summaryrefslogtreecommitdiff
path: root/include/linux/slab.h
AgeCommit message (Collapse)Author
2007-06-24slab allocators: MAX_ORDER one off fixChristoph Lameter
MAX_ORDER is the first order that is not possible. Use MAX_ORDER - 1 to calculate the larges possible object size in slab.h Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-17Slab allocators: define common size limitationsChristoph Lameter
Currently we have a maze of configuration variables that determine the maximum slab size. Worst of all it seems to vary between SLAB and SLUB. So define a common maximum size for kmalloc. For conveniences sake we use the maximum size ever supported which is 32 MB. We limit the maximum size to a lower limit if MAX_ORDER does not allow such large allocations. For many architectures this patch will have the effect of adding large kmalloc sizes. x86_64 adds 5 new kmalloc sizes. So a small amount of memory will be needed for these caches (contemporary SLAB has dynamically sizeable node and cpu structure so the waste is less than in the past) Most architectures will then be able to allocate object with sizes up to MAX_ORDER. We have had repeated breakage (in fact whenever we doubled the number of supported processors) on IA64 because one or the other struct grew beyond what the slab allocators supported. This will avoid future issues and f.e. avoid fixes for 2k and 4k cpu support. CONFIG_LARGE_ALLOCS is no longer necessary so drop it. It fixes sparc64 with SLAB. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-17Remove SLAB_CTOR_CONSTRUCTORChristoph Lameter
SLAB_CTOR_CONSTRUCTOR is always specified. No point in checking it. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: David Howells <dhowells@redhat.com> Cc: Jens Axboe <jens.axboe@oracle.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Dave Kleikamp <shaggy@austin.ibm.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Jan Kara <jack@ucw.cz> Cc: David Chinner <dgc@sgi.com> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-17SLAB: Move two remaining SLAB specific definitions to slab_def.hChristoph Lameter
Two definitions remained in slab.h that are particular to the SLAB allocator. Move to slab_def.h Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab allocators: Remove SLAB_CTOR_ATOMICChristoph Lameter
SLAB_CTOR atomic is never used which is no surprise since I cannot imagine that one would want to do something serious in a constructor or destructor. In particular given that the slab allocators run with interrupts disabled. Actions in constructors and destructors are by their nature very limited and usually do not go beyond initializing variables and list operations. (The i386 pgd ctor and dtors do take a spinlock in constructor and destructor..... I think that is the furthest we go at this point.) There is no flag passed to the destructor so removing SLAB_CTOR_ATOMIC also establishes a certain symmetry. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab allocators: Remove SLAB_DEBUG_INITIAL flagChristoph Lameter
I have never seen a use of SLAB_DEBUG_INITIAL. It is only supported by SLAB. I think its purpose was to have a callback after an object has been freed to verify that the state is the constructor state again? The callback is performed before each freeing of an object. I would think that it is much easier to check the object state manually before the free. That also places the check near the code object manipulation of the object. Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was compiled with SLAB debugging on. If there would be code in a constructor handling SLAB_DEBUG_INITIAL then it would have to be conditional on SLAB_DEBUG otherwise it would just be dead code. But there is no such code in the kernel. I think SLUB_DEBUG_INITIAL is too problematic to make real use of, difficult to understand and there are easier ways to accomplish the same effect (i.e. add debug code before kfree). There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be clear in fs inode caches. Remove the pointless checks (they would even be pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors. This is the last slab flag that SLUB did not support. Remove the check for unimplemented flags from SLUB. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07KMEM_CACHE(): simplify slab cache creationChristoph Lameter
This patch provides a new macro KMEM_CACHE(<struct>, <flags>) to simplify slab creation. KMEM_CACHE creates a slab with the name of the struct, with the size of the struct and with the alignment of the struct. Additional slab flags may be specified if necessary. Example struct test_slab { int a,b,c; struct list_head; } __cacheline_aligned_in_smp; test_slab_cache = KMEM_CACHE(test_slab, SLAB_PANIC) will create a new slab named "test_slab" of the size sizeof(struct test_slab) and aligned to the alignment of test slab. If it fails then we panic. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab allocators: Remove obsolete SLAB_MUST_HWCACHE_ALIGNChristoph Lameter
