Age | Commit message (Collapse) | Author |
|
commit 532de3fc72adc2a6525c4d53c07bf81e1732083d upstream.
Currently, there's nothing preventing cgroup_enable_task_cg_lists()
from missing set PF_EXITING and race against cgroup_exit(). Depending
on the timing, cgroup_exit() may finish with the task still linked on
css_set leading to list corruption. Fix it by grabbing siglock in
cgroup_enable_task_cg_lists() so that PF_EXITING is guaranteed to be
visible.
This whole on-demand cg_list optimization is extremely fragile and has
ample possibility to lead to bugs which can cause things like
once-a-year oops during boot. I'm wondering whether the better
approach would be just adding "cgroup_disable=all" handling which
disables the whole cgroup rather than tempting fate with this
on-demand craziness.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 48573a893303986e3b0b2974d6fb11f3d1bb7064 upstream.
cgroup_cfts_commit() walks the cgroup hierarchy that the target
subsystem is attached to and tries to apply the file changes. Due to
the convolution with inode locking, it can't keep cgroup_mutex locked
while iterating. It currently holds only RCU read lock around the
actual iteration and then pins the found cgroup using dget().
Unfortunately, this is incorrect. Although the iteration does check
cgroup_is_dead() before invoking dget(), there's nothing which
prevents the dentry from going away inbetween. Note that this is
different from the usual css iterations where css_tryget() is used to
pin the css - css_tryget() tests whether the css can be pinned and
fails if not.
The problem can be solved by simply holding cgroup_mutex instead of
RCU read lock around the iteration, which actually reduces LOC.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit b58c89986a77a23658682a100eb15d8edb571ebb upstream.
cgroup_create() was returning 0 after allocation failures. Fix it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit eb46bf89696972b856a9adb6aebd5c7b65c266e4 upstream.
When cgroup_mount() fails to allocate an id for the root, it didn't
set ret before jumping to unlock_drop ending up returning 0 after a
failure. Fix it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 723478c8a471403c53cf144999701f6e0c4bbd11 upstream.
/proc/sys/kernel/perf_event_max_sample_rate will accept
negative values as well as 0.
Negative values are unreasonable, and 0 causes a
divide by zero exception in perf_proc_update_handler.
This patch enforces a lower limit of 1.
Signed-off-by: Knut Petersen <Knut_Petersen@t-online.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5242DB0C.4070005@t-online.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
|
|
commit 2c45aada341121438affc4cb8d5b4cfaa2813d3d upstream.
In allmodconfig builds for sparc and any other arch which does
not set CONFIG_SPARSE_IRQ, the following will be seen at modpost:
CC [M] lib/cpu-notifier-error-inject.o
CC [M] lib/pm-notifier-error-inject.o
ERROR: "irq_to_desc" [drivers/gpio/gpio-mcp23s08.ko] undefined!
make[2]: *** [__modpost] Error 1
This happens because commit 3911ff30f5 ("genirq: export
handle_edge_irq() and irq_to_desc()") added one export for it, but
there were actually two instances of it, in an if/else clause for
CONFIG_SPARSE_IRQ. Add the second one.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Link: http://lkml.kernel.org/r/1392057610-11514-1-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d651aa1d68a2f0a7ee65697b04c6a92f8c0a12f2 upstream.
Each sub-buffer (buffer page) has a full 64 bit timestamp. The events on
that page use a 27 bit delta against that timestamp in order to save on
bits written to the ring buffer. If the time between events is larger than
what the 27 bits can hold, a "time extend" event is added to hold the
entire 64 bit timestamp again and the events after that hold a delta from
that timestamp.
As a "time extend" is always paired with an event, it is logical to just
allocate the event with the time extend, to make things a bit more efficient.
Unfortunately, when the pairing code was written, it removed the "delta = 0"
from the first commit on a page, causing the events on the page to be
slightly skewed.
Fixes: 69d1b839f7ee "ring-buffer: Bind time extend and data events together"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 80d767d770fd9c697e434fd080c2db7b5c60c6dd upstream.
When compiling for the IA-64 ski emulator, HZ is set to 32 because the
emulation is slow and we don't want to waste too many cycles processing
timers. Alpha also has an option to set HZ to 32.
This causes integer underflow in
kernel/time/jiffies.c:
kernel/time/jiffies.c:66:2: warning: large integer implicitly truncated to unsigned type [-Woverflow]
.mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */
^
This patch reduces the JIFFIES_SHIFT value to avoid the overflow.
Signed-off-by: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz>
Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1401241639100.23871@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dd5fd9b91a77b4c9c28b7ef9c181b1a875820d0a upstream.
AMD systems which use the C1E workaround in the amd_e400_idle routine
trigger the WARN_ON_ONCE in the broadcast code when onlining a CPU.
The reason is that the idle routine of those AMD systems switches the
cpu into forced broadcast mode early on before the newly brought up
CPU can switch over to high resolution / NOHZ mode. The timer related
CPU1 bringup looks like this:
clockevent_register_device(local_apic);
tick_setup(local_apic);
...
idle()
tick_broadcast_on_off(FORCE);
tick_broadcast_oneshot_control(ENTER)
cpumask_set(cpu, broadcast_oneshot_mask);
halt();
Now the broadcast interrupt on CPU0 sets CPU1 in the
broadcast_pending_mask and wakes CPU1. So CPU1 continues:
local_apic_timer_interrupt()
tick_handle_periodic();
softirq()
tick_init_highres();
cpumask_clr(cpu, broadcast_oneshot_mask);
tick_broadcast_oneshot_control(ENTER)
WARN_ON(cpumask_test(cpu, broadcast_pending_mask);
So while we remove CPU1 from the broadcast_oneshot_mask when we switch
over to highres mode, we do not clear the pending bit, which then
triggers the warning when we go back to idle.
The reason why this is only visible on C1E affected AMD systems is
that the other machines enter the deep sleep states via
acpi_idle/intel_idle and exit the broadcast mode before executing the
remote triggered local_apic_timer_interrupt. So the pending bit is
already cleared when the switch over to highres mode is clearing the
oneshot mask.
The solution is simple: Clear the pending bit together with the mask
bit when we switch over to highres mode.
