Age | Commit message (Collapse) | Author |
|
When we fail to start a raid10 for some reason, we call
md_unregister_thread to kill the thread that was created.
Unfortunately md_thread() will then make one call into the handler
(raid10d) even though md_wakeup_thread has not been called. This is
not safe and as md_unregister_thread is called after mddev->private
has been set to NULL, it will definitely cause a NULL dereference.
So fix this at both ends:
- md_thread should only call the handler if THREAD_WAKEUP has been
set.
- raid10 should call md_unregister_thread before setting things
to NULL just like all the other raid modules do.
This is applicable to 2.6.35 and later.
Cc: stable@kernel.org
Reported-by: "Citizen" <citizen_lee@thecus.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
With v0.90 metadata, a hot-spare does not become a full member of the
array until recovery is complete. So if we re-add such a device to
the array, we know that all of it is as up-to-date as the event count
would suggest, and so it a bitmap-based recovery is possible.
However with v1.x metadata, the hot-spare immediately becomes a full
member of the array, but it record how much of the device has been
recovered. If the array is stopped and re-assembled recovery starts
from this point.
When such a device is hot-added to an array we currently lose the 'how
much is recovered' information and incorrectly included it as a full
in-sync member (after bitmap-based fixup).
This is wrong and unsafe and could corrupt data.
So be more careful about setting saved_raid_disk - which is what
guides the re-adding of devices back into an array.
The new code matches the code in slot_store which does a similar
thing, which is encouraging.
This is suitable for any -stable kernel.
Reported-by: "Dailey, Nate" <Nate.Dailey@stratus.com>
Cc: stable@kernel.org
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
As recorded in
https://bugzilla.kernel.org/show_bug.cgi?id=24012
it is possible for a flush request through md to hang. This is due to
an interaction between the recursion avoidance in
generic_make_request, the insistence in md of only having one flush
active at a time, and the possibility of dm (or md) submitting two
flush requests to a device from the one generic_make_request.
If a generic_make_request call into dm causes two flush requests to be
queued (as happens if the dm table has two targets - they get one
each), these two will be queued inside generic_make_request.
Assume they are for the same md device.
The first is processed and causes 1 or more flush requests to be sent
to lower devices. These get queued within generic_make_request too.
Then the second flush to the md device gets handled and it blocks
waiting for the first flush to complete. But it won't complete until
the two lower-device requests complete, and they haven't even been
submitted yet as they are on the generic_make_request queue.
The deadlock can be broken by using a separate thread to submit the
requests to lower devices. md has such a thread readily available:
md_wq.
So use it to submit these requests.
Reported-by: Giacomo Catenazzi <cate@cateee.net>
Tested-by: Giacomo Catenazzi <cate@cateee.net>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
submit_flushes is called from exactly one place.
Move the code that is before and after that call into
submit_flushes.
This has not functional change, but will make the next patch
smaller and easier to follow.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
None of the functions called between setting flush_pending to 1, and
atomic_dec_and_test can change flush_pending, or will anything
running in any other thread (as ->flush_bio is not NULL). So the
atomic_dec_and_test will always succeed.
So remove the atomic_sec and the atomic_dec_and_test.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Before 2.6.37, the md layer had a mechanism for catching I/Os with the
barrier flag set, and translating the barrier into barriers for all
the underlying devices. With 2.6.37, I/O barriers have become plain
old flushes, and the md code was updated to reflect this. However,
one piece was left out -- the md layer does not tell the block layer
that it supports flushes or FUA access at all, which results in md
silently dropping flush requests.
Since the support already seems there, just add this one piece of
bookkeeping.
Signed-off-by: Darrick J. Wong <djwong@us.ibm.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Commit 4044ba58dd15cb01797c4fd034f39ef4a75f7cc3 supposedly fixed a
problem where if a raid1 with just one good device gets a read-error
during recovery, the recovery would abort and immediately restart in
an infinite loop.
However it depended on raid1_remove_disk removing the spare device
from the array. But that does not happen in this case. So add a test
so that in the 'recovery_disabled' case, the device will be removed.
This suitable for any kernel since 2.6.29 which is when
recovery_disabled was introduced.