This patch was recently posted to lkml and acked by Pekka. The flag SLAB_MUST_HWCACHE_ALIGN is 1. Never checked by SLAB at all. 2. A duplicate of SLAB_HWCACHE_ALIGN for SLUB 3. Fulfills the role of SLAB_HWCACHE_ALIGN for SLOB. The only remaining use is in sparc64 and ppc64 and their use there reflects some earlier role that the slab flag once may have had. If its specified then SLAB_HWCACHE_ALIGN is also specified. The flag is confusing, inconsistent and has no purpose. Remove it. Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07SLUB coreChristoph Lameter
This is a new slab allocator which was motivated by the complexity of the existing code in mm/slab.c. It attempts to address a variety of concerns with the existing implementation. A. Management of object queues A particular concern was the complex management of the numerous object queues in SLAB. SLUB has no such queues. Instead we dedicate a slab for each allocating CPU and use objects from a slab directly instead of queueing them up. B. Storage overhead of object queues SLAB Object queues exist per node, per CPU. The alien cache queue even has a queue array that contain a queue for each processor on each node. For very large systems the number of queues and the number of objects that may be caught in those queues grows exponentially. On our systems with 1k nodes / processors we have several gigabytes just tied up for storing references to objects for those queues This does not include the objects that could be on those queues. One fears that the whole memory of the machine could one day be consumed by those queues. C. SLAB meta data overhead SLAB has overhead at the beginning of each slab. This means that data cannot be naturally aligned at the beginning of a slab block. SLUB keeps all meta data in the corresponding page_struct. Objects can be naturally aligned in the slab. F.e. a 128 byte object will be aligned at 128 byte boundaries and can fit tightly into a 4k page with no bytes left over. SLAB cannot do this. D. SLAB has a complex cache reaper SLUB does not need a cache reaper for UP systems. On SMP systems the per CPU slab may be pushed back into partial list but that operation is simple and does not require an iteration over a list of objects. SLAB expires per CPU, shared and alien object queues during cache reaping which may cause strange hold offs. E. SLAB has complex NUMA policy layer support SLUB pushes NUMA policy handling into the page allocator. This means that allocation is coarser (SLUB does interleave on a page level) but that situation was also present before 2.6.13. SLABs application of policies to individual slab objects allocated in SLAB is certainly a performance concern due to the frequent references to memory policies which may lead a sequence of objects to come from one node after another. SLUB will get a slab full of objects from one node and then will switch to the next. F. Reduction of the size of partial slab lists SLAB has per node partial lists. This means that over time a large number of partial slabs may accumulate on those lists. These can only be reused if allocator occur on specific nodes. SLUB has a global pool of partial slabs and will consume slabs from that pool to decrease fragmentation. G. Tunables SLAB has sophisticated tuning abilities for each slab cache. One can manipulate the queue sizes in detail. However, filling the queues still requires the uses of the spin lock to check out slabs. SLUB has a global parameter (min_slab_order) for tuning. Increasing the minimum slab order can decrease the locking overhead. The bigger the slab order the less motions of pages between per CPU and partial lists occur and the better SLUB will be scaling. G. Slab merging We often have slab caches with similar parameters. SLUB detects those on boot up and merges them into the corresponding general caches. This leads to more effective memory use. About 50% of all caches can be eliminated through slab merging. This will also decrease slab fragmentation because partial allocated slabs can be filled up again. Slab merging can be switched off by specifying slub_nomerge on boot up. Note that merging can expose heretofore unknown bugs in the kernel because corrupted objects may now be placed differently and corrupt differing neighboring objects. Enable sanity checks to find those. H. Diagnostics The current slab diagnostics are difficult to use and require a recompilation of the kernel. SLUB contains debugging code that is always available (but is kept out of the hot code paths). SLUB diagnostics can be enabled via the "slab_debug" option. Parameters can be specified to select a single or a group of slab caches for diagnostics. This means that the system is running with the usual performance and it is much more likely that race conditions can be reproduced. I. Resiliency If basic sanity checks are on then SLUB is capable of detecting