Stanislaw came up independently with the same patch by enforcing the
C1E workaround and debugging the fallout. I picked mine, because mine
has a changelog :)
Reported-by: poma <pomidorabelisima@gmail.com>
Debugged-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Olaf Hering <olaf@aepfle.de>
Cc: Dave Jones <davej@redhat.com>
Cc: Justin M. Forbes <jforbes@redhat.com>
Cc: Josh Boyer <jwboyer@redhat.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1402111434180.21991@ionos.tec.linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 923fa4ea382f592dee2ba3b205befb90cbddf3af upstream.
The generic_chip.c uses interfaces from irq_domain.c which is
controlled by the IRQ_DOMAIN config option, but there is no Kconfig
dependency so the build can fail:
linux/kernel/irq/generic-chip.c:400:11: error:
'irq_domain_xlate_onetwocell' undeclared here (not in a function)
Select IRQ_DOMAIN when GENERIC_IRQ_CHIP is selected.
Signed-off-by: Nitin A Kamble <nitin.a.kamble@intel.com>
Link: http://lkml.kernel.org/r/1391129410-54548-2-git-send-email-nitin.a.kamble@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 330a1617b0a6268d427aa5922c94d082b1d3e96d upstream.
Since 48cdc135d4840 (Implement a shadow timekeeper), we have to
call timekeeping_update() after any adjustment to the timekeeping
structure in order to make sure that any adjustments to the structure
persist.
In the timekeeping suspend path, we udpate the timekeeper
structure, so we should be sure to update the shadow-timekeeper
before releasing the timekeeping locks. Currently this isn't done.
In most cases, the next time related code to run would be
timekeeping_resume, which does update the shadow-timekeeper, but
in an abundence of caution, this patch adds the call to
timekeeping_update() in the suspend path.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 04005f6011e3b504cd4d791d9769f7cb9a3b2eae upstream.
A think-o in the calculation of the monotonic -> tai time offset
results in CLOCK_TAI timers and nanosleeps to expire late (the
latency is ~2x the tai offset).
Fix this by adding the tai offset from the realtime offset instead
of subtracting.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
In backporting 6fdda9a9c5db367130cf32df5d6618d08b89f46a
(timekeeping: Avoid possible deadlock from clock_was_set_delayed),
I ralized the patch had a think-o where instead of checking
clock_set I accidentally typed clock_was_set (which is a function
- so the conditional always is true).
Upstream this was resolved in the immediately following patch
47a1b796306356f358e515149d86baf0cc6bf007 (tick/timekeeping: Call
update_wall_time outside the jiffies lock). But since that patch
really isn't -stable material, so this patch only pulls
the name change.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6fdda9a9c5db367130cf32df5d6618d08b89f46a upstream.
As part of normal operaions, the hrtimer subsystem frequently calls
into the timekeeping code, creating a locking order of
hrtimer locks -> timekeeping locks
clock_was_set_delayed() was suppoed to allow us to avoid deadlocks
between the timekeeping the hrtimer subsystem, so that we could
notify the hrtimer subsytem the time had changed while holding
the timekeeping locks. This was done by scheduling delayed work
that would run later once we were out of the timekeeing code.
But unfortunately the lock chains are complex enoguh that in
scheduling delayed work, we end up eventually trying to grab
an hrtimer lock.
Sasha Levin noticed this in testing when the new seqlock lockdep
enablement triggered the following (somewhat abrieviated) message:
[ 251.100221] ======================================================
[ 251.100221] [ INFO: possible circular locking dependency detected ]
[ 251.100221] 3.13.0-rc2-next-20131206-sasha-00005-g8be2375-dirty #4053 Not tainted
[ 251.101967] -------------------------------------------------------
[ 251.101967] kworker/10:1/4506 is trying to acquire lock:
[ 251.101967] (timekeeper_seq){----..}, at: [<ffffffff81160e96>] retrigger_next_event+0x56/0x70
[ 251.101967]
[ 251.101967] but task is already holding lock:
[ 251.101967] (hrtimer_bases.lock#11){-.-...}, at: [<ffffffff81160e7c>] retrigger_next_event+0x3c/0x70
[ 251.101967]
[ 251.101967] which lock already depends on the new lock.
[ 251.101967]
[ 251.101967]
[ 251.101967] the existing dependency chain (in reverse order) is:
[ 251.101967]
-> #5 (hrtimer_bases.lock#11){-.-...}:
[snipped]
-> #4 (&rt_b->rt_runtime_lock){-.-...}:
[snipped]
-> #3 (&rq->lock){-.-.-.}:
[snipped]
-> #2 (&p->pi_lock){-.-.-.}:
[snipped]
-> #1 (&(&pool->lock)->rlock){-.-...}:
[ 251.101967] [<ffffffff81194803>] validate_chain+0x6c3/0x7b0
[ 251.101967] [<ffffffff81194d9d>] __lock_acquire+0x4ad/0x580
[ 251.101967] [<ffffffff81194ff2>] lock_acquire+0x182/0x1d0
[ 251.101967] [<ffffffff84398500>] _raw_spin_lock+0x40/0x80
[ 251.101967] [<ffffffff81153e69>] __queue_work+0x1a9/0x3f0
[ 251.101967] [<ffffffff81154168>] queue_work_on+0x98/0x120
[ 251.101967] [<ffffffff81161351>] clock_was_set_delayed+0x21/0x30
[ 251.101967] [<ffffffff811c4bd1>] do_adjtimex+0x111/0x160
[ 251.101967] [<ffffffff811e2711>] compat_sys_adjtimex+0x41/0x70
[ 251.101967] [<ffffffff843a4b49>] ia32_sysret+0x0/0x5
[ 251.101967]
-> #0 (timekeeper_seq){----..}:
[snipped]
[ 251.101967] other info that might help us debug this:
[ 251.101967]
[ 251.101967] Chain exists of:
timekeeper_seq --> &rt_b->rt_runtime_lock --> hrtimer_bases.lock#11
[ 251.101967] Possible unsafe locking scenario:
[ 251.101967]
[ 251.101967] CPU0 CPU1
[ 251.101967] ---- ----
[ 251.101967] lock(hrtimer_bases.lock#11);
[ 251.101967] lock(&rt_b->rt_runtime_lock);
[ 251.101967] lock(hrtimer_bases.lock#11);
[ 251.101967] lock(timekeeper_seq);
[ 251.101967]
[ 251.101967] *** DEADLOCK ***
[ 251.101967]
[ 251.101967] 3 locks held by kworker/10:1/4506:
[ 251.101967] #0: (events){.+.+.+}, at: [<ffffffff81154960>] process_one_work+0x200/0x530
[ 251.101967] #1: (hrtimer_work){+.+...}, at: [<ffffffff81154960>] process_one_work+0x200/0x530
[ 251.101967] #2: (hrtimer_bases.lock#11){-.-...}, at: [<ffffffff81160e7c>] retrigger_next_event+0x3c/0x70
[ 251.101967]
[ 251.101967] stack backtrace:
[ 251.101967] CPU: 10 PID: 4506 Comm: kworker/10:1 Not tainted 3.13.0-rc2-next-20131206-sasha-00005-g8be2375-dirty #4053
[ 251.101967] Workqueue: events clock_was_set_work
So the best solution is to avoid calling clock_was_set_delayed() while
holding the timekeeping lock, and instead using a flag variable to
decide if we should call clock_was_set() once we've released the locks.
