Age | Commit message (Collapse) | Author |
|
Clean-up: replace rpc_call() helper with direct call to rpc_call_sync.
This makes NFSv2 and NFSv3 synchronous calls more computationally
efficient, and reduces stack consumption in functions that used to
invoke rpc_call more than once.
Test plan:
Compile kernel with CONFIG_NFS enabled. Connectathon on NFS version 2,
version 3, and version 4 mount points.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
Account for various things that occur while an RPC task is executed.
Separate timers for RPC round trip and RPC execution time show how
long RPC requests wait in queue before being sent. Eventually these
will be accumulated at xprt_release time in one place where they can
be viewed from userland.
Test plan:
Compile kernel with CONFIG_NFS enabled.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
RPC wait queue length will eventually be exported to userland via the RPC
iostats interface.
Test plan:
Compile kernel with CONFIG_NFS enabled.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
Add RPC client transport switch support for replacing buffer management
on a per-transport basis.
In the current IPv4 socket transport implementation, RPC buffers are
allocated as needed for each RPC message that is sent. Some transport
implementations may choose to use pre-allocated buffers for encoding,
sending, receiving, and unmarshalling RPC messages, however. For
transports capable of direct data placement, the buffers can be carved
out of a pre-registered area of memory rather than from a slab cache.
Test-plan:
Millions of fsx operations. Performance characterization with "sio" and
"iozone". Use oprofile and other tools to look for significant regression
in CPU utilization.
Signed-off-by: Chuck Lever <cel@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
The NFSv4 model requires us to complete all RPC calls that might
establish state on the server whether or not the user wants to
interrupt it. We may also need to schedule new work (including
new RPC calls) in order to cancel the new state.
The asynchronous RPC model will allow us to ensure that RPC calls
always complete, but in order to allow for "synchronous" RPC, we
want to add the ability to wait for completion.
The waits are, of course, interruptible.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
Shrink the RPC task structure. Instead of storing separate pointers
for task->tk_exit and task->tk_release, put them in a structure.
Also pass the user data pointer as a parameter instead of passing it via
task->tk_calldata. This enables us to nest callbacks.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|