common error conditions and recover as best as possible to allow the system to continue. J. Tracing Tracing can be enabled via the slab_debug=T,<slabcache> option during boot. SLUB will then protocol all actions on that slabcache and dump the object contents on free. K. On demand DMA cache creation. Generally DMA caches are not needed. If a kmalloc is used with __GFP_DMA then just create this single slabcache that is needed. For systems that have no ZONE_DMA requirement the support is completely eliminated. L. Performance increase Some benchmarks have shown speed improvements on kernbench in the range of 5-10%. The locking overhead of slub is based on the underlying base allocation size. If we can reliably allocate larger order pages then it is possible to increase slub performance much further. The anti-fragmentation patches may enable further performance increases. Tested on: i386 UP + SMP, x86_64 UP + SMP + NUMA emulation, IA64 NUMA + Simulator SLUB Boot options slub_nomerge Disable merging of slabs slub_min_order=x Require a minimum order for slab caches. This increases the managed chunk size and therefore reduces meta data and locking overhead. slub_min_objects=x Mininum objects per slab. Default is 8. slub_max_order=x Avoid generating slabs larger than order specified. slub_debug Enable all diagnostics for all caches slub_debug=<options> Enable selective options for all caches slub_debug=<o>,<cache> Enable selective options for a certain set of caches Available Debug options F Double Free checking, sanity and resiliency R Red zoning P Object / padding poisoning U Track last free / alloc T Trace all allocs / frees (only use for individual slabs). To use SLUB: Apply this patch and then select SLUB as the default slab allocator. [hugh@veritas.com: fix an oops-causing locking error] [akpm@linux-foundation.org: various stupid cleanups and small fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07mm/slab.c: proper prototypesAdrian Bunk
Add proper prototypes in include/linux/slab.h. Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab: introduce kreallocPekka Enberg
This introduce krealloc() that reallocates memory while keeping the contents unchanged. The allocator avoids reallocation if the new size fits the currently used cache. I also added a simple non-optimized version for mm/slob.c for compatibility. [akpm@linux-foundation.org: fix warnings] Acked-by: Josef Sipek <jsipek@fsl.cs.sunysb.edu> Acked-by: Matt Mackall <mpm@selenic.com> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-12-13[PATCH] More slab.h cleanupsChristoph Lameter
More cleanups for slab.h 1. Remove tabs from weird locations as suggested by Pekka 2. Drop the check for NUMA and SLAB_DEBUG from the fallback section as suggested by Pekka. 3. Uses static inline for the fallback defs as also suggested by Pekka. 4. Make kmem_ptr_valid take a const * argument. 5. Separate the NUMA fallback definitions from the kmalloc_track fallback definitions. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-13[PATCH] Cleanup slab headers / API to allow easy addition of new slab allocatorsChristoph Lameter
This is a response to an earlier discussion on linux-mm about splitting slab.h components per allocator. Patch is against 2.6.19-git11. See http://marc.theaimsgroup.com/?l=linux-mm&m=116469577431008&w=2 This patch cleans up the slab header definitions. We define the common functions of slob and slab in slab.h and put the extra definitions needed for slab's kmalloc implementations in <linux/slab_def.h>. In order to get a greater set of common functions we add several empty functions to slob.c and also rename slob's kmalloc to __kmalloc. Slob does not need any special definitions since we introduce a fallback case. If there is no need for a slab implementation to provide its own kmalloc mess^H^H^Hacros then we simply fall back to __kmalloc functions. That is sufficient for SLOB. Sort the function in slab.h according to their functionality. First the functions operating on struct kmem_cache * then the kmalloc related functions followed by special debug and fallback definitions. Also redo a lot of comments. Signed-off-by: Christoph Lameter <clameter@sgi.com>? Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: deprecate kmem_cache_tAndrew Morton
Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_DMAChristoph Lameter
SLAB_DMA is an alias of GFP_DMA. This is the last one so we remove the leftover comment too. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_KERNELChristoph Lameter
SLAB_KERNEL is an alias of GFP_KERNEL. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_ATOMICChristoph Lameter
SLAB_ATOMIC is an alias of GFP_ATOMIC Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_USERChristoph Lameter
SLAB_USER is an alias of GFP_USER Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_NOFSChristoph Lameter
SLAB_NOFS is an alias of GFP_NOFS. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_NOIOChristoph Lameter