This works for the case here, where the do_adjtimex() was the deadlock
trigger point. Unfortuantely, in update_wall_time() we still hold
the jiffies lock, which would deadlock with the ipi triggered by
clock_was_set(), preventing us from calling it even after we drop the
timekeeping lock. So instead call clock_was_set_delayed() at that point.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5258d3f25c76f6ab86e9333abf97a55a877d3870 upstream.
In 780427f0e11 (Indicate that clock was set in the pvclock
gtod notifier), logic was added to pass a CLOCK_WAS_SET
notification to the pvclock notifier chain.
While that patch added a action flag returned from
accumulate_nsecs_to_secs(), it only uses the returned value
in one location, and not in the logarithmic accumulation.
This means if a leap second triggered during the logarithmic
accumulation (which is most likely where it would happen),
the notification that the clock was set would not make it to
the pv notifiers.
This patch extends the logarithmic_accumulation pass down
that action flag so proper notification will occur.
This patch also changes the varialbe action -> clock_set
per Ingo's suggestion.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: <xen-devel@lists.xen.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f55c07607a38f84b5c7e6066ee1cfe433fa5643c upstream.
Since 48cdc135d4840 (Implement a shadow timekeeper), we have to
call timekeeping_update() after any adjustment to the timekeeping
structure in order to make sure that any adjustments to the structure
persist.
Unfortunately, the updates to the tai offset via adjtimex do not
trigger this update, causing adjustments to the tai offset to be
made and then over-written by the previous value at the next
update_wall_time() call.
This patch resovles the issue by calling timekeeping_update()
right after setting the tai offset.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 23a8e8441a0a74dd612edf81dc89d1600bc0a3d1 upstream.
Doing some different tests, I discovered that function graph tracing, when
filtered via the set_ftrace_filter and set_ftrace_notrace files, does
not always keep with them if another function ftrace_ops is registered
to trace functions.
The reason is that function graph just happens to trace all functions
that the function tracer enables. When there was only one user of
function tracing, the function graph tracer did not need to worry about
being called by functions that it did not want to trace. But now that there
are other users, this becomes a problem.
For example, one just needs to do the following:
# cd /sys/kernel/debug/tracing
# echo schedule > set_ftrace_filter
# echo function_graph > current_tracer
# cat trace
[..]
0) | schedule() {
------------------------------------------
0) <idle>-0 => rcu_pre-7
------------------------------------------
0) ! 2980.314 us | }
0) | schedule() {
------------------------------------------
0) rcu_pre-7 => <idle>-0
------------------------------------------
0) + 20.701 us | }
# echo 1 > /proc/sys/kernel/stack_tracer_enabled
# cat trace
[..]
1) + 20.825 us | }
1) + 21.651 us | }
1) + 30.924 us | } /* SyS_ioctl */
1) | do_page_fault() {
1) | __do_page_fault() {
1) 0.274 us | down_read_trylock();
1) 0.098 us | find_vma();
1) | handle_mm_fault() {
1) | _raw_spin_lock() {
1) 0.102 us | preempt_count_add();
1) 0.097 us | do_raw_spin_lock();
1) 2.173 us | }
1) | do_wp_page() {
1) 0.079 us | vm_normal_page();
1) 0.086 us | reuse_swap_page();
1) 0.076 us | page_move_anon_rmap();
1) | unlock_page() {
1) 0.082 us | page_waitqueue();
1) 0.086 us | __wake_up_bit();
1) 1.801 us | }
1) 0.075 us | ptep_set_access_flags();
1) | _raw_spin_unlock() {
1) 0.098 us | do_raw_spin_unlock();
1) 0.105 us | preempt_count_sub();
1) 1.884 us | }
1) 9.149 us | }
1) + 13.083 us | }
1) 0.146 us | up_read();
When the stack tracer was enabled, it enabled all functions to be traced, which
now the function graph tracer also traces. This is a side effect that should
not occur.
To fix this a test is added when the function tracing is changed, as well as when
the graph tracer is enabled, to see if anything other than the ftrace global_ops
function tracer is enabled. If so, then the graph tracer calls a test trampoline
that will look at the function that is being traced and compare it with the
filters defined by the global_ops.
As an optimization, if there's no other function tracers registered, or if
the only registered function tracers also use the global ops, the function
graph infrastructure will call the registered function graph callback directly
and not go through the test trampoline.
Fixes: d2d45c7a03a2 "tracing: Have stack_tracer use a separate list of functions"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a4c35ed241129dd142be4cadb1e5a474a56d5464 upstream.
The synchronization needed after ftrace_ops are unregistered must happen
after the callback is disabled from becing called by functions.
The current location happens after the function is being removed from the
internal lists, but not after the function callbacks were disabled, leaving
the functions susceptible of being called after their callbacks are freed.
This affects perf and any externel users of function tracing (LTTng and
SystemTap).
Fixes: cdbe61bfe704 "ftrace: Allow dynamically allocated function tracers"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 405e1d834807e51b2ebd3dea81cb51e53fb61504 upstream.
ftrace_trace_function is a variable that holds what function will be called
directly by the assembly code (mcount). If just a single function is
registered and it handles recursion itself, then the assembly will call that
function directly without any helper function. It also passes in the
ftrace_op that was registered with the callback. The ftrace_op to send is
stored in the function_trace_op variable.
The ftrace_trace_function and function_trace_op needs to be coordinated such
that the called callback wont be called with the wrong ftrace_op, otherwise
bad things can happen if it expected a different op. Luckily, there's no
callback that doesn't use the helper functions that requires this. But
there soon will be and this needs to be fixed.