Cc: stable@kernel.org
Reported-by: Sebastian Färber <faerber@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
When trying to grow an array by enlarging component devices,
rdev_size_store() expects the return value of rdev_size_change() to be
in sectors, but the actual value is returned in KBs.
This functionality was broken by commit
dd8ac336c13fd8afdb082ebacb1cddd5cf727889
so this patch is suitable for any kernel since 2.6.30.
Cc: stable@kernel.org
Signed-off-by: Justin Maggard <jmaggard10@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Convert direct reads of an inode's i_size to using i_size_read().
i_size_{read,write} use a seqcount to protect reads from accessing
incomple writes. Concurrent i_size_write()s require mutual exclussion
to protect the seqcount that is used by i_size_{read,write}. But
i_size_read() callers do not need to use additional locking.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: NeilBrown <neilb@suse.de>
Acked-by: Lars Ellenberg <lars.ellenberg@linbit.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
The code for searching through the device list to read-balance in
raid1 is rather clumsy and hard to follow. Try to simplify it a bit.
No important functionality change here.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
This structure field (flushing_bio_list) is never used, so remove it.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
When writing to an 'external' bitmap we don't currently unplug the
device before waiting, so we can get a 3msec delay each time;
So use REQ_UNPLUG to force and unplug.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
bio_clone and bio_alloc allocate from a common bio pool.
If an md device is stacked with other devices that use this pool, or under
something like swap which uses the pool, then the multiple calls on
the pool can cause deadlocks.
So allocate a local bio pool for each md array and use that rather
than the common pool.
This pool is used both for regular IO and metadata updates.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Currently sync_page_io takes a 'bdev'.
Every caller passes 'rdev->bdev'.
We will soon want another field out of the rdev in sync_page_io,
So just pass the rdev instead of the bdev out of it.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Though this mem alloc is GFP_NOIO an so will not deadlock, it seems
better to do the allocation before 'raise_barrier' which stops any IO
requests while the resync proceeds.
raid10 always uses this order, so it is at least consistent to do the
same in raid1.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
bio_alloc can never fail (as it uses a mempool) but an block
indefinitely, especially if the caller is holding a reference to a
previously allocated bio.
So these to places which both handle failure and hold multiple bios
should not use bio_alloc, they should use bio_kmalloc.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
It is not safe to allocate from a mempool while holding an item
previously allocated from that mempool as that can deadlock when the
mempool is close to exhaustion.
So don't use a bio list to collect the bios to write to multiple
devices in raid1 and raid10.
Instead queue each bio as it becomes available so an unplug will
activate all previously allocated bios and so a new bio has a chance
of being allocated.
This means we must set the 'remaining' count to '1' before submitting
any requests, then when all are submitted, decrement 'remaining' and
possible handle the write completion at that point.
Reported-by: Torsten Kaiser <just.for.lkml@googlemail.com>
Tested-by: Torsten Kaiser <just.for.lkml@googlemail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Workqueue usage in md has two problems.
* Flush can be used during or depended upon by memory reclaim, but md
uses the system workqueue for flush_work which may lead to deadlock.
* md depends on flush_scheduled_work() to achieve exclusion against
completion of removal of previous instances. flush_scheduled_work()
may incur unexpected amount of delay and is scheduled to be removed.
This patch adds two workqueues to md - md_wq and md_misc_wq. The
former is guaranteed to make forward progress under memory pressure
and serves flush_work. The latter serves as the flush domain for
other works.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
bitmap_get_counter returns the number of sectors covered
by the counter in a pass-by-reference variable.
In some cases this can be very large, so make it a sector_t
for safety.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
lock_kernel calls were recently pushed down into open/release
functions.
md doesn't need that protection.
Then the BKL calls were change to md_mutex. We don't need those
either.
So remove it all.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
A RAID1 which has no persistent metadata, whether internal or
external, will hang on the first write.
This is caused by commit 070dc6dd7103b6b3f7e4d46e754354a5c15f366e
In that case, MD_CHANGE_PENDING never gets cleared.
So during md_update_sb, is neither persistent or external,
clear MD_CHANGE_PENDING.
This is suitable for 2.6.36-stable.
