summaryrefslogtreecommitdiff
path: root/arch/x86
AgeCommit message (Collapse)Author
2014-04-10Merge branch 'rtmerge' into sdk-v1.6.xScott Wood
This merges 3.12.15-rt25. Signed-off-by: Scott Wood <scottwood@freescale.com> Conflicts: drivers/misc/Makefile drivers/net/ethernet/freescale/gianfar.c drivers/net/ethernet/freescale/gianfar_ethtool.c drivers/net/ethernet/freescale/gianfar_sysfs.c
2014-04-10x86-preempt-lazy.patchThomas Gleixner
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10cpumask: Disable CONFIG_CPUMASK_OFFSTACK for RTThomas Gleixner
We can't deal with the cpumask allocations which happen in atomic context (see arch/x86/kernel/apic/io_apic.c) on RT right now. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10crypto: Reduce preempt disabled regions, more algosSebastian Andrzej Siewior
Don Estabrook reported | kernel: WARNING: CPU: 2 PID: 858 at kernel/sched/core.c:2428 migrate_disable+0xed/0x100() | kernel: WARNING: CPU: 2 PID: 858 at kernel/sched/core.c:2462 migrate_enable+0x17b/0x200() | kernel: WARNING: CPU: 3 PID: 865 at kernel/sched/core.c:2428 migrate_disable+0xed/0x100() and his backtrace showed some crypto functions which looked fine. The problem is the following sequence: glue_xts_crypt_128bit() { blkcipher_walk_virt(); /* normal migrate_disable() */ glue_fpu_begin(); /* get atomic */ while (nbytes) { __glue_xts_crypt_128bit(); blkcipher_walk_done(); /* with nbytes = 0, migrate_enable() * while we are atomic */ }; glue_fpu_end() /* no longer atomic */ } and this is why the counter get out of sync and the warning is printed. The other problem is that we are non-preemptible between glue_fpu_begin() and glue_fpu_end() and the latency grows. To fix this, I shorten the FPU off region and ensure blkcipher_walk_done() is called with preemption enabled. This might hurt the performance because we now enable/disable the FPU state more often but we gain lower latency and the bug is gone. Cc: stable-rt@vger.kernel.org Reported-by: Don Estabrook <don.estabrook@gmail.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
2014-04-10x86: crypto: Reduce preempt disabled regionsPeter Zijlstra
Restrict the preempt disabled regions to the actual floating point operations and enable preemption for the administrative actions. This is necessary on RT to avoid that kfree and other operations are called with preemption disabled. Reported-and-tested-by: Carsten Emde <cbe@osadl.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: stable-rt@vger.kernel.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10x86-kvm-require-const-tsc-for-rt.patchThomas Gleixner
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10x86/highmem: add a "already used pte" checkSebastian Andrzej Siewior
This is a copy from kmap_atomic_prot(). Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
2014-04-10mm, rt: kmap_atomic schedulingPeter Zijlstra
In fact, with migrate_disable() existing one could play games with kmap_atomic. You could save/restore the kmap_atomic slots on context switch (if there are any in use of course), this should be esp easy now that we have a kmap_atomic stack. Something like the below.. it wants replacing all the preempt_disable() stuff with pagefault_disable() && migrate_disable() of course, but then you can flip kmaps around like below. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> [dvhart@linux.intel.com: build fix] Link: http://lkml.kernel.org/r/1311842631.5890.208.camel@twins [tglx@linutronix.de: Get rid of the per cpu variable and store the idx and the pte content right away in the task struct. Shortens the context switch code. ]
2014-04-10x86-no-perf-irq-work-rt.patchThomas Gleixner
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10Revert "x86: Disable IST stacks for debug/int 3/stack fault for PREEMPT_RT"Sebastian Andrzej Siewior
where do I start. Let me explain what is going on here. The code sequence | pushf | pop %edx | or $0x1,%dh | push %edx | mov $0xe0,%eax | popf | sysenter triggers the bug. On 64bit kernel we see the double fault (with 32bit and 64bit userland) and on 32bit kernel there is no problem. The reporter said that double fault does not happen on 64bit kernel with 64bit userland and this is because in that case the VDSO uses the "syscall" interface instead of "sysenter". The bug. "popf" loads the flags with the TF bit set which enables "single stepping" and this leads to a debug exception. Usually on 64bit we have a special IST stack for the debug exception. Due to patch [0] we do not use the IST stack but the kernel stack instead. On 64bit the sysenter instruction starts in kernel with the stack address NULL. The code sequence above enters the debug exception (TF flag) after the sysenter instruction was executed which sets the stack pointer to NULL and we have a fault (it seems that the debug exception saves some bytes on the stack). To fix the double fault I'm going to drop patch [0]. It is completely pointless. In do_debug() and do_stack_segment() we disable preemption which means the task can't leave the CPU. So it does not matter if we run on IST or on kernel stack. There is a patch [1] which drops preempt_disable() call for a 32bit kernel but not for 64bit so there should be no regression. And [1] seems valid even for this code sequence. We enter the debug exception with a 256bytes long per cpu stack and migrate to the kernel stack before calling do_debug(). [0] x86-disable-debug-stack.patch [1] fix-rt-int3-x86_32-3.2-rt.patch Cc: stable-rt@vger.kernel.org Reported-by: Brian Silverman <bsilver16384@gmail.com> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
2014-04-10x86: Disable IST stacks for debug/int 3/stack fault for PREEMPT_RTAndi Kleen