Use a set_function_trace_op to store the ftrace_op to set the
function_trace_op to when it is safe to do so (during the update function
within the breakpoint or stop machine calls). Or if dynamic ftrace is not
being used (static tracing) then we have to do a bit more synchronization
when the ftrace_trace_function is set as that takes affect immediately
(as oppose to dynamic ftrace doing it with the modification of the trampoline).
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e789e561a50de0aaa8c695662d97aaa5eac9d55f upstream.
When the audit queue overflows and times out (audit_backlog_wait_time), the
audit queue overflow timeout is set to zero. Once the audit queue overflow
timeout condition recovers, the timeout should be reset to the original value.
See also:
https://lkml.org/lkml/2013/9/2/473
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Dan Duval <dan.duval@oracle.com>
Signed-off-by: Chuck Anderson <chuck.anderson@oracle.com>
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3132e107d608f8753240d82d61303c500fd515b4 upstream.
If trace_puts() is used very early in boot up, it can crash the machine
if it is called before the ring buffer is allocated. If a trace_printk()
is used with no arguments, then it will be converted into a trace_puts()
and suffer the same fate.
Fixes: 09ae72348ecc "tracing: Add trace_puts() for even faster trace_printk() tracing"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dced341b2d4f06668efaab33f88de5d287c0f45b upstream.
The trace buffer has a descriptor pointer that goes back to the trace
array. But it was never assigned. Luckily, nothing uses it (yet), but
it will in the future.
Although nothing currently uses this, if any of the new features get
backported to older kernels, and because this is such a simple change,
I'm marking it for stable too.
Fixes: 12883efb670c "tracing: Consolidate max_tr into main trace_array structure"
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1f7f4dde5c945f41a7abc2285be43d918029ecc5 upstream.
Serge Hallyn <serge.hallyn@ubuntu.com> writes:
> Hi Oleg,
>
> commit 40a0d32d1eaffe6aac7324ca92604b6b3977eb0e :
> "fork: unify and tighten up CLONE_NEWUSER/CLONE_NEWPID checks"
> breaks lxc-attach in 3.12. That code forks a child which does
> setns() and then does a clone(CLONE_PARENT). That way the
> grandchild can be in the right namespaces (which the child was
> not) and be a child of the original task, which is the monitor.
>
> lxc-attach in 3.11 was working fine with no side effects that I
> could see. Is there a real danger in allowing CLONE_PARENT
> when current->nsproxy->pidns_for_children is not our pidns,
> or was this done out of an "over-abundance of caution"? Can we
> safely revert that new extra check?
The two fundamental things I know we can not allow are:
- A shared signal queue aka CLONE_THREAD. Because we compute the pid
and uid of the signal when we place it in the queue.
- Changing the pid and by extention pid_namespace of an existing
process.
From a parents perspective there is nothing special about the pid
namespace, to deny CLONE_PARENT, because the parent simply won't know or
care.
From the childs perspective all that is special really are shared signal
queues.
User mode threading with CLONE_PARENT|CLONE_VM|CLONE_SIGHAND and tasks
in different pid namespaces is almost certainly going to break because
it is complicated. But shared signal handlers can look at per thread
information to know which pid namespace a process is in, so I don't know
of any reason not to support CLONE_PARENT|CLONE_VM|CLONE_SIGHAND threads
at the kernel level. It would be absolutely stupid to implement but
that is a different thing.
So hmm.
Because it can do no harm, and because it is a regression let's remove
the CLONE_PARENT check and send it stable.
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0ac9b1c21874d2490331233b3242085f8151e166 upstream.
Currently, group entity load-weights are initialized to zero. This
admits some races with respect to the first time they are re-weighted in
earlty use. ( Let g[x] denote the se for "g" on cpu "x". )
Suppose that we have root->a and that a enters a throttled state,
immediately followed by a[0]->t1 (the only task running on cpu[0])
blocking:
put_prev_task(group_cfs_rq(a[0]), t1)
put_prev_entity(..., t1)
check_cfs_rq_runtime(group_cfs_rq(a[0]))
throttle_cfs_rq(group_cfs_rq(a[0]))
Then, before unthrottling occurs, let a[0]->b[0]->t2 wake for the first
time:
enqueue_task_fair(rq[0], t2)
enqueue_entity(group_cfs_rq(b[0]), t2)
enqueue_entity_load_avg(group_cfs_rq(b[0]), t2)
account_entity_enqueue(group_cfs_ra(b[0]), t2)
update_cfs_shares(group_cfs_rq(b[0]))
< skipped because b is part of a throttled hierarchy >
enqueue_entity(group_cfs_rq(a[0]), b[0])
...
We now have b[0] enqueued, yet group_cfs_rq(a[0])->load.weight == 0
which violates invariants in several code-paths. Eliminate the
possibility of this by initializing group entity weight.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20131016181627.22647.47543.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 927b54fccbf04207ec92f669dce6806848cbec7d upstream.
__start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock,
waiting for the hrtimer to finish. However, if sched_cfs_period_timer
runs for another loop iteration, the hrtimer can attempt to take
rq->lock, resulting in deadlock.
Fix this by ensuring that cfs_b->timer_active is cleared only if the
_latest_ call to do_sched_cfs_period_timer is returning as idle. Then
__start_cfs_bandwidth can just call hrtimer_try_to_cancel and wait for
that to succeed or timer_active == 1.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181622.22647.16643.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit db06e78cc13d70f10877e0557becc88ab3ad2be8 upstream.
hrtimer_expires_remaining does not take internal hrtimer locks and thus
must be guarded against concurrent __hrtimer_start_range_ns (but
returning HRTIMER_RESTART is safe). Use cfs_b->lock to make it safe.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181617.22647.73829.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1ee14e6c8cddeeb8a490d7b54cd9016e4bb900b4 upstream.
When we transition cfs_bandwidth_used to false, any currently
throttled groups will incorrectly return false from cfs_rq_throttled.
While tg_set_cfs_bandwidth will unthrottle them eventually, currently
running code (including at least dequeue_task_fair and
distribute_cfs_runtime) will cause errors.
Fix this by turning off cfs_bandwidth_used only after unthrottling all
cfs_rqs.
Tested: toggle bandwidth back and forth on a loaded cgroup. Caused
crashes in minutes without the patch, hasn't crashed with it.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181611.22647.80365.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 20841405940e7be0617612d521e206e4b6b325db upstream.
There are a few subtle races, between change_protection_range (used by
mprotect and change_prot_numa) on one side, and NUMA page migration and
compaction on the other side.