SLAB_NOIO is an alias of GFP_NOIO with a single instance of use. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_LEVEL_MASKChristoph Lameter
SLAB_LEVEL_MASK is only used internally to the slab and is and alias of GFP_LEVEL_MASK. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_NO_GROWChristoph Lameter
It is only used internally in the slab. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] Remove uses of kmem_cache_t from mm/* and include/linux/slab.hChristoph Lameter
Remove all uses of kmem_cache_t (the most were left in slab.h). The typedef for kmem_cache_t is then only necessary for other kernel subsystems. Add a comment to that effect. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] Move names_cachep to linux/fs.hChristoph Lameter
The names_cachep is used for getname() and putname(). So lets put it into fs.h near those two definitions. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] Move fs_cachep to linux/fs_struct.hChristoph Lameter
fs_cachep is only used in kernel/exit.c and in kernel/fork.c. It is used to store fs_struct items so it should be placed in linux/fs_struct.h Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] Move filep_cachep to include/file.hChristoph Lameter
filp_cachep is only used in fs/file_table.c and in fs/dcache.c where it is defined. Move it to related definitions in linux/file.h. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] Move files_cachep to include/file.hChristoph Lameter
Proper place is in file.h since files_cachep uses are rated to file I/O. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] Move vm_area_cachep to include/mm.hChristoph Lameter
vm_area_cachep is used to store vm_area_structs. So move to mm.h. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] Move sighand_cachep to include/signal.hChristoph Lameter
Move sighand_cachep definitioni to linux/signal.h The sighand cache is only used in fs/exec.c and kernel/fork.c. It is defined in kernel/fork.c but only used in fs/exec.c. The sighand_cachep is related to signal processing. So add the definition to signal.h. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] Remove bio_cachep from slab.hChristoph Lameter
Remove bio_cachep from slab.h - it no longer exists. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] leak tracking for kmalloc_nodeChristoph Hellwig
We have variants of kmalloc and kmem_cache_alloc that leave leak tracking to the caller. This is used for subsystem-specific allocators like skb_alloc. To make skb_alloc node-aware we need similar routines for the node-aware slab allocator, which this patch adds. Note that the code is rather ugly, but it mirrors the non-node-aware code 1:1: [akpm@osdl.org: add module export] Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04[PATCH] slab: clean up leak tracking ifdefs a little bitChristoph Hellwig
- rename ____kmalloc to kmalloc_track_caller so that people have a chance to guess what it does just from it's name. Add a comment describing it for those who don't. Also move it after kmalloc in slab.h so people get less confused when they are just looking for kmalloc - move things around in slab.c a little to reduce the ifdef mess. [penberg@cs.helsinki.fi: Fix up reversed #ifdef] Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03fix file specification in commentsUwe Zeisberger
Many files include the filename at the beginning, serveral used a wrong one. Signed-off-by: Uwe Zeisberger <Uwe_Zeisberger@digi.com> Signed-off-by: Adrian Bunk <bunk@stusta.de>
2006-09-27[PATCH] Make kmem_cache_destroy() return voidAlexey Dobriyan
un-, de-, -free, -destroy, -exit, etc functions should in general return void. Also, There is very little, say, filesystem driver code can do upon failed kmem_cache_destroy(). If it will be decided to BUG in this case, BUG should be put in generic code, instead. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26[PATCH] ZVC: Support NR_SLAB_RECLAIMABLE / NR_SLAB_UNRECLAIMABLEChristoph Lameter
Remove the atomic counter for slab_reclaim_pages and replace the counter and NR_SLAB with two ZVC counter that account for unreclaimable and reclaimable slab pages: NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE. Change the check in vmscan.c to refer to to NR_SLAB_RECLAIMABLE. The intend seems to be to check for slab pages that could be freed. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26[PATCH] slab: optimize kmalloc_node the same way as kmallocChristoph Hellwig
[akpm@osdl.org: export fix] Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26[PATCH] mm/: make functions staticAdrian Bunk
This patch makes the following needlessly global functions static: - slab.c: kmem_find_general_cachep() - swap.c: __page_cache_release() - vmalloc.c: __vmalloc_node() Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-23[PATCH] slab: kmalloc, kzalloc comments cleanup and fixPaul Drynoff