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: stable@kernel.org
|
|
Silly though it is, completions and wait_queue_heads use foo_ONSTACK
(COMPLETION_INITIALIZER_ONSTACK, DECLARE_COMPLETION_ONSTACK,
__WAIT_QUEUE_HEAD_INIT_ONSTACK and DECLARE_WAIT_QUEUE_HEAD_ONSTACK) so I
guess workqueues should do the same thing.
s/INIT_WORK_ON_STACK/INIT_WORK_ONSTACK/
s/INIT_DELAYED_WORK_ON_STACK/INIT_DELAYED_WORK_ONSTACK/
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
* 'for-2.6.37/barrier' of git://git.kernel.dk/linux-2.6-block: (46 commits)
xen-blkfront: disable barrier/flush write support
Added blk-lib.c and blk-barrier.c was renamed to blk-flush.c
block: remove BLKDEV_IFL_WAIT
aic7xxx_old: removed unused 'req' variable
block: remove the BH_Eopnotsupp flag
block: remove the BLKDEV_IFL_BARRIER flag
block: remove the WRITE_BARRIER flag
swap: do not send discards as barriers
fat: do not send discards as barriers
ext4: do not send discards as barriers
jbd2: replace barriers with explicit flush / FUA usage
jbd2: Modify ASYNC_COMMIT code to not rely on queue draining on barrier
jbd: replace barriers with explicit flush / FUA usage
nilfs2: replace barriers with explicit flush / FUA usage
reiserfs: replace barriers with explicit flush / FUA usage
gfs2: replace barriers with explicit flush / FUA usage
btrfs: replace barriers with explicit flush / FUA usage
xfs: replace barriers with explicit flush / FUA usage
block: pass gfp_mask and flags to sb_issue_discard
dm: convey that all flushes are processed as empty
...
|
|
* 'for-2.6.37/core' of git://git.kernel.dk/linux-2.6-block: (39 commits)
cfq-iosched: Fix a gcc 4.5 warning and put some comments
block: Turn bvec_k{un,}map_irq() into static inline functions
block: fix accounting bug on cross partition merges
block: Make the integrity mapped property a bio flag
block: Fix double free in blk_integrity_unregister
block: Ensure physical block size is unsigned int
blkio-throttle: Fix possible multiplication overflow in iops calculations
blkio-throttle: limit max iops value to UINT_MAX
blkio-throttle: There is no need to convert jiffies to milli seconds
blkio-throttle: Fix link failure failure on i386
blkio: Recalculate the throttled bio dispatch time upon throttle limit change
blkio: Add root group to td->tg_list
blkio: deletion of a cgroup was causes oops
blkio: Do not export throttle files if CONFIG_BLK_DEV_THROTTLING=n
block: set the bounce_pfn to the actual DMA limit rather than to max memory
block: revert bad fix for memory hotplug causing bounces
Fix compile error in blk-exec.c for !CONFIG_DETECT_HUNG_TASK
block: set the bounce_pfn to the actual DMA limit rather than to max memory
block: Prevent hang_check firing during long I/O
cfq: improve fsync performance for small files
...
Fix up trivial conflicts due to __rcu sparse annotation in include/linux/genhd.h
|
|
* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
vfs: make no_llseek the default
vfs: don't use BKL in default_llseek
llseek: automatically add .llseek fop
libfs: use generic_file_llseek for simple_attr
mac80211: disallow seeks in minstrel debug code
lirc: make chardev nonseekable
viotape: use noop_llseek
raw: use explicit llseek file operations
ibmasmfs: use generic_file_llseek
spufs: use llseek in all file operations
arm/omap: use generic_file_llseek in iommu_debug
lkdtm: use generic_file_llseek in debugfs
net/wireless: use generic_file_llseek in debugfs
drm: use noop_llseek
|
|
* 'trivial' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
block: autoconvert trivial BKL users to private mutex
drivers: autoconvert trivial BKL users to private mutex
ipmi: autoconvert trivial BKL users to private mutex
mac: autoconvert trivial BKL users to private mutex
mtd: autoconvert trivial BKL users to private mutex
scsi: autoconvert trivial BKL users to private mutex
Fix up trivial conflicts (due to addition of private mutex right next to
deletion of a version string) in drivers/char/pcmcia/cm40[04]0_cs.c
|
|
Conflicts:
block/blk-core.c
drivers/block/loop.c
mm/swapfile.c
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
|
|
Function read_sb_page may return ERR_PTR(...). Check for it.