The basic race is that there is a time window between when the PTE gets
made non-present (PROT_NONE or NUMA), and the TLB is flushed.
During that time, a CPU may continue writing to the page.
This is fine most of the time, however compaction or the NUMA migration
code may come in, and migrate the page away.
When that happens, the CPU may continue writing, through the cached
translation, to what is no longer the current memory location of the
process.
This only affects x86, which has a somewhat optimistic pte_accessible.
All other architectures appear to be safe, and will either always flush,
or flush whenever there is a valid mapping, even with no permissions
(SPARC).
The basic race looks like this:
CPU A CPU B CPU C
load TLB entry
make entry PTE/PMD_NUMA
fault on entry
read/write old page
start migrating page
change PTE/PMD to new page
read/write old page [*]
flush TLB
reload TLB from new entry
read/write new page
lose data
[*] the old page may belong to a new user at this point!
The obvious fix is to flush remote TLB entries, by making sure that
pte_accessible aware of the fact that PROT_NONE and PROT_NUMA memory may
still be accessible if there is a TLB flush pending for the mm.
This should fix both NUMA migration and compaction.
[mgorman@suse.de: fix build]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3c67f474558748b604e247d92b55dfe89654c81d upstream.
Inaccessible VMA should not be trapping NUMA hint faults. Skip them.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 85fbd722ad0f5d64d1ad15888cd1eb2188bfb557 upstream.
Freezable kthreads and workqueues are fundamentally problematic in
that they effectively introduce a big kernel lock widely used in the
kernel and have already been the culprit of several deadlock
scenarios. This is the latest occurrence.
During resume, libata rescans all the ports and revalidates all
pre-existing devices. If it determines that a device has gone
missing, the device is removed from the system which involves
invalidating block device and flushing bdi while holding driver core
layer locks. Unfortunately, this can race with the rest of device
resume. Because freezable kthreads and workqueues are thawed after
device resume is complete and block device removal depends on
freezable workqueues and kthreads (e.g. bdi_wq, jbd2) to make
progress, this can lead to deadlock - block device removal can't
proceed because kthreads are frozen and kthreads can't be thawed
because device resume is blocked behind block device removal.
839a8e8660b6 ("writeback: replace custom worker pool implementation
with unbound workqueue") made this particular deadlock scenario more
visible but the underlying problem has always been there - the
original forker task and jbd2 are freezable too. In fact, this is
highly likely just one of many possible deadlock scenarios given that
freezer behaves as a big kernel lock and we don't have any debug
mechanism around it.
I believe the right thing to do is getting rid of freezable kthreads
and workqueues. This is something fundamentally broken. For now,
implement a funny workaround in libata - just avoid doing block device
hot[un]plug while the system is frozen. Kernel engineering at its
finest. :(
v2: Add EXPORT_SYMBOL_GPL(pm_freezing) for cases where libata is built
as a module.
v3: Comment updated and polling interval changed to 10ms as suggested
by Rafael.
v4: Add #ifdef CONFIG_FREEZER around the hack as pm_freezing is not
defined when FREEZER is not configured thus breaking build.
Reported by kbuild test robot.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Tomaž Šolc <tomaz.solc@tablix.org>
Reviewed-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=62801
Link: http://lkml.kernel.org/r/20131213174932.GA27070@htj.dyndns.org
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 266ccd505e8acb98717819cef9d91d66c7b237cc upstream.
ae7f164a09 ("cgroup: move cgroup->subsys[] assignment to
online_css()") moved cgroup->subsys[] assignements later in
cgroup_create() but didn't update error handling path accordingly
leading to the following oops and leaking later css's after an
online_css() failure. The oops is from cgroup destruction path being
invoked on the partially constructed cgroup which is not ready to
handle empty slots in cgrp->subsys[] array.
BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
IP: [<ffffffff810eeaa8>] cgroup_destroy_locked+0x118/0x2f0
PGD a780a067 PUD aadbe067 PMD 0
Oops: 0000 [#1] SMP
Modules linked in:
CPU: 6 PID: 7360 Comm: mkdir Not tainted 3.13.0-rc2+ #69
Hardware name:
task: ffff8800b9dbec00 ti: ffff8800a781a000 task.ti: ffff8800a781a000
RIP: 0010:[<ffffffff810eeaa8>] [<ffffffff810eeaa8>] cgroup_destroy_locked+0x118/0x2f0
RSP: 0018:ffff8800a781bd98 EFLAGS: 00010282
RAX: ffff880586903878 RBX: ffff880586903800 RCX: ffff880586903820
RDX: ffff880586903860 RSI: ffff8800a781bdb0 RDI: ffff880586903820
RBP: ffff8800a781bde8 R08: ffff88060e0b8048 R09: ffffffff811d7bc1
R10: 000000000000008c R11: 0000000000000001 R12: ffff8800a72286c0
R13: 0000000000000000 R14: ffffffff81cf7a40 R15: 0000000000000001
FS: 00007f60ecda57a0(0000) GS:ffff8806272c0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000008 CR3: 00000000a7a03000 CR4: 00000000000007e0
Stack:
ffff880586903860 ffff880586903910 ffff8800a72286c0 ffff880586903820
ffffffff81cf7a40 ffff880586903800 ffff88060e0b8018 ffffffff81cf7a40
ffff8800b9dbec00 ffff8800b9dbf098 ffff8800a781bec8 ffffffff810ef5bf
Call Trace:
[<ffffffff810ef5bf>] cgroup_mkdir+0x55f/0x5f0
[<ffffffff811c90ae>] vfs_mkdir+0xee/0x140
[<ffffffff811cb07e>] SyS_mkdirat+0x6e/0xf0
[<ffffffff811c6a19>] SyS_mkdir+0x19/0x20
[<ffffffff8169e569>] system_call_fastpath+0x16/0x1b
This patch moves reference bumping inside online_css() loop, clears
css_ar[] as css's are brought online successfully, and updates
err_destroy path so that either a css is fully online and destroyed by
cgroup_destroy_locked() or the error path frees it. This creates a
duplicate css free logic in the error path but it will be cleaned up
soon.
v2: Li pointed out that cgroup_destroy_locked() would do NULL-deref if
invoked with a cgroup which doesn't have all css's populated.
Update cgroup_destroy_locked() so that it skips NULL css's.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Reported-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 757dfcaa41844595964f1220f1d33182dae49976 upstream.
This patch touches the RT group scheduling case.