Normally the x86-64 trap handlers for debug/int 3/stack fault run on a special interrupt stack to make them more robust when dealing with kernel code. The PREEMPT_RT kernel can sleep in locks even while allocating GFP_ATOMIC memory. When one of these trap handlers needs to send real time signals for ptrace it allocates memory and could then try to to schedule. But it is not allowed to schedule on a IST stack. This can cause warnings and hangs. This patch disables the IST stacks for these handlers for PREEMPT_RT kernel. Instead let them run on the normal process stack. The kernel only really needs the ISTs here to make kernel debuggers more robust in case someone sets a break point somewhere where the stack is invalid. But there are no kernel debuggers in the standard kernel that do this. It also means kprobes cannot be set in situations with invalid stack; but that sounds like a reasonable restriction. The stack fault change could minimally impact oops quality, but not very much because stack faults are fairly rare. A better solution would be to use similar logic as the NMI "paranoid" path: check if signal is for user space, if yes go back to entry.S, switch stack, call sync_regs, then do the signal sending etc. But this patch is much simpler and should work too with minimal impact. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10x86: Use generic rwsem_spinlocks on -rtThomas Gleixner
Simplifies the separation of anon_rw_semaphores and rw_semaphores for -rt. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10x86: stackprotector: Avoid random pool on rtThomas Gleixner
CPU bringup calls into the random pool to initialize the stack canary. During boot that works nicely even on RT as the might sleep checks are disabled. During CPU hotplug the might sleep checks trigger. Making the locks in random raw is a major PITA, so avoid the call on RT is the only sensible solution. This is basically the same randomness which we get during boot where the random pool has no entropy and we rely on the TSC randomnness. Reported-by: Carsten Emde <carsten.emde@osadl.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10x86/mce: Defer mce wakeups to threads for PREEMPT_RTSteven Rostedt
We had a customer report a lockup on a 3.0-rt kernel that had the following backtrace: [ffff88107fca3e80] rt_spin_lock_slowlock at ffffffff81499113 [ffff88107fca3f40] rt_spin_lock at ffffffff81499a56 [ffff88107fca3f50] __wake_up at ffffffff81043379 [ffff88107fca3f80] mce_notify_irq at ffffffff81017328 [ffff88107fca3f90] intel_threshold_interrupt at ffffffff81019508 [ffff88107fca3fa0] smp_threshold_interrupt at ffffffff81019fc1 [ffff88107fca3fb0] threshold_interrupt at ffffffff814a1853 It actually bugged because the lock was taken by the same owner that already had that lock. What happened was the thread that was setting itself on a wait queue had the lock when an MCE triggered. The MCE interrupt does a wake up on its wait list and grabs the same lock. NOTE: THIS IS NOT A BUG ON MAINLINE Sorry for yelling, but as I Cc'd mainline maintainers I want them to know that this is an PREEMPT_RT bug only. I only Cc'd them for advice. On PREEMPT_RT the wait queue locks are converted from normal "spin_locks" into an rt_mutex (see the rt_spin_lock_slowlock above). These are not to be taken by hard interrupt context. This usually isn't a problem as most all interrupts in PREEMPT_RT are converted into schedulable threads. Unfortunately that's not the case with the MCE irq. As wait queue locks are notorious for long hold times, we can not convert them to raw_spin_locks without causing issues with -rt. But Thomas has created a "simple-wait" structure that uses raw spin locks which may have been a good fit. Unfortunately, wait queues are not the only issue, as the mce_notify_irq also does a schedule_work(), which grabs the workqueue spin locks that have the exact same issue. Thus, this patch I'm proposing is to move the actual work of the MCE interrupt into a helper thread that gets woken up on the MCE interrupt and does the work in a schedulable context. NOTE: THIS PATCH ONLY CHANGES THE BEHAVIOR WHEN PREEMPT_RT IS SET Oops, sorry for yelling again, but I want to stress that I keep the same behavior of mainline when PREEMPT_RT is not set. Thus, this only changes the MCE behavior when PREEMPT_RT is configured. Signed-off-by: Steven Rostedt <rostedt@goodmis.org> [bigeasy@linutronix: make mce_notify_work() a proper prototype, use kthread_run()] Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
2014-04-10x86/mce: fix mce timer intervalMike Galbraith
Seems mce timer fire at the wrong frequency in -rt kernels since roughly forever due to 32 bit overflow. 3.8-rt is also missing a multiplier. Add missing us -> ns conversion and 32 bit overflow prevention. Cc: stable-rt@vger.kernel.org Signed-off-by: Mike Galbraith <bitbucket@online.de> [bigeasy: use ULL instead of u64 cast] Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
2014-04-10x86: Convert mce timer to hrtimerThomas Gleixner
mce_timer is started in atomic contexts of cpu bringup. This results in might_sleep() warnings on RT. Convert mce_timer to a hrtimer to avoid this. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10softirq-disable-softirq-stacks-for-rt.patchThomas Gleixner
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10x86: Do not disable preemption in int3 on 32bitSteven Rostedt
Preemption must be disabled before enabling interrupts in do_trap on x86_64 because the stack in use for int3 and debug is a per CPU stack set by th IST. But 32bit does not have an IST and the stack still belongs to the current task and there is no problem in scheduling out the task. Keep preemption enabled on X86_32 when enabling interrupts for do_trap(). The name of the function is changed from preempt_conditional_sti/cli() to conditional_sti/cli_ist(), to annotate that this function is used when the stack is on the IST. Cc: stable-rt@vger.kernel.org Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10x86: Do not unmask io_apic when interrupt is in progressIngo Molnar
With threaded interrupts we might see an interrupt in progress on migration. Do not unmask it when this is the case. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10mm: pagefault_disabled()Peter Zijlstra
Wrap the test for pagefault_disabled() into a helper, this allows us to remove the need for current->pagefault_disabled on !-rt kernels. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/n/tip-3yy517m8zsi9fpsf14xfaqkw@git.kernel.org