Signed-off-by: Vasiliy Kulikov <segooon@gmail.com>
Cc: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
When performing a resync we pre-allocate some bios and repeatedly use
them. This requires us to re-initialise them each time.
One field (bi_comp_cpu) and some flags weren't being initiaised
reliably.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
bitmap_start_sync returns - via a pass-by-reference variable - the
number of sectors before we need to check with the bitmap again.
Since commit ef4256733506f245 this number can be substantially larger,
2^27 is a common value.
Unfortunately it is an 'int' and so when raid1.c:sync_request shifts
it 9 places to the left it becomes 0. This results in a zero-length
read which the scsi layer justifiably complains about.
This patch just removes the shift so the common case becomes safe with
a trivially-correct patch.
In the next merge window we will convert this 'int' to a 'sector_t'
Reported-by: "George Spelvin" <linux@horizon.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
The block device drivers have all gained new lock_kernel
calls from a recent pushdown, and some of the drivers
were already using the BKL before.
This turns the BKL into a set of per-driver mutexes.
Still need to check whether this is safe to do.
file=$1
name=$2
if grep -q lock_kernel ${file} ; then
if grep -q 'include.*linux.mutex.h' ${file} ; then
sed -i '/include.*<linux\/smp_lock.h>/d' ${file}
else
sed -i 's/include.*<linux\/smp_lock.h>.*$/include <linux\/mutex.h>/g' ${file}
fi
sed -i ${file} \
-e "/^#include.*linux.mutex.h/,$ {
1,/^\(static\|int\|long\)/ {
/^\(static\|int\|long\)/istatic DEFINE_MUTEX(${name}_mutex);
} }" \
-e "s/\(un\)*lock_kernel\>[ ]*()/mutex_\1lock(\&${name}_mutex)/g" \
-e '/[ ]*cycle_kernel_lock();/d'
else
sed -i -e '/include.*\<smp_lock.h\>/d' ${file} \
-e '/cycle_kernel_lock()/d'
fi
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
If an array with 1.x metadata is assembled with the last disk missing,
md doesn't properly record the fact that the disk was missing.
This is unlikely to cause a real problem as the event count will be
different to the count on the missing disk so it won't be included in
the array. However it could still cause confusion.
So make sure we clear all the relevant slots, not just the early ones.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Now that we depend on md_update_sb to clear variable bits in
mddev->flags (rather than trying not to set them) it is important to
always call md_update_sb when appropriate.
md_check_recovery has this job but explicitly avoids it for ->external
metadata arrays. This is not longer appropraite, or needed.
However we do want to avoid taking the mddev lock if only
MD_CHANGE_PENDING is set as that is not cleared by md_update_sb for
external-metadata arrays.
Reported-by: "Kwolek, Adam" <adam.kwolek@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
We have several users of min_not_zero, each of them using their own
definition. Move the define to kernel.h.
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <axboe@carl.home.kernel.dk>
|
|
Rename __clone_and_map_flush to __clone_and_map_empty_flush for added
clarity.
Simplify logic associated with REQ_FLUSH conditionals.
Introduce a BUG_ON() and add a few more helpful comments to the code
so that it is clear that all flushes are empty.
Cleanup __split_and_process_bio() so that an empty flush isn't processed
by a 'sector_count' focused while loop.
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
Now queue_io() is called from dec_pending(), which may be called with
interrupts disabled, so queue_io() must not enable interrupts
unconditionally and must save/restore the current interrupts status.
Signed-off-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
Unlike REQ_HARDBARRIER, REQ_FLUSH/FUA doesn't mandate any ordering
against other bio's. This patch relaxes ordering around flushes.
* A flush bio is no longer deferred to workqueue directly. It's
processed like other bio's but __split_and_process_bio() uses
md->flush_bio as the clone source. md->flush_bio is initialized to
empty flush during md initialization and shared for all flushes.
* As a flush bio now travels through the same execution path as other
bio's, there's no need for dedicated error handling path either. It
can use the same error handling path in dec_pending(). Dedicated
error handling removed along with md->flush_error.
* When dec_pending() detects that a flush has completed, it checks
whether the original bio has data. If so, the bio is queued to the
deferred list w/ REQ_FLUSH cleared; otherwise, it's completed.
