summaryrefslogtreecommitdiff
path: root/include/asm-sparc64/mmu.h
AgeCommit message (Collapse)Author
2006-04-26Don't include linux/config.h from anywhere else in include/David Woodhouse
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2006-03-22[SPARC64]: Add a secondary TSB for hugepage mappings.David S. Miller
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Optimized TSB table initialization.David S. Miller
We only need to write an invalid tag every 16 bytes, so taking advantage of this can save many instructions compared to the simple memset() call we make now. A prefetching implementation is implemented for sun4u and a block-init store version if implemented for Niagara. The next trick is to be able to perform an init and a copy_tsb() in parallel when growing a TSB table. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Use 13-bit context size always.David S. Miller
We no longer have the problems that require using the smaller sizes. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Fix TLB context allocation with SMT style shared TLBs.David S. Miller
The context allocation scheme we use depends upon there being a 1<-->1 mapping from cpu to physical TLB for correctness. Chips like Niagara break this assumption. So what we do is notify all cpus with a cross call when the context version number changes, and if necessary this makes them allocate a valid context for the address space they are running at the time. Stress tested with make -j1024, make -j2048, and make -j4096 kernel builds on a 32-strand, 8 core, T2000 with 16GB of ram. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Hypervisor TSB context switching.David S. Miller
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Access TSB with physical addresses when possible.David S. Miller
This way we don't need to lock the TSB into the TLB. The trick is that every TSB load/store is registered into a special instruction patch section. The default uses virtual addresses, and the patch instructions use physical address load/stores. We can't do this on all chips because only cheetah+ and later have the physical variant of the atomic quad load. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Preload TSB entries from update_mmu_cache().David S. Miller
Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Dynamically grow TSB in response to RSS growth.David S. Miller
As the RSS grows, grow the TSB in order to reduce the likelyhood of hash collisions and thus poor hit rates in the TSB. This definitely needs some serious tuning. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Add infrastructure for dynamic TSB sizing.David S. Miller
This also cleans up tsb_context_switch(). The assembler routine is now __tsb_context_switch() and the former is an inline function that picks out the bits from the mm_struct and passes it into the assembler code as arguments. setup_tsb_parms() computes the locked TLB entry to map the TSB. Later when we support using the physical address quad load instructions of Cheetah+ and later, we'll simply use the physical address for the TSB register value and set the map virtual and PTE both to zero. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-20[SPARC64]: Move away from virtual page tables, part 1.David S. Miller
We now use the TSB hardware assist features of the UltraSPARC MMUs. SMP is currently knowingly broken, we need to find another place to store the per-cpu base pointers. We hid them away in the TSB base register, and that obviously will not work any more :-) Another known broken case is non-8KB base page size. Also noticed that flush_tlb_all() is not referenced anywhere, only the internal __flush_tlb_all() (local cpu only) is used by the sparc64 port, so we can get rid of flush_tlb_all(). The kernel gets it's own 8KB TSB (swapper_tsb) and each address space gets it's own private 8K TSB. Later we can add code to dynamically increase the size of per-process TSB as the RSS grows. An 8KB TSB is good enough for up to about a 4MB RSS, after which the TSB starts to incur many capacity and conflict misses. We even accumulate OBP translations into the kernel TSB. Another area for refinement is large page size support. We could use a secondary address space TSB to handle those. Signed-off-by: David S. Miller <davem@davemloft.net>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!