2014-04-10mm: Fixup all fault handlers to check current->pagefault_disableThomas Gleixner
Necessary for decoupling pagefault disable from preempt count. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-10signal/x86: Delay calling signals in atomicOleg Nesterov
On x86_64 we must disable preemption before we enable interrupts for stack faults, int3 and debugging, because the current task is using a per CPU debug stack defined by the IST. If we schedule out, another task can come in and use the same stack and cause the stack to be corrupted and crash the kernel on return. When CONFIG_PREEMPT_RT_FULL is enabled, spin_locks become mutexes, and one of these is the spin lock used in signal handling. Some of the debug code (int3) causes do_trap() to send a signal. This function calls a spin lock that has been converted to a mutex and has the possibility to sleep. If this happens, the above issues with the corrupted stack is possible. Instead of calling the signal right away, for PREEMPT_RT and x86_64, the signal information is stored on the stacks task_struct and TIF_NOTIFY_RESUME is set. Then on exit of the trap, the signal resume code will send the signal when preemption is enabled. [ rostedt: Switched from #ifdef CONFIG_PREEMPT_RT_FULL to ARCH_RT_DELAYS_SIGNAL_SEND and added comments to the code. ] Cc: stable-rt@vger.kernel.org Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-04-03x86: fix boot on uniprocessor systemsArtem Fetishev
commit 825600c0f20e595daaa7a6dd8970f84fa2a2ee57 upstream. On x86 uniprocessor systems topology_physical_package_id() returns -1 which causes rapl_cpu_prepare() to leave rapl_pmu variable uninitialized which leads to GPF in rapl_pmu_init(). See arch/x86/kernel/cpu/perf_event_intel_rapl.c. It turns out that physical_package_id and core_id can actually be retreived for uniprocessor systems too. Enabling them also fixes rapl_pmu code. Signed-off-by: Artem Fetishev <artem_fetishev@epam.com> Cc: Stephane Eranian <eranian@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-04-03Revert "xen: properly account for _PAGE_NUMA during xen pte translations"David Vrabel
commit 5926f87fdaad4be3ed10cec563bf357915e55a86 upstream. This reverts commit a9c8e4beeeb64c22b84c803747487857fe424b68. PTEs in Xen PV guests must contain machine addresses if _PAGE_PRESENT is set and pseudo-physical addresses is _PAGE_PRESENT is clear. This is because during a domain save/restore (migration) the page table entries are "canonicalised" and uncanonicalised". i.e., MFNs are converted to PFNs during domain save so that on a restore the page table entries may be rewritten with the new MFNs on the destination. This canonicalisation is only done for PTEs that are present. This change resulted in writing PTEs with MFNs if _PAGE_PROTNONE (or _PAGE_NUMA) was set but _PAGE_PRESENT was clear. These PTEs would be migrated as-is which would result in unexpected behaviour in the destination domain. Either a) the MFN would be translated to the wrong PFN/page; b) setting the _PAGE_PRESENT bit would clear the PTE because the MFN is no longer owned by the domain; or c) the present bit would not get set. Symptoms include "Bad page" reports when munmapping after migrating a domain. Signed-off-by: David Vrabel <david.vrabel@citrix.com> Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-04-03arch/x86/mm/srat: Skip NUMA_NO_NODE while parsing SLITToshi Kani
commit a85eba8814631d0d48361c8b9a7ee0984e80c03c upstream. When ACPI SLIT table has an I/O locality (i.e. a locality unique to an I/O device), numa_set_distance() emits this warning message: NUMA: Warning: node ids are out of bound, from=-1 to=-1 distance=10 acpi_numa_slit_init() calls numa_set_distance() with pxm_to_node(), which assumes that all localities have been parsed with SRAT previously. SRAT does not list I/O localities, where as SLIT lists all localities including I/Os. Hence, pxm_to_node() returns NUMA_NO_NODE (-1) for an I/O locality. I/O localities are not supported and are ignored today, but emitting such warning message leads to unnecessary confusion. Change acpi_numa_slit_init() to avoid calling numa_set_distance() with NUMA_NO_NODE. Signed-off-by: Toshi Kani <toshi.kani@hp.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/n/tip-dSvpjjvp8aMzs1ybkftxohlh@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-04-03crypto: sha256_ssse3 - also test for BMI2Oliver Neukum
commit 16c0c4e1656c14ef9deac189a4240b5ca19c6919 upstream. The AVX2 implementation also uses BMI2 instructions, but doesn't test for their availability. The assumption that AVX2 and BMI2 always go together is false. Some Haswells have AVX2 but not BMI2. Signed-off-by: Oliver Neukum <oneukum@suse.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-31KVM: VMX: fix use after free of vmx->loaded_vmcsMarcelo Tosatti
commit 26a865f4aa8e66a6d94958de7656f7f1b03c6c56 upstream. After free_loaded_vmcs executes, the "loaded_vmcs" structure is kfreed, and now vmx->loaded_vmcs points to a kfreed area. Subsequent free_loaded_vmcs then attempts to manipulate vmx->loaded_vmcs. Switch the order to avoid the problem. https://bugzilla.redhat.com/show_bug.cgi?id=1047892 Reviewed-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Cc: Josh Boyer <jwboyer@fedoraproject.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-31KVM: x86: handle invalid root_hpa everywhereMarcelo Tosatti
commit 37f6a4e237303549c8676dfe1fd1991ceab512eb upstream. Rom Freiman <rom@stratoscale.com> notes other code paths vulnerable to bug fixed by 989c6b34f6a9480e397b. Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Cc: Josh Boyer <jwboyer@fedoraproject.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-31KVM: MMU: handle invalid root_hpa at __direct_mapMarcelo Tosatti