* As flush sequencing is handled in the usual issue/completion path,
dm_wq_work() no longer needs to handle flushes differently. Now its
only responsibility is re-issuing deferred bio's the same way as
_dm_request() would. REQ_FLUSH handling logic including
process_flush() is dropped.
* There's no reason for queue_io() and dm_wq_work() write lock
dm->io_lock. queue_io() now only uses md->deferred_lock and
dm_wq_work() read locks dm->io_lock.
* bio's no longer need to be queued on the deferred list while a flush
is in progress making DMF_QUEUE_IO_TO_THREAD unncessary. Drop it.
This avoids stalling the device during flushes and simplifies the
implementation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
This patch converts request-based dm to support the new REQ_FLUSH/FUA.
The original request-based flush implementation depended on
request_queue blocking other requests while a barrier sequence is in
progress, which is no longer true for the new REQ_FLUSH/FUA.
In general, request-based dm doesn't have infrastructure for cloning
one source request to multiple targets, but the original flush
implementation had a special mostly independent path which can issue
flushes to multiple targets and sequence them. However, the
capability isn't currently in use and adds a lot of complexity.
Moreoever, it's unlikely to be useful in its current form as it
doesn't make sense to be able to send out flushes to multiple targets
when write requests can't be.
This patch rips out special flush code path and deals handles
REQ_FLUSH/FUA requests the same way as other requests. The only
special treatment is that REQ_FLUSH requests use the block address 0
when finding target, which is enough for now.
* added BUG_ON(!dm_target_is_valid(ti)) in dm_request_fn() as
suggested by Mike Snitzer
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Mike Snitzer <snitzer@redhat.com>
Tested-by: Kiyoshi Ueda <k-ueda@ct.jp.nec.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
This patch converts bio-based dm to support REQ_FLUSH/FUA instead of
now deprecated REQ_HARDBARRIER.
* -EOPNOTSUPP handling logic dropped.
* Preflush is handled as before but postflush is dropped and replaced
with passing down REQ_FUA to member request_queues. This replaces
one array wide cache flush w/ member specific FUA writes.
* __split_and_process_bio() now calls __clone_and_map_flush() directly
for flushes and guarantees all FLUSH bio's going to targets are zero
` length.
* It's now guaranteed that all FLUSH bio's which are passed onto dm
targets are zero length. bio_empty_barrier() tests are replaced
with REQ_FLUSH tests.
* Empty WRITE_BARRIERs are replaced with WRITE_FLUSHes.
* Dropped unlikely() around REQ_FLUSH tests. Flushes are not unlikely
enough to be marked with unlikely().
* Block layer now filters out REQ_FLUSH/FUA bio's if the request_queue
doesn't support cache flushing. Advertise REQ_FLUSH | REQ_FUA
capability.
* Request based dm isn't converted yet. dm_init_request_based_queue()
resets flush support to 0 for now. To avoid disturbing request
based dm code, dm->flush_error is added for bio based dm while
requested based dm continues to use dm->barrier_error.
Lightly tested linear, stripe, raid1, snap and crypt targets. Please
proceed with caution as I'm not familiar with the code base.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: dm-devel@redhat.com
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
This patch converts md to support REQ_FLUSH/FUA instead of now
deprecated REQ_HARDBARRIER. In the core part (md.c), the following
changes are notable.
* Unlike REQ_HARDBARRIER, REQ_FLUSH/FUA don't interfere with
processing of other requests and thus there is no reason to mark the
queue congested while FLUSH/FUA is in progress.
* REQ_FLUSH/FUA failures are final and its users don't need retry
logic. Retry logic is removed.
* Preflush needs to be issued to all member devices but FUA writes can
be handled the same way as other writes - their processing can be
deferred to request_queue of member devices. md_barrier_request()
is renamed to md_flush_request() and simplified accordingly.
For linear, raid0 and multipath, the core changes are enough. raid1,
5 and 10 need the following conversions.
* raid1: Handling of FLUSH/FUA bio's can simply be deferred to
request_queues of member devices. Barrier related logic removed.
* raid5: Queue draining logic dropped. FUA bit is propagated through
biodrain and stripe resconstruction such that all the updated parts
of the stripe are written out with FUA writes if any of the dirtying
writes was FUA. preread_active_stripes handling in make_request()
is updated as suggested by Neil Brown.
