E820_RAM
region until efi_ioremap() was called. Doing it this way allows
us to delete efi_ioremap() completely.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Matthew Garrett <mjg@redhat.com>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Huang Ying <huang.ying.caritas@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1321621751-3650-1-git-send-email-matt@console-pimps.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
The core EFI code and 64-bit EFI code currently have independent
implementations of code for setting memory regions as executable or not.
Let's consolidate them.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Link: http://lkml.kernel.org/r/1304623186-18261-2-git-send-email-mjg@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
1.include linux/memblock.h directly. so later could reduce e820.h reference.
2 this patch is done by sed scripts mainly
-v2: use MEMBLOCK_ERROR instead of -1ULL or -1UL
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
Booting current 64-bit x86 kernels on the latest Apple MacBook
(MacBook5,2) via EFI gives the following warning:
[ 0.182209] ------------[ cut here ]------------
[ 0.182222] WARNING: at arch/x86/mm/pageattr.c:581 __cpa_process_fault+0x44/0xa0()
[ 0.182227] Hardware name: MacBook5,2
[ 0.182231] CPA: called for zero pte. vaddr = ffff8800ffe00000 cpa->vaddr = ffff8800ffe00000
[ 0.182236] Modules linked in:
[ 0.182242] Pid: 0, comm: swapper Not tainted 2.6.31-rc4 #6
[ 0.182246] Call Trace:
[ 0.182254] [<ffffffff8102c754>] ? __cpa_process_fault+0x44/0xa0
[ 0.182261] [<ffffffff81048668>] warn_slowpath_common+0x78/0xd0
[ 0.182266] [<ffffffff81048744>] warn_slowpath_fmt+0x64/0x70
[ 0.182272] [<ffffffff8102c7ec>] ? update_page_count+0x3c/0x50
[ 0.182280] [<ffffffff818d25c5>] ? phys_pmd_init+0x140/0x22e
[ 0.182286] [<ffffffff8102c754>] __cpa_process_fault+0x44/0xa0
[ 0.182292] [<ffffffff8102ce60>] __change_page_attr_set_clr+0x5f0/0xb40
[ 0.182301] [<ffffffff810d1035>] ? vm_unmap_aliases+0x175/0x190
[ 0.182307] [<ffffffff8102d4ae>] change_page_attr_set_clr+0xfe/0x3d0
[ 0.182314] [<ffffffff8102dcca>] _set_memory_uc+0x2a/0x30
[ 0.182319] [<ffffffff8102dd4b>] set_memory_uc+0x7b/0xb0
[ 0.182327] [<ffffffff818afe31>] efi_enter_virtual_mode+0x2ad/0x2c9
[ 0.182334] [<ffffffff818a1c66>] start_kernel+0x2db/0x3f4
[ 0.182340] [<ffffffff818a1289>] x86_64_start_reservations+0x99/0xb9
[ 0.182345] [<ffffffff818a1389>] x86_64_start_kernel+0xe0/0xf2
[ 0.182357] ---[ end trace 4eaa2a86a8e2da22 ]---
[ 0.182982] init_memory_mapping: 00000000ffffc000-0000000100000000
[ 0.182993] 00ffffc000 - 0100000000 page 4k
This happens because the 64-bit version of efi_ioremap calls
init_memory_mapping for all addresses, regardless of whether they are
RAM or MMIO. The EFI tables on this machine ask for runtime access to
some MMIO regions:
[ 0.000000] EFI: mem195: type=11, attr=0x8000000000000000, range=[0x0000000093400000-0x0000000093401000) (0MB)
[ 0.000000] EFI: mem196: type=11, attr=0x8000000000000000, range=[0x00000000ffc00000-0x00000000ffc40000) (0MB)
[ 0.000000] EFI: mem197: type=11, attr=0x8000000000000000, range=[0x00000000ffc40000-0x00000000ffc80000) (0MB)
[ 0.000000] EFI: mem198: type=11, attr=0x8000000000000000, range=[0x00000000ffc80000-0x00000000ffca4000) (0MB)
[ 0.000000] EFI: mem199: type=11, attr=0x8000000000000000, range=[0x00000000ffca4000-0x00000000ffcb4000) (0MB)
[ 0.000000] EFI: mem200: type=11, attr=0x8000000000000000, range=[0x00000000ffcb4000-0x00000000ffffc000) (3MB)
[ 0.000000] EFI: mem201: type=11, attr=0x8000000000000000, range=[0x00000000ffffc000-0x0000000100000000) (0MB)
This arranges to pass the EFI memory type through to efi_ioremap, and
makes efi_ioremap use ioremap rather than init_memory_mapping if the
type is EFI_MEMORY_MAPPED_IO. With this, the above warning goes away.
Signed-off-by: Paul Mackerras <paulus@samba.org>
LKML-Reference: <19062.55858.533494.471153@cargo.ozlabs.ibm.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
Impact: Fix boot failure on EFI system with large runtime memory range
Brian Maly reported that some EFI system with large runtime memory
range can not boot. Because the FIX_MAP used to map runtime memory
range is smaller than run time memory range.
This patch fixes this issue by re-implement efi_ioremap() with
init_memory_mapping().
Reported-and-tested-by: Brian Maly <bmaly@redhat.com>
Signed-off-by: Huang Ying <ying.huang@intel.com>
Cc: Brian Maly <bmaly@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <1236135513.6204.306.camel@yhuang-dev.sh.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Impact: cleanup, avoid sparse warning
Fixes this sparse warning:
arch/x86/kernel/efi.c:67:5: warning: symbol 'add_efi_memmap' was not declared. Should it be static?
Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Change header guards named "ASM_X86__*" to "_ASM_X86_*" since:
a. the double underscore is ugly and pointless.
b. no leading underscore violates namespace constraints.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|