commit 989c6b34f6a9480e397b170cc62237e89bf4fdb9 upstream. It is possible for __direct_map to be called on invalid root_hpa (-1), two examples: 1) try_async_pf -> can_do_async_pf -> vmx_interrupt_allowed -> nested_vmx_vmexit 2) vmx_handle_exit -> vmx_interrupt_allowed -> nested_vmx_vmexit Then to load_vmcs12_host_state and kvm_mmu_reset_context. Check for this possibility, let fault exception be regenerated. BZ: https://bugzilla.redhat.com/show_bug.cgi?id=924916 Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Josh Boyer <jwboyer@fedoraproject.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-31x86: bpf_jit: support negative offsetsAlexei Starovoitov
commit fdfaf64e75397567257e1051931f9a3377360665 upstream. Commit a998d4342337 claimed to introduce negative offset support to x86 jit, but it couldn't be working, since at the time of the execution of LD+ABS or LD+IND instructions via call into bpf_internal_load_pointer_neg_helper() the %edx (3rd argument of this func) had junk value instead of access size in bytes (1 or 2 or 4). Store size into %edx instead of %ecx (what original commit intended to do) Fixes: a998d4342337 ("bpf jit: Let the x86 jit handle negative offsets") Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Cc: Jan Seiffert <kaffeemonster@googlemail.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-24x86, fpu: Check tsk_used_math() in kernel_fpu_end() for eager FPUSuresh Siddha
commit 731bd6a93a6e9172094a2322bd0ee964bb1f4d63 upstream. For non-eager fpu mode, thread's fpu state is allocated during the first fpu usage (in the context of device not available exception). This (math_state_restore()) can be a blocking call and hence we enable interrupts (which were originally disabled when the exception happened), allocate memory and disable interrupts etc. But the eager-fpu mode, call's the same math_state_restore() from kernel_fpu_end(). The assumption being that tsk_used_math() is always set for the eager-fpu mode and thus avoid the code path of enabling interrupts, allocating fpu state using blocking call and disable interrupts etc. But the below issue was noticed by Maarten Baert, Nate Eldredge and few others: If a user process dumps core on an ecrypt fs while aesni-intel is loaded, we get a BUG() in __find_get_block() complaining that it was called with interrupts disabled; then all further accesses to our ecrypt fs hang and we have to reboot. The aesni-intel code (encrypting the core file that we are writing) needs the FPU and quite properly wraps its code in kernel_fpu_{begin,end}(), the latter of which calls math_state_restore(). So after kernel_fpu_end(), interrupts may be disabled, which nobody seems to expect, and they stay that way until we eventually get to __find_get_block() which barfs. For eager fpu, most the time, tsk_used_math() is true. At few instances during thread exit, signal return handling etc, tsk_used_math() might be false. In kernel_fpu_end(), for eager-fpu, call math_state_restore() only if tsk_used_math() is set. Otherwise, don't bother. Kernel code path which cleared tsk_used_math() knows what needs to be done with the fpu state. Reported-by: Maarten Baert <maarten-baert@hotmail.com> Reported-by: Nate Eldredge <nate@thatsmathematics.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Suresh Siddha <sbsiddha@gmail.com> Link: http://lkml.kernel.org/r/1391410583.3801.6.camel@europa Cc: George Spelvin <linux@horizon.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-24KVM: SVM: fix cr8 intercept windowRadim Krčmář
commit 596f3142d2b7be307a1652d59e7b93adab918437 upstream. We always disable cr8 intercept in its handler, but only re-enable it if handling KVM_REQ_EVENT, so there can be a window where we do not intercept cr8 writes, which allows an interrupt to disrupt a higher priority task. Fix this by disabling intercepts in the same function that re-enables them when needed. This fixes BSOD in Windows 2008. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-22x86/amd/numa: Fix northbridge quirk to assign correct NUMA nodeDaniel J Blueman
commit 847d7970defb45540735b3fb4e88471c27cacd85 upstream. For systems with multiple servers and routed fabric, all northbridges get assigned to the first server. Fix this by also using the node reported from the PCI bus. For single-fabric systems, the northbriges are on PCI bus 0 by definition, which are on NUMA node 0 by definition, so this is invarient on most systems. Tested on fam10h and fam15h single and multi-fabric systems and candidate for stable. Signed-off-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Steffen Persvold <sp@numascale.com> Acked-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1394710981-3596-1-git-send-email-daniel@numascale.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-22x86: fix compile error due to X86_TRAP_NMI use in asm filesLinus Torvalds
commit b01d4e68933ec23e43b1046fa35d593cefcf37d1 upstream. It's an enum, not a #define, you can't use it in asm files. Introduced in commit 5fa10196bdb5 ("x86: Ignore NMIs that come in during early boot"), and sadly I didn't compile-test things like I should have before pushing out. My weak excuse is that the x86 tree generally doesn't introduce stupid things like this (and the ARM pull afterwards doesn't cause me to do a compile-test either, since I don't cross-compile). Cc: Don Zickus <dzickus@redhat.com> Cc: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-22x86: Ignore NMIs that come in during early bootH. Peter Anvin
commit 5fa10196bdb5f190f595ebd048490ee52dddea0f upstream. Don Zickus reports: A customer generated an external NMI using their iLO to test kdump worked. Unfortunately, the machine hung. Disabling the nmi_watchdog made things work. I speculated the external NMI fired, caused the machine to panic (as expected) and the perf NMI from the watchdog came in and was latched. My guess was this somehow caused the hang. ---- It appears that the latched NMI stays latched until the early page table generation on 64 bits, which causes exceptions to happen which end in IRET, which re-enable NMI. Therefore, ignore NMIs that come in during early execution, until we have proper exception handling. Reported-and-tested-by: Don Zickus <dzickus@redhat.com> Link: http://lkml.kernel.org/r/1394221143-29713-1-git-send-email-dzickus@redhat.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-12x86/dumpstack: Fix printk_address for direct addressesJiri Slaby