* raid10: FUA bit needs to be propagated to write clones.
linear, raid0, 1, 5 and 10 tested.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Neil Brown <neilb@suse.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
Barrier is deemed too heavy and will soon be replaced by FLUSH/FUA
requests. Deprecate barrier. All REQ_HARDBARRIERs are failed with
-EOPNOTSUPP and blk_queue_ordered() is replaced with simpler
blk_queue_flush().
blk_queue_flush() takes combinations of REQ_FLUSH and FUA. If a
device has write cache and can flush it, it should set REQ_FLUSH. If
the device can handle FUA writes, it should also set REQ_FUA.
All blk_queue_ordered() users are converted.
* ORDERED_DRAIN is mapped to 0 which is the default value.
* ORDERED_DRAIN_FLUSH is mapped to REQ_FLUSH.
* ORDERED_DRAIN_FLUSH_FUA is mapped to REQ_FLUSH | REQ_FUA.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Boaz Harrosh <bharrosh@panasas.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Alasdair G Kergon <agk@redhat.com>
Cc: Pierre Ossman <drzeus@drzeus.cx>
Cc: Stefan Weinhuber <wein@de.ibm.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
MD_CHANGE_CLEAN is used for two different purposes and this leads to
confusion.
One of the purposes is largely mirrored by MD_CHANGE_PENDING which is
not used for anything else, so have MD_CHANGE_PENDING take over that
purpose fully.
The two purposes are:
1/ tell md_update_sb that an update is needed and that it is just a
clean/dirty transition.
2/ tell user-space that an transition from clean to dirty is pending
(something wants to write), and tell te kernel (by clearin the
flag) that the transition is OK.
The first purpose remains wit MD_CHANGE_CLEAN, the second is moved
fully to MD_CHANGE_PENDING.
This means that various places which conditionally set or cleared
MD_CHANGE_CLEAN no longer need to be conditional.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
If this bit is cleared in md_update_sb() the kernel will allow writes to the
array if userspace triggers md_allow_write(), e.g. through stripe_cache_size,
when mdmon is not active. When mdmon is active the array transitions to
active-idle bypassing write-pending, setting up a race for mdmon to set the
array clean before a write arrives.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
Another missing bit of the raid6 -> /lib move.
Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
commit 7b6d91daee5cac6402186ff224c3af39d79f4a0e changed the behaviour
of a few variables in raid1 and raid10 from flags to bit-sets, but
left them as type 'bool' so they did not work.
Change them (back) to unsigned long.
(historical note: see 1ef04fefe2241087d9db7e9615c3f11b516e36cf)
Signed-off-by: NeilBrown <neilb@suse.de>
Reported-by: Jiri Slaby <jslaby@suse.cz> and many others
|
|
md_check_recovery expects ->spare_active to return 'true' if any
spares were activated, but none of them do, so the consequent change
in 'degraded' is not notified through sysfs.
So count the number of spares activated, subtract it from 'degraded'
just once, and return it.
Reported-by: Adrian Drzewiecki <adriand@vmware.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
When RAID1 is done syncing disks, it'll update the state
of synced rdevs to In_sync. But it neglected to notify
sysfs that the attribute changed. So any programs that
are waiting for an rdev's state to change will not be
woken.
(raid5/raid10 added by neilb)
Signed-off-by: Adrian Drzewiecki <adriand@vmware.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
The update of ->recovery_offset in sync_sbs is appropriate even then external
metadata is in use. However sync_sbs is only called when native
metadata is used.
So move that update in to the top of md_update_sb (which is the only
caller of sync_sbs) before the test on ->external.
This moves the update out of ->write_lock protection, but those fields
only need ->reconfig_mutex protection which they still have.
Also move the test on ->persistent up to where ->external is set as
for metadata update purposes they are the same.
Clear MD_CHANGE_DEVS and MD_CHANGE_CLEAN as they can only be confusing
if ->external is set or ->persistent isn't.
Finally move the update of ->utime down as it is only relevent (like
the ->events update) for native metadata.
Signed-off-by: NeilBrown <neilb@suse.de>
Reported-by: "Kwolek, Adam" <adam.kwolek@intel.com>
|