Functions inc_rt_prio_smp() and dec_rt_prio_smp() change (global) rq's
priority, while rt_rq passed to them may be not the top-level rt_rq.
This is wrong, because changing of priority on a child level does not
guarantee that the priority is the highest all over the rq. So, this
leak makes RT balancing unusable.
The short example: the task having the highest priority among all rq's
RT tasks (no one other task has the same priority) are waking on a
throttle rt_rq. The rq's cpupri is set to the task's priority
equivalent, but real rq->rt.highest_prio.curr is less.
The patch below fixes the problem.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
CC: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/49231385567953@web4m.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c4602c1c818bd6626178d6d3fcc152d9f2f48ac0 upstream.
Ftrace currently initializes only the online CPUs. This implementation has
two problems:
- If we online a CPU after we enable the function profile, and then run the
test, we will lose the trace information on that CPU.
Steps to reproduce:
# echo 0 > /sys/devices/system/cpu/cpu1/online
# cd <debugfs>/tracing/
# echo <some function name> >> set_ftrace_filter
# echo 1 > function_profile_enabled
# echo 1 > /sys/devices/system/cpu/cpu1/online
# run test
- If we offline a CPU before we enable the function profile, we will not clear
the trace information when we enable the function profile. It will trouble
the users.
Steps to reproduce:
# cd <debugfs>/tracing/
# echo <some function name> >> set_ftrace_filter
# echo 1 > function_profile_enabled
# run test
# cat trace_stat/function*
# echo 0 > /sys/devices/system/cpu/cpu1/online
# echo 0 > function_profile_enabled
# echo 1 > function_profile_enabled
# cat trace_stat/function*
# run test
# cat trace_stat/function*
So it is better that we initialize the ftrace profiler for each possible cpu
every time we enable the function profile instead of just the online ones.
Link: http://lkml.kernel.org/r/1387178401-10619-1-git-send-email-miaox@cn.fujitsu.com
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c97102ba96324da330078ad8619ba4dfe840dbe3 upstream.
Commit 1b3a5d02ee07 ("reboot: move arch/x86 reboot= handling to generic
kernel") moved reboot= handling to generic code. In the process it also
removed the code in native_machine_shutdown() which are moving reboot
process to reboot_cpu/cpu0.
I guess that thought must have been that all reboot paths are calling
migrate_to_reboot_cpu(), so we don't need this special handling. But
kexec reboot path (kernel_kexec()) is not calling
migrate_to_reboot_cpu() so above change broke kexec. Now reboot can
happen on non-boot cpu and when INIT is sent in second kerneo to bring
up BP, it brings down the machine.
So start calling migrate_to_reboot_cpu() in kexec reboot path to avoid
this problem.
Bisected by WANG Chao.
Reported-by: Matthew Whitehead <mwhitehe@redhat.com>
Reported-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Tested-by: Baoquan He <bhe@redhat.com>
Tested-by: WANG Chao <chaowang@redhat.com>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f9f9ffc237dd924f048204e8799da74f9ecf40cf upstream.
throttle_cfs_rq() doesn't check to make sure that period_timer is running,
and while update_curr/assign_cfs_runtime does, a concurrently running
period_timer on another cpu could cancel itself between this cpu's
update_curr and throttle_cfs_rq(). If there are no other cfs_rqs running
in the tg to restart the timer, this causes the cfs_rq to be stranded
forever.
Fix this by calling __start_cfs_bandwidth() in throttle if the timer is
inactive.
(Also add some sched_debug lines for cfs_bandwidth.)
Tested: make a run/sleep task in a cgroup, loop switching the cgroup
between 1ms/100ms quota and unlimited, checking for timer_active=0 and
throttled=1 as a failure. With the throttle_cfs_rq() change commented out
this fails, with the full patch it passes.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181632.22647.84174.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f12d5bfceb7e1f9051563381ec047f7f13956c3c upstream.
The hugepage code had the exact same bug that regular pages had in
commit 7485d0d3758e ("futexes: Remove rw parameter from
get_futex_key()").
The regular page case was fixed by commit 9ea71503a8ed ("futex: Fix
regression with read only mappings"), but the transparent hugepage case
(added in a5b338f2b0b1: "thp: update futex compound knowledge") case
remained broken.
Found by Dave Jones and his trinity tool.
Reported-and-tested-by: Dave Jones <davej@fedoraproject.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4fc9bbf98fd66f879e628d8537ba7c240be2b58e upstream.
Add a flag to tell the PCI subsystem that kernel is shutting down in
preparation to kexec a kernel. Add code in PCI subsystem to use this flag
to clear Bus Master bit on PCI devices only in case of kexec reboot.
This fixes a power-off problem on Acer Aspire V5-573G and likely other
machines and avoids any other issues caused by clearing Bus Master bit on
PCI devices in normal shutdown path. The problem was introduced by
b566a22c2332 ("PCI: disable Bus Master on PCI device shutdown").
This patch is based on discussion at
http://marc.info/?l=linux-pci&m=138425645204355&w=2
Link: https://bugzilla.kernel.org/show_bug.cgi?id=63861
Reported-by: Chang Liu <cl91tp@gmail.com>
Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ac01810c9d2814238f08a227062e66a35a0e1ea2 upstream.
When the system enters suspend, it disables all interrupts in
suspend_device_irqs(), including the interrupts marked EARLY_RESUME.
On the resume side things are different. The EARLY_RESUME interrupts
are reenabled in sys_core_ops->resume and the non EARLY_RESUME
interrupts are reenabled in the normal system resume path.
When suspend_noirq() failed or suspend is aborted for any other
reason, we might omit the resume side call to sys_core_ops->resume()
and therefor the interrupts marked EARLY_RESUME are not reenabled and
stay disabled forever.
To solve this, enable all irqs unconditionally in irq_resume()
regardless whether interrupts marked EARLY_RESUMEhave been already
enabled or not.
This might try to reenable already enabled interrupts in the non
failure case, but the only affected platform is XEN and it has been
confirmed that it does not cause any side effects.
[ tglx: Massaged changelog. ]
Signed-off-by: Laxman Dewangan <ldewangan@nvidia.com>
Acked-by-and-tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Heiko Stuebner <heiko@sntech.de>
Reviewed-by: Pavel Machek <pavel@ucw.cz>
Cc: <ian.campbell@citrix.com>
Cc: <rjw@rjwysocki.net>
Cc: <len.brown@intel.com>
Cc: <gregkh@linuxfoundation.org>
Link: http://lkml.kernel.org/r/1385388587-16442-1-git-send-email-ldewangan@nvidia.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4be77398ac9d948773116b6be4a3c91b3d6ea18c upstream.