commit 5f01c98859073cb512b01d4fad74b5f4e047be0b upstream. Consider a kernel crash in a module, simulated the following way: static int my_init(void) { char *map = (void *)0x5; *map = 3; return 0; } module_init(my_init); When we turn off FRAME_POINTERs, the very first instruction in that function causes a BUG. The problem is that we print IP in the BUG report using %pB (from printk_address). And %pB decrements the pointer by one to fix printing addresses of functions with tail calls. This was added in commit 71f9e59800e5ad4 ("x86, dumpstack: Use %pB format specifier for stack trace") to fix the call stack printouts. So instead of correct output: BUG: unable to handle kernel NULL pointer dereference at 0000000000000005 IP: [<ffffffffa01ac000>] my_init+0x0/0x10 [pb173] We get: BUG: unable to handle kernel NULL pointer dereference at 0000000000000005 IP: [<ffffffffa0152000>] 0xffffffffa0151fff To fix that, we use %pS only for stack addresses printouts (via newly added printk_stack_address) and %pB for regs->ip (via printk_address). I.e. we revert to the old behaviour for all except call stacks. And since from all those reliable is 1, we remove that parameter from printk_address. Signed-off-by: Jiri Slaby <jslaby@suse.cz> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: joe@perches.com Cc: jirislaby@gmail.com Link: http://lkml.kernel.org/r/1382706418-8435-1-git-send-email-jslaby@suse.cz Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-05perf/x86: Fix event schedulingPeter Zijlstra
commit 26e61e8939b1fe8729572dabe9a9e97d930dd4f6 upstream. Vince "Super Tester" Weaver reported a new round of syscall fuzzing (Trinity) failures, with perf WARN_ON()s triggering. He also provided traces of the failures. This is I think the relevant bit: > pec_1076_warn-2804 [000] d... 147.926153: x86_pmu_disable: x86_pmu_disable > pec_1076_warn-2804 [000] d... 147.926153: x86_pmu_state: Events: { > pec_1076_warn-2804 [000] d... 147.926156: x86_pmu_state: 0: state: .R config: ffffffffffffffff ( (null)) > pec_1076_warn-2804 [000] d... 147.926158: x86_pmu_state: 33: state: AR config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926159: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926160: x86_pmu_state: n_events: 1, n_added: 0, n_txn: 1 > pec_1076_warn-2804 [000] d... 147.926161: x86_pmu_state: Assignment: { > pec_1076_warn-2804 [000] d... 147.926162: x86_pmu_state: 0->33 tag: 1 config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926163: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926166: collect_events: Adding event: 1 (ffff880119ec8800) So we add the insn:p event (fd[23]). At this point we should have: n_events = 2, n_added = 1, n_txn = 1 > pec_1076_warn-2804 [000] d... 147.926170: collect_events: Adding event: 0 (ffff8800c9e01800) > pec_1076_warn-2804 [000] d... 147.926172: collect_events: Adding event: 4 (ffff8800cbab2c00) We try and add the {BP,cycles,br_insn} group (fd[3], fd[4], fd[15]). These events are 0:cycles and 4:br_insn, the BP event isn't x86_pmu so that's not visible. group_sched_in() pmu->start_txn() /* nop - BP pmu */ event_sched_in() event->pmu->add() So here we should end up with: 0: n_events = 3, n_added = 2, n_txn = 2 4: n_events = 4, n_added = 3, n_txn = 3 But seeing the below state on x86_pmu_enable(), the must have failed, because the 0 and 4 events aren't there anymore. Looking at group_sched_in(), since the BP is the leader, its event_sched_in() must have succeeded, for otherwise we would not have seen the sibling adds. But since neither 0 or 4 are in the below state; their event_sched_in() must have failed; but I don't see why, the complete state: 0,0,1:p,4 fits perfectly fine on a core2. However, since we try and schedule 4 it means the 0 event must have succeeded! Therefore the 4 event must have failed, its failure will have put group_sched_in() into the fail path, which will call: event_sched_out() event->pmu->del() on 0 and the BP event. Now x86_pmu_del() will reduce n_events; but it will not reduce n_added; giving what we see below: n_event = 2, n_added = 2, n_txn = 2 > pec_1076_warn-2804 [000] d... 147.926177: x86_pmu_enable: x86_pmu_enable > pec_1076_warn-2804 [000] d... 147.926177: x86_pmu_state: Events: { > pec_1076_warn-2804 [000] d... 147.926179: x86_pmu_state: 0: state: .R config: ffffffffffffffff ( (null)) > pec_1076_warn-2804 [000] d... 147.926181: x86_pmu_state: 33: state: AR config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926182: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926184: x86_pmu_state: n_events: 2, n_added: 2, n_txn: 2 > pec_1076_warn-2804 [000] d... 147.926184: x86_pmu_state: Assignment: { > pec_1076_warn-2804 [000] d... 147.926186: x86_pmu_state: 0->33 tag: 1 config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926188: x86_pmu_state: 1->0 tag: 1 config: 1 (ffff880119ec8800) > pec_1076_warn-2804 [000] d... 147.926188: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926190: x86_pmu_enable: S0: hwc->idx: 33, hwc->last_cpu: 0, hwc->last_tag: 1 hwc->state: 0 So the problem is that x86_pmu_del(), when called from a group_sched_in() that fails (for whatever reason), and without x86_pmu TXN support (because the leader is !x86_pmu), will corrupt the n_added state. Reported-and-Tested-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Stephane Eranian <eranian@google.com> Cc: Dave Jones <davej@redhat.com> Link: http://lkml.kernel.org/r/20140221150312.GF3104@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-05x86: dma-mapping: fix GFP_ATOMIC macro usageMarek Szyprowski
commit c091c71ad2218fc50a07b3d1dab85783f3b77efd upstream. GFP_ATOMIC is not a single gfp flag, but a macro which expands to the other flags, where meaningful is the LACK of __GFP_WAIT flag. To check if caller wants to perform an atomic allocation, the code must test for a lack of the __GFP_WAIT flag. This patch fixes the issue introduced in v3.5-rc1. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-03-05kvm: x86: fix emulator buffer overflow (CVE-2014-0049)Andrew Honig