- Move comments for kmalloc to right place, currently it near __do_kmalloc - Comments for kzalloc - More detailed comments for kmalloc - Appearance of "kmalloc" and "kzalloc" man pages after "make mandocs" [rdunlap@xenotime.net: simplification] Signed-off-by: Paul Drynoff <pauldrynoff@gmail.com> Acked-by: Randy Dunlap <rdunlap@xenotime.net> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Manfred Spraul <manfred@colorfullife.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-05-24Merge branch 'master' of ↵David Woodhouse
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6 Conflicts: include/asm-powerpc/unistd.h include/asm-sparc/unistd.h include/asm-sparc64/unistd.h Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2006-05-15[PATCH] add slab_is_available() routine for boot codeMike Kravetz
slab_is_available() indicates slab based allocators are available for use. SPARSEMEM code needs to know this as it can be called at various times during the boot process. Signed-off-by: Mike Kravetz <kravetz@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-26Don't include linux/config.h from anywhere else in include/David Woodhouse
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2006-03-29[PATCH] copy_process: cleanup bad_fork_cleanup_signalOleg Nesterov
__exit_signal() does important cleanups atomically under ->siglock. It is also called from copy_process's error path. This is not good, for example we can't move __unhash_process() under ->siglock for that reason. We should not mix these 2 paths, just look at ugly 'if (p->sighand)' under 'bad_fork_cleanup_sighand:' label. For copy_process() case it is sufficient to just backout copy_signal(), nothing more. Again, nobody can see this task yet. For CLONE_THREAD case we just decrement signal->count, otherwise nobody can see this ->signal and we can free it lockless. This patch assumes it is safe to do exit_thread_group_keys() without tasklist_lock. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: David Howells <dhowells@redhat.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-25[PATCH] slab: optimize constant-size kzalloc callsPekka Enberg
As suggested by Eric Dumazet, optimize kzalloc() calls that pass a compile-time constant size. Please note that the patch increases kernel text slightly (~200 bytes for defconfig on x86). Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-25[PATCH] slab: introduce kmem_cache_zalloc allocatorPekka Enberg
Introduce a memory-zeroing variant of kmem_cache_alloc. The allocator already exits in XFS and there are potential users for it so this patch makes the allocator available for the general public. Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-25[PATCH] slab: implement /proc/slab_allocatorsAl Viro
Implement /proc/slab_allocators. It produces output like: idr_layer_cache: 80 idr_pre_get+0x33/0x4e buffer_head: 2555 alloc_buffer_head+0x20/0x75 mm_struct: 9 mm_alloc+0x1e/0x42 mm_struct: 20 dup_mm+0x36/0x370 vm_area_struct: 384 dup_mm+0x18f/0x370 vm_area_struct: 151 do_mmap_pgoff+0x2e0/0x7c3 vm_area_struct: 1 split_vma+0x5a/0x10e vm_area_struct: 11 do_brk+0x206/0x2e2 vm_area_struct: 2 copy_vma+0xda/0x142 vm_area_struct: 9 setup_arg_pages+0x99/0x214 fs_cache: 8 copy_fs_struct+0x21/0x133 fs_cache: 29 copy_process+0xf38/0x10e3 files_cache: 30 alloc_files+0x1b/0xcf signal_cache: 81 copy_process+0xbaa/0x10e3 sighand_cache: 77 copy_process+0xe65/0x10e3 sighand_cache: 1 de_thread+0x4d/0x5f8 anon_vma: 241 anon_vma_prepare+0xd9/0xf3 size-2048: 1 add_sect_attrs+0x5f/0x145 size-2048: 2 journal_init_revoke+0x99/0x302 size-2048: 2 journal_init_revoke+0x137/0x302 size-2048: 2 journal_init_inode+0xf9/0x1c4 Cc: Manfred Spraul <manfred@colorfullife.com> Cc: Alexander Nyberg <alexn@telia.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> DESC slab-leaks3-locking-fix EDESC From: Andrew Morton <akpm@osdl.org> Update for slab-remove-cachep-spinlock.patch Cc: Al Viro <viro@ftp.linux.org.uk> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: Alexander Nyberg <alexn@telia.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-24[PATCH] cpuset memory spread slab cache implementationPaul Jackson
Provide the slab cache infrastructure to support cpuset memory spreading. See the previous patches, cpuset_mem_spread, for an explanation of cpuset memory spreading. This patch provides a slab cache SLAB_MEM_SPREAD flag. If set in the kmem_cache_create() call defining a slab cache, then any task marked with the process state flag PF_MEMSPREAD will spread memory page allocations for that cache over all the allowed nodes, instead of preferring the local (faulting) node. On systems not configured with CONFIG_NUMA, this results in no change to the page allocation code path for slab caches. On systems with cpusets configured in the kernel, but the "memory_spread" cpuset option not enabled for the current tasks cpuset, this adds a call to a cpuset routine and failed bit test of the processor state flag PF_SPREAD_SLAB. For tasks so marked, a second inline test is done for the slab cache