Since commit 1e75fa8be9f (time: Condense timekeeper.xtime
into xtime_sec - merged in v3.6), there has been an problem
with the error accounting in the timekeeping code, such that
when truncating to nanoseconds, we round up to the next nsec,
but the balancing adjustment to the ntp_error value was dropped.
This causes 1ns per tick drift forward of the clock.
In 3.7, this logic was isolated to only GENERIC_TIME_VSYSCALL_OLD
architectures (s390, ia64, powerpc).
The fix is simply to balance the accounting and to subtract the
added nanosecond from ntp_error. This allows the internal long-term
clock steering to keep the clock accurate.
While this fix removes the regression added in 1e75fa8be9f, the
ideal solution is to move away from GENERIC_TIME_VSYSCALL_OLD
and use the new VSYSCALL method, which avoids entirely the
nanosecond granular rounding, and the resulting short-term clock
adjustment oscillation needed to keep long term accurate time.
[ jstultz: Many thanks to Martin for his efforts identifying this
subtle bug, and providing the fix. ]
Originally-from: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Paul Turner <pjt@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1385149491-20307-1-git-send-email-john.stultz@linaro.org
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a97ad0c4b447a132a322cedc3a5f7fa4cab4b304 upstream.
The current code requires that the scheduled update of the RTC happens
in the closest tick to the half of the second. This seems to be
difficult to achieve reliably. The scheduled work may be missing the
target time by a tick or two and be constantly rescheduled every second.
Relax the limit to 10 ticks. As a typical RTC drifts in the 11-minute
update interval by several milliseconds, this shouldn't affect the
overall accuracy of the RTC much.
Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0fc0287c9ed1ffd3706f8b4d9b314aa102ef1245 upstream.
Juri hit the below lockdep report:
[ 4.303391] ======================================================
[ 4.303392] [ INFO: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected ]
[ 4.303394] 3.12.0-dl-peterz+ #144 Not tainted
[ 4.303395] ------------------------------------------------------
[ 4.303397] kworker/u4:3/689 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire:
[ 4.303399] (&p->mems_allowed_seq){+.+...}, at: [<ffffffff8114e63c>] new_slab+0x6c/0x290
[ 4.303417]
[ 4.303417] and this task is already holding:
[ 4.303418] (&(&q->__queue_lock)->rlock){..-...}, at: [<ffffffff812d2dfb>] blk_execute_rq_nowait+0x5b/0x100
[ 4.303431] which would create a new lock dependency:
[ 4.303432] (&(&q->__queue_lock)->rlock){..-...} -> (&p->mems_allowed_seq){+.+...}
[ 4.303436]
[ 4.303898] the dependencies between the lock to be acquired and SOFTIRQ-irq-unsafe lock:
[ 4.303918] -> (&p->mems_allowed_seq){+.+...} ops: 2762 {
[ 4.303922] HARDIRQ-ON-W at:
[ 4.303923] [<ffffffff8108ab9a>] __lock_acquire+0x65a/0x1ff0
[ 4.303926] [<ffffffff8108cbe3>] lock_acquire+0x93/0x140
[ 4.303929] [<ffffffff81063dd6>] kthreadd+0x86/0x180
[ 4.303931] [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0
[ 4.303933] SOFTIRQ-ON-W at:
[ 4.303933] [<ffffffff8108abcc>] __lock_acquire+0x68c/0x1ff0
[ 4.303935] [<ffffffff8108cbe3>] lock_acquire+0x93/0x140
[ 4.303940] [<ffffffff81063dd6>] kthreadd+0x86/0x180
[ 4.303955] [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0
[ 4.303959] INITIAL USE at:
[ 4.303960] [<ffffffff8108a884>] __lock_acquire+0x344/0x1ff0
[ 4.303963] [<ffffffff8108cbe3>] lock_acquire+0x93/0x140
[ 4.303966] [<ffffffff81063dd6>] kthreadd+0x86/0x180
[ 4.303969] [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0
[ 4.303972] }
Which reports that we take mems_allowed_seq with interrupts enabled. A
little digging found that this can only be from
cpuset_change_task_nodemask().
This is an actual deadlock because an interrupt doing an allocation will
hit get_mems_allowed()->...->__read_seqcount_begin(), which will spin
forever waiting for the write side to complete.
Cc: John Stultz <john.stultz@linaro.org>
Cc: Mel Gorman <mgorman@suse.de>
Reported-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@gmail.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e605b36575e896edd8161534550c9ea021b03bc0 upstream.
If a cgroup file implements either read_map() or read_seq_string(),
such file is served using seq_file by overriding file->f_op to
cgroup_seqfile_operations, which also overrides the release method to
single_release() from cgroup_file_release().
Because cgroup_file_open() didn't use to acquire any resources, this
used to be fine, but since f7d58818ba42 ("cgroup: pin
cgroup_subsys_state when opening a cgroupfs file"), cgroup_file_open()
pins the css (cgroup_subsys_state) which is put by
cgroup_file_release(). The patch forgot to update the release path
for seq_files and each open/release cycle leaks a css reference.
Fix it by updating cgroup_file_release() to also handle seq_files and
using it for seq_file release path too.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e5fca243abae1445afbfceebda5f08462ef869d3 upstream.
Since be44562613851 ("cgroup: remove synchronize_rcu() from
cgroup_diput()"), cgroup destruction path makes use of workqueue. css
freeing is performed from a work item from that point on and a later
commit, ea15f8ccdb430 ("cgroup: split cgroup destruction into two
steps"), moves css offlining to workqueue too.
As cgroup destruction isn't depended upon for memory reclaim, the
destruction work items were put on the system_wq; unfortunately, some
controller may block in the destruction path for considerable duration
while holding cgroup_mutex. As large part of destruction path is
synchronized through cgroup_mutex, when combined with high rate of
cgroup removals, this has potential to fill up system_wq's max_active
of 256.
Also, it turns out that memcg's css destruction path ends up queueing
and waiting for work items on system_wq through work_on_cpu(). If
such operation happens while system_wq is fully occupied by cgroup
destruction work items, work_on_cpu() can't make forward progress
because system_wq is full and other destruction work items on
system_wq can't make forward progress because the work item waiting
for work_on_cpu() is holding cgroup_mutex, leading to deadlock.