commit a08d3b3b99efd509133946056531cdf8f3a0c09b upstream. The problem occurs when the guest performs a pusha with the stack address pointing to an mmio address (or an invalid guest physical address) to start with, but then extending into an ordinary guest physical address. When doing repeated emulated pushes emulator_read_write sets mmio_needed to 1 on the first one. On a later push when the stack points to regular memory, mmio_nr_fragments is set to 0, but mmio_is_needed is not set to 0. As a result, KVM exits to userspace, and then returns to complete_emulated_mmio. In complete_emulated_mmio vcpu->mmio_cur_fragment is incremented. The termination condition of vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments is never achieved. The code bounces back and fourth to userspace incrementing mmio_cur_fragment past it's buffer. If the guest does nothing else it eventually leads to a a crash on a memcpy from invalid memory address. However if a guest code can cause the vm to be destroyed in another vcpu with excellent timing, then kvm_clear_async_pf_completion_queue can be used by the guest to control the data that's pointed to by the call to cancel_work_item, which can be used to gain execution. Fixes: f78146b0f9230765c6315b2e14f56112513389ad Signed-off-by: Andrew Honig <ahonig@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Jiri Slaby <jslaby@suse.cz>
2014-02-22ftrace/x86: Use breakpoints for converting function graph callerSteven Rostedt (Red Hat)
commit 87fbb2ac6073a7039303517546a76074feb14c84 upstream. When the conversion was made to remove stop machine and use the breakpoint logic instead, the modification of the function graph caller is still done directly as though it was being done under stop machine. As it is not converted via stop machine anymore, there is a possibility that the code could be layed across cache lines and if another CPU is accessing that function graph call when it is being updated, it could cause a General Protection Fault. Convert the update of the function graph caller to use the breakpoint method as well. Cc: H. Peter Anvin <hpa@zytor.com> Fixes: 08d636b6d4fb "ftrace/x86: Have arch x86_64 use breakpoints instead of stop machine" Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-22x86, smap: smap_violation() is bogus if CONFIG_X86_SMAP is offH. Peter Anvin
commit 4640c7ee9b8953237d05a61ea3ea93981d1bc961 upstream. If CONFIG_X86_SMAP is disabled, smap_violation() tests for conditions which are incorrect (as the AC flag doesn't matter), causing spurious faults. The dynamic disabling of SMAP (nosmap on the command line) is fine because it disables X86_FEATURE_SMAP, therefore causing the static_cpu_has() to return false. Found by Fengguang Wu's test system. [ v3: move all predicates into smap_violation() ] [ v2: use IS_ENABLED() instead of #ifdef ] Reported-by: Fengguang Wu <fengguang.wu@intel.com> Link: http://lkml.kernel.org/r/20140213124550.GA30497@localhost Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-22x86, smap: Don't enable SMAP if CONFIG_X86_SMAP is disabledH. Peter Anvin
commit 03bbd596ac04fef47ce93a730b8f086d797c3021 upstream. If SMAP support is not compiled into the kernel, don't enable SMAP in CR4 -- in fact, we should clear it, because the kernel doesn't contain the proper STAC/CLAC instructions for SMAP support. Found by Fengguang Wu's test system. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Link: http://lkml.kernel.org/r/20140213124550.GA30497@localhost Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-22xen: properly account for _PAGE_NUMA during xen pte translationsMel Gorman
commit a9c8e4beeeb64c22b84c803747487857fe424b68 upstream. Steven Noonan forwarded a users report where they had a problem starting vsftpd on a Xen paravirtualized guest, with this in dmesg: BUG: Bad page map in process vsftpd pte:8000000493b88165 pmd:e9cc01067 page:ffffea00124ee200 count:0 mapcount:-1 mapping: (null) index:0x0 page flags: 0x2ffc0000000014(referenced|dirty) addr:00007f97eea74000 vm_flags:00100071 anon_vma:ffff880e98f80380 mapping: (null) index:7f97eea74 CPU: 4 PID: 587 Comm: vsftpd Not tainted 3.12.7-1-ec2 #1 Call Trace: dump_stack+0x45/0x56 print_bad_pte+0x22e/0x250 unmap_single_vma+0x583/0x890 unmap_vmas+0x65/0x90 exit_mmap+0xc5/0x170 mmput+0x65/0x100 do_exit+0x393/0x9e0 do_group_exit+0xcc/0x140 SyS_exit_group+0x14/0x20 system_call_fastpath+0x1a/0x1f Disabling lock debugging due to kernel taint BUG: Bad rss-counter state mm:ffff880e9ca60580 idx:0 val:-1 BUG: Bad rss-counter state mm:ffff880e9ca60580 idx:1 val:1 The issue could not be reproduced under an HVM instance with the same kernel, so it appears to be exclusive to paravirtual Xen guests. He bisected the problem to commit 1667918b6483 ("mm: numa: clear numa hinting information on mprotect") that was also included in 3.12-stable. The problem was related to how xen translates ptes because it was not accounting for the _PAGE_NUMA bit. This patch splits pte_present to add a pteval_present helper for use by xen so both bare metal and xen use the same code when checking if a PTE is present. [mgorman@suse.de: wrote changelog, proposed minor modifications] [akpm@linux-foundation.org: fix typo in comment] Reported-by: Steven Noonan <steven@uplinklabs.net> Tested-by: Steven Noonan <steven@uplinklabs.net> Signed-off-by: Elena Ufimtseva <ufimtseva@gmail.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: David Vrabel <david.vrabel@citrix.com> Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-20x86: mm: change tlb_flushall_shift for IvyBridgeMel Gorman