flag SLAB_MEM_SPREAD, and if that is set and if the allocation is not in_interrupt(), this adds a call to to a cpuset routine that computes which of the tasks mems_allowed nodes should be preferred for this allocation. ==> This patch adds another hook into the performance critical code path to allocating objects from the slab cache, in the ____cache_alloc() chunk, below. The next patch optimizes this hook, reducing the impact of the combined mempolicy plus memory spreading hooks on this critical code path to a single check against the tasks task_struct flags word. This patch provides the generic slab flags and logic needed to apply memory spreading to a particular slab. A subsequent patch will mark a few specific slab caches for this placement policy. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22[PATCH] slab: Remove SLAB_NO_REAP optionChristoph Lameter
SLAB_NO_REAP is documented as an option that will cause this slab not to be reaped under memory pressure. However, that is not what happens. The only thing that SLAB_NO_REAP controls at the moment is the reclaim of the unused slab elements that were allocated in batch in cache_reap(). Cache_reap() is run every few seconds independently of memory pressure. Could we remove the whole thing? Its only used by three slabs anyways and I cannot find a reason for having this option. There is an additional problem with SLAB_NO_REAP. If set then the recovery of objects from alien caches is switched off. Objects not freed on the same node where they were initially allocated will only be reused if a certain amount of objects accumulates from one alien node (not very likely) or if the cache is explicitly shrunk. (Strangely __cache_shrink does not check for SLAB_NO_REAP) Getting rid of SLAB_NO_REAP fixes the problems with alien cache freeing. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: Mark Fasheh <mark.fasheh@oracle.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22[PATCH] kcalloc(): INT_MAX -> ULONG_MAXAdrian Bunk
Since size_t has the same size as a long on all architectures, it's enough for overflow checks to check against ULONG_MAX. This change could allow a compiler better optimization (especially in the n=1 case). The practical effect seems to be positive, but quite small: text data bss dec hex filename 21762380 5859870 1848928 29471178 1c1b1ca vmlinux-old 21762211 5859870 1848928 29471009 1c1b121 vmlinux-patched Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-01[PATCH] slab: fix kzalloc and kstrdup caller report for CONFIG_DEBUG_SLABPekka Enberg
Fix kzalloc() and kstrdup() caller report for CONFIG_DEBUG_SLAB. We must pass the caller to __cache_alloc() instead of directly doing __builtin_return_address(0) there; otherwise kzalloc() and kstrdup() are reported as the allocation site instead of the real one. Thanks to Valdis Kletnieks for reporting the problem and Steven Rostedt for the original idea. Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-09[PATCH] slob: introduce the SLOB allocatorMatt Mackall
configurable replacement for slab allocator This adds a CONFIG_SLAB option under CONFIG_EMBEDDED. When CONFIG_SLAB is disabled, the kernel falls back to using the 'SLOB' allocator. SLOB is a traditional K&R/UNIX allocator with a SLAB emulation layer, similar to the original Linux kmalloc allocator that SLAB replaced. It's signicantly smaller code and is more memory efficient. But like all similar allocators, it scales poorly and suffers from fragmentation more than SLAB, so it's only appropriate for small systems. It's been tested extensively in the Linux-tiny tree. I've also stress-tested it with make -j 8 compiles on a 3G SMP+PREEMPT box (not recommended). Here's a comparison for otherwise identical builds, showing SLOB saving nearly half a megabyte of RAM: $ size vmlinux* text data bss dec hex filename 3336372 529360 190812 4056544 3de5e0 vmlinux-slab 3323208 527948 190684 4041840 3dac70 vmlinux-slob $ size mm/{slab,slob}.o text data bss dec hex filename 13221 752 48 14021 36c5 mm/slab.o 1896 52 8 1956 7a4 mm/slob.o /proc/meminfo: SLAB SLOB delta MemTotal: 27964 kB 27980 kB +16 kB MemFree: 24596 kB 25092 kB +496 kB Buffers: 36 kB 36 kB 0 kB Cached: 1188 kB 1188 kB 0 kB SwapCached: 0 kB 0 kB 0 kB Active: 608 kB 600 kB -8 kB Inactive: 808 kB 812 kB +4 kB HighTotal: 0 kB 0 kB 0 kB HighFree: 0 kB 0 kB 0 kB LowTotal: 27964 kB 27980 kB +16 kB LowFree: 24596 kB 25092 kB +496 kB SwapTotal: 0 kB 0 kB 0 kB SwapFree: 0 kB 0 kB 0 kB Dirty: 4 kB 12 kB +8 kB Writeback: 0 kB 0 kB 0 kB Mapped: 560 kB 556 kB -4 kB Slab: 1756 kB 0 kB -1756 kB CommitLimit: 13980 kB 13988 kB +8 kB Committed_AS: 4208 kB 4208 kB 0 kB PageTables: 28 kB 28 kB 0 kB VmallocTotal: 1007312 kB 1007312 kB 0 kB VmallocUsed: 48 kB 48 kB 0 kB VmallocChunk: 1007264 kB 1007264 kB 0 kB (this work has been sponsored in part by CELF) From: Ingo Molnar <mingo@elte.hu> Fix 32-bitness bugs in mm/slob.c. Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>