commit f98b7a772ab51b52ca4d2a14362fc0e0c8a2e0f3 upstream. There was a large performance regression that was bisected to commit 611ae8e3 ("x86/tlb: enable tlb flush range support for x86"). This patch simply changes the default balance point between a local and global flush for IvyBridge. In the interest of allowing the tests to be reproduced, this patch was tested using mmtests 0.15 with the following configurations configs/config-global-dhp__tlbflush-performance configs/config-global-dhp__scheduler-performance configs/config-global-dhp__network-performance Results are from two machines Ivybridge 4 threads: Intel(R) Core(TM) i3-3240 CPU @ 3.40GHz Ivybridge 8 threads: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz Page fault microbenchmark showed nothing interesting. Ebizzy was configured to run multiple iterations and threads. Thread counts ranged from 1 to NR_CPUS*2. For each thread count, it ran 100 iterations and each iteration lasted 10 seconds. Ivybridge 4 threads 3.13.0-rc7 3.13.0-rc7 vanilla altshift-v3 Mean 1 6395.44 ( 0.00%) 6789.09 ( 6.16%) Mean 2 7012.85 ( 0.00%) 8052.16 ( 14.82%) Mean 3 6403.04 ( 0.00%) 6973.74 ( 8.91%) Mean 4 6135.32 ( 0.00%) 6582.33 ( 7.29%) Mean 5 6095.69 ( 0.00%) 6526.68 ( 7.07%) Mean 6 6114.33 ( 0.00%) 6416.64 ( 4.94%) Mean 7 6085.10 ( 0.00%) 6448.51 ( 5.97%) Mean 8 6120.62 ( 0.00%) 6462.97 ( 5.59%) Ivybridge 8 threads 3.13.0-rc7 3.13.0-rc7 vanilla altshift-v3 Mean 1 7336.65 ( 0.00%) 7787.02 ( 6.14%) Mean 2 8218.41 ( 0.00%) 9484.13 ( 15.40%) Mean 3 7973.62 ( 0.00%) 8922.01 ( 11.89%) Mean 4 7798.33 ( 0.00%) 8567.03 ( 9.86%) Mean 5 7158.72 ( 0.00%) 8214.23 ( 14.74%) Mean 6 6852.27 ( 0.00%) 7952.45 ( 16.06%) Mean 7 6774.65 ( 0.00%) 7536.35 ( 11.24%) Mean 8 6510.50 ( 0.00%) 6894.05 ( 5.89%) Mean 12 6182.90 ( 0.00%) 6661.29 ( 7.74%) Mean 16 6100.09 ( 0.00%) 6608.69 ( 8.34%) Ebizzy hits the worst case scenario for TLB range flushing every time and it shows for these Ivybridge CPUs at least that the default choice is a poor on. The patch addresses the problem. Next was a tlbflush microbenchmark written by Alex Shi at http://marc.info/?l=linux-kernel&m=133727348217113 . It measures access costs while the TLB is being flushed. The expectation is that if there are always full TLB flushes that the benchmark would suffer and it benefits from range flushing There are 320 iterations of the test per thread count. The number of entries is randomly selected with a min of 1 and max of 512. To ensure a reasonably even spread of entries, the full range is broken up into 8 sections and a random number selected within that section. iteration 1, random number between 0-64 iteration 2, random number between 64-128 etc This is still a very weak methodology. When you do not know what are typical ranges, random is a reasonable choice but it can be easily argued that the opimisation was for smaller ranges and an even spread is not representative of any workload that matters. To improve this, we'd need to know the probability distribution of TLB flush range sizes for a set of workloads that are considered "common", build a synthetic trace and feed that into this benchmark. Even that is not perfect because it would not account for the time between flushes but there are limits of what can be reasonably done and still be doing something useful. If a representative synthetic trace is provided then this benchmark could be revisited and the shift values retuned. Ivybridge 4 threads 3.13.0-rc7 3.13.0-rc7 vanilla altshift-v3 Mean 1 10.50 ( 0.00%) 10.50 ( 0.03%) Mean 2 17.59 ( 0.00%) 17.18 ( 2.34%) Mean 3 22.98 ( 0.00%) 21.74 ( 5.41%) Mean 5 47.13 ( 0.00%) 46.23 ( 1.92%) Mean 8 43.30 ( 0.00%) 42.56 ( 1.72%) Ivybridge 8 threads 3.13.0-rc7 3.13.0-rc7 vanilla altshift-v3 Mean 1 9.45 ( 0.00%) 9.36 ( 0.93%) Mean 2 9.37 ( 0.00%) 9.70 ( -3.54%) Mean 3 9.36 ( 0.00%) 9.29 ( 0.70%) Mean 5 14.49 ( 0.00%) 15.04 ( -3.75%) Mean 8 41.08 ( 0.00%) 38.73 ( 5.71%) Mean 13 32.04 ( 0.00%) 31.24 ( 2.49%) Mean 16 40.05 ( 0.00%) 39.04 ( 2.51%) For both CPUs, average access time is reduced which is good as this is the benchmark that was used to tune the shift values in the first place albeit it is now known *how* the benchmark was used. The scheduler benchmarks were somewhat inconclusive. They showed gains and losses and makes me reconsider how stable those benchmarks really are or if something else might be interfering with the test results recently. Network benchmarks were inconclusive. Almost all results were flat except for netperf-udp tests on the 4 thread machine. These results were unstable and showed large variations between reboots. It is unknown if this is a recent problems but I've noticed before that netperf-udp results tend to vary. Based on these results, changing the default for Ivybridge seems like a logical choice. Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Davidlohr Bueso <davidlohr@hp.com> Reviewed-by: Alex Shi <alex.shi@linaro.org> Reviewed-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/n/tip-cqnadffh1tiqrshthRj3Esge@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-13mm: don't lose the SOFT_DIRTY flag on mprotectAndrey Vagin
commit 24f91eba18bbfdb27e71a1aae5b3a61b67fcd091 upstream. The SOFT_DIRTY bit shows that the content of memory was changed after a defined point in the past. mprotect() doesn't change the content of memory, so it must not change the SOFT_DIRTY bit. This bug causes a malfunction: on the first iteration all pages are dumped. On other iterations only pages with the SOFT_DIRTY bit are dumped. So if the SOFT_DIRTY bit is cleared from a page by mistake, the page is not dumped and its content will be restored incorrectly. This patch does nothing with _PAGE_SWP_SOFT_DIRTY, becase pte_modify() is called only for present pages. Fixes commit 0f8975ec4db2 ("mm: soft-dirty bits for user memory changes tracking"). Signed-off-by: Andrey Vagin <avagin@openvz.org> Acked-by: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Borislav Petkov <bp@suse.de> Cc: Wen Congyang <wency@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-13xen/pvhvm: If xen_platform_pci=0 is set don't blow up (v4).Konrad Rzeszutek Wilk
commit 51c71a3bbaca868043cc45b3ad3786dd48a90235 upstream. The user has the option of disabling the platform driver: 00:02.0 Unassigned class [ff80]: XenSource, Inc. Xen Platform Device (rev 01) which is used to unplug the emulated drivers (IDE, Realtek 8169, etc) and allow the PV drivers to take over. If the user wishes to disable that they can set: xen_platform_pci=0 (in the guest config file) or xen_emul_unplug=never (on the Linux command line) except it does not work properly. The PV drivers still try to load and since the Xen platform driver is not run - and it has not initialized the grant tables, most of the PV drivers stumble upon: input: Xen Virtual Keyboard as /devices/virtual/input/input5 input: Xen Virtual Pointer as /devices/virtual/input/input6M ------------[ cut here ]------------ kernel BUG at /home/konrad/ssd/konrad/linux/drivers/xen/grant-table.c:1206! invalid opcode: 0000 [#1] SMP Modules linked in: xen_kbdfront(+) xenfs xen_privcmd CPU: 6 PID: 1389 Comm: modprobe Not tainted 3.13.0-rc1upstream-00021-ga6c892b-dirty #1 Hardware name: Xen HVM domU, BIOS 4.4-unstable 11/26/2013 RIP: 0010:[<ffffffff813ddc40>] [<ffffffff813ddc40>] get_free_entries+0x2e0/0x300 Call Trace: [<ffffffff8150d9a3>] ? evdev_connect+0x1e3/0x240 [<ffffffff813ddd0e>] gnttab_grant_foreign_access+0x2e/0x70 [<ffffffffa0010081>] xenkbd_connect_backend+0x41/0x290 [xen_kbdfront] [<ffffffffa0010a12>] xenkbd_probe+0x2f2/0x324 [xen_kbdfront] [<ffffffff813e5757>] xenbus_dev_probe+0x77/0x130 [<ffffffff813e7217>] xenbus_frontend_dev_probe+0x47/0x50 [<ffffffff8145e9a9>] driver_probe_device+0x89/0x230 [<ffffffff8145ebeb>] __driver_attach+0x9b/0xa0 [<ffffffff8145eb50>] ? driver_probe_device+0x230/0x230 [<ffffffff8145eb50>] ? driver_probe_device+0x230/0x230 [<ffffffff8145cf1c>] bus_for_each_dev+0x8c/0xb0 [<ffffffff8145e7d9>] driver_attach+0x19/0x20 [<ffffffff8145e260>] bus_add_driver+0x1a0/0x220 [<ffffffff8145f1ff>] driver_register+0x5f/0xf0 [<ffffffff813e55c5>] xenbus_register_driver_common+0x15/0x20 [<ffffffff813e76b3>] xenbus_register_frontend+0x23/0x40 [<ffffffffa0015000>] ? 0xffffffffa0014fff [<ffffffffa001502b>] xenkbd_init+0x2b/0x1000 [xen_kbdfront] [<ffffffff81002049>] do_one_initcall+0x49/0x170 .. snip.. which is hardly nice. This patch fixes this by having each PV driver check for: - if running in PV, then it is fine to execute (as that is their native environment). - if running in HVM, check if user wanted 'xen_emul_unplug=never', in which case bail out and don't load any PV drivers. - if running in HVM, and if PCI device 5853:0001 (xen_platform_pci) does not exist, then bail out and not load PV drivers. - (v2) if running in HVM, and if the user wanted 'xen_emul_unplug=ide-disks', then bail out for all PV devices _except_ the block one. Ditto for the network one ('nics'). - (v2) if running in HVM, and if the user wanted 'xen_emul_unplug=unnecessary' then load block PV driver, and also setup the legacy IDE paths. In (v3) make it actually load PV drivers. Reported-by: Sander Eikelenboom <linux@eikelenboom.it Reported-by: Anthony PERARD <anthony.perard@citrix.com> Reported-and-Tested-by: Fabio Fantoni <fabio.fantoni@m2r.biz> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> [v2: Add extra logic to handle the myrid ways 'xen_emul_unplug' can be used per Ian and Stefano suggestion] [v3: Make the unnecessary case work properly] [v4: s/disks/ide-disks/ spotted by Fabio] Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> [for PCI parts] Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-06x86, cpu, amd: Add workaround for family 16h, erratum 793Borislav Petkov
commit 3b56496865f9f7d9bcb2f93b44c63f274f08e3b6 upstream. This adds the workaround for erratum 793 as a precaution in case not every BIOS implements it. This addresses CVE-2013-6885. Erratum text: [Revision Guide for AMD Family 16h Models 00h-0Fh Processors, document 51810 Rev. 3.04 November 2013] 793 Specific Combination of Writes to Write Combined Memory Types and Locked Instructions May Cause Core Hang Description Under a highly specific and detailed set of internal timing conditions, a locked instruction may trigger a timing sequence whereby the write to a write combined memory type is not flushed, causing the locked instruction to stall indefinitely. Potential Effect on System Processor core hang. Suggested Workaround BIOS should set MSR C001_1020[15] = 1b. Fix Planned No fix planned [ hpa: updated description, fixed typo in MSR name ] Signed-off-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/20140114230711.GS29865@pd.tnic Tested-by: Aravind Gopalakrishnan <aravind.gopalakrishnan@amd.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-06bpf: do not use reciprocal divideEric Dumazet
[ Upstream commit aee636c4809fa54848ff07a899b326eb1f9987a2 ] At first Jakub Zawadzki noticed that some divisions by reciprocal_divide were not correct. (off by one in some cases) http://www.wireshark.org/~darkjames/reciprocal-buggy.c He could also show this with BPF: http://www.wireshark.org/~darkjames/set-and-dump-filter-k-bug.c The reciprocal divide in linux kernel is not generic enough, lets remove its use in BPF, as it is not worth the pain with current cpus. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Jakub Zawadzki <darkjames-ws@darkjames.pl> Cc: Mircea Gherzan <mgherzan@gmail.com> Cc: Daniel Borkmann <dxchgb@gmail.com> Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: Matt Evans <matt@ozlabs.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: David S. Miller <davem@davemloft.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-06x86, kvm: correctly access the KVM_CPUID_FEATURES leaf at 0x40000101Paolo Bonzini
commit 77f01bdfa5e55dc19d3eb747181d2730a9bb3ca8 upstream. When Hyper-V hypervisor leaves are present, KVM must relocate its own leaves at 0x40000100, because Windows does not look for Hyper-V leaves at indices other than 0x40000000. In this case, the KVM features are at 0x40000101, but the old code would always look at 0x40000001. Fix by using kvm_cpuid_base(). This also requires making the function non-inline, since kvm_cpuid_base() is static. Fixes: 1085ba7f552d84aa8ac0ae903fa8d0cc2ff9f79d Cc: mtosatti@redhat.com Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-02-06x86, kvm: cache the base of the KVM cpuid leavesPaolo Bonzini
commit 1c300a40772dae829b91dad634999a6a522c0829 upstream. It is unnecessary to go through hypervisor_cpuid_base every time a leaf is found (which will be every time a feature is requested after the next patch). Fixes: 1085ba7f552d84aa8ac0ae903fa8d0cc2ff9f79d Cc: mtosatti@redhat.com Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>