This can be fixed by queueing destruction work items on a separate
workqueue. This patch creates a dedicated workqueue -
cgroup_destroy_wq - for this purpose. As these work items shouldn't
have inter-dependencies and mostly serialized by cgroup_mutex anyway,
giving high concurrency level doesn't buy anything and the workqueue's
@max_active is set to 1 so that destruction work items are executed
one by one on each CPU.
Hugh Dickins: Because cgroup_init() is run before init_workqueues(),
cgroup_destroy_wq can't be allocated from cgroup_init(). Do it from a
separate core_initcall(). In the future, we probably want to reorder
so that workqueue init happens before cgroup_init().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Hugh Dickins <hughd@google.com>
Reported-by: Shawn Bohrer <shawn.bohrer@gmail.com>
Link: http://lkml.kernel.org/r/20131111220626.GA7509@sbohrermbp13-local.rgmadvisors.com
Link: http://lkml.kernel.org/g/alpine.LNX.2.00.1310301606080.2333@eggly.anvils
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8a2b75384444488fc4f2cbb9f0921b6a0794838f upstream.
An ordered workqueue implements execution ordering by using single
pool_workqueue with max_active == 1. On a given pool_workqueue, work
items are processed in FIFO order and limiting max_active to 1
enforces the queued work items to be processed one by one.
Unfortunately, 4c16bd327c ("workqueue: implement NUMA affinity for
unbound workqueues") accidentally broke this guarantee by applying
NUMA affinity to ordered workqueues too. On NUMA setups, an ordered
workqueue would end up with separate pool_workqueues for different
nodes. Each pool_workqueue still limits max_active to 1 but multiple
work items may be executed concurrently and out of order depending on
which node they are queued to.
Fix it by using dedicated ordered_wq_attrs[] when creating ordered
workqueues. The new attrs match the unbound ones except that no_numa
is always set thus forcing all NUMA nodes to share the default
pool_workqueue.
While at it, add sanity check in workqueue creation path which
verifies that an ordered workqueues has only the default
pool_workqueue.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Libin <huawei.libin@huawei.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8a56d7761d2d041ae5e8215d20b4167d8aa93f51 upstream.
Commit 8c4f3c3fa9681 "ftrace: Check module functions being traced on reload"
fixed module loading and unloading with respect to function tracing, but
it missed the function graph tracer. If you perform the following
# cd /sys/kernel/debug/tracing
# echo function_graph > current_tracer
# modprobe nfsd
# echo nop > current_tracer
You'll get the following oops message:
------------[ cut here ]------------
WARNING: CPU: 2 PID: 2910 at /linux.git/kernel/trace/ftrace.c:1640 __ftrace_hash_rec_update.part.35+0x168/0x1b9()
Modules linked in: nfsd exportfs nfs_acl lockd ipt_MASQUERADE sunrpc ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 ip6table_filter ip6_tables uinput snd_hda_codec_idt
CPU: 2 PID: 2910 Comm: bash Not tainted 3.13.0-rc1-test #7
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./To be filled by O.E.M., BIOS SDBLI944.86P 05/08/2007
0000000000000668 ffff8800787efcf8 ffffffff814fe193 ffff88007d500000
0000000000000000 ffff8800787efd38 ffffffff8103b80a 0000000000000668
ffffffff810b2b9a ffffffff81a48370 0000000000000001 ffff880037aea000
Call Trace:
[<ffffffff814fe193>] dump_stack+0x4f/0x7c
[<ffffffff8103b80a>] warn_slowpath_common+0x81/0x9b
[<ffffffff810b2b9a>] ? __ftrace_hash_rec_update.part.35+0x168/0x1b9
[<ffffffff8103b83e>] warn_slowpath_null+0x1a/0x1c
[<ffffffff810b2b9a>] __ftrace_hash_rec_update.part.35+0x168/0x1b9
[<ffffffff81502f89>] ? __mutex_lock_slowpath+0x364/0x364
[<ffffffff810b2cc2>] ftrace_shutdown+0xd7/0x12b
[<ffffffff810b47f0>] unregister_ftrace_graph+0x49/0x78
[<ffffffff810c4b30>] graph_trace_reset+0xe/0x10
[<ffffffff810bf393>] tracing_set_tracer+0xa7/0x26a
[<ffffffff810bf5e1>] tracing_set_trace_write+0x8b/0xbd
[<ffffffff810c501c>] ? ftrace_return_to_handler+0xb2/0xde
[<ffffffff811240a8>] ? __sb_end_write+0x5e/0x5e
[<ffffffff81122aed>] vfs_write+0xab/0xf6
[<ffffffff8150a185>] ftrace_graph_caller+0x85/0x85
[<ffffffff81122dbd>] SyS_write+0x59/0x82
[<ffffffff8150a185>] ftrace_graph_caller+0x85/0x85
[<ffffffff8150a2d2>] system_call_fastpath+0x16/0x1b
---[ end trace 940358030751eafb ]---
The above mentioned commit didn't go far enough. Well, it covered the
function tracer by adding checks in __register_ftrace_function(). The
problem is that the function graph tracer circumvents that (for a slight
efficiency gain when function graph trace is running with a function
tracer. The gain was not worth this).
The problem came with ftrace_startup() which should always be called after
__register_ftrace_function(), if you want this bug to be completely fixed.
Anyway, this solution moves __register_ftrace_function() inside of
ftrace_startup() and removes the need to call them both.
Reported-by: Dave Wysochanski <dwysocha@redhat.com>
Fixes: ed926f9b35cd ("ftrace: Use counters to enable functions to trace")
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d3aea84a4ace5ff9ce7fb7714cee07bebef681c2 upstream.
...to make it clear what the intent behind each record's operation was.
In many cases you can infer this, based on the context of the syscall
and the result. In other cases it's not so obvious. For instance, in
the case where you have a file being renamed over another, you'll have
two different records with the same filename but different inode info.
By logging this information we can clearly tell which one was created
and which was deleted.
This fixes what was broken in commit bfcec708.
Commit 79f6530c should also be backported to stable v3.7+.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 64fbff9ae0a0a843365d922e0057fc785f23f0e3 upstream.
We leak 4 bytes of kernel stack in response to an AUDIT_GET request as
we miss to initialize the mask member of status_set. Fix that.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric Paris <eparis@redhat.com>
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4d8fe7376a12bf4524783dd95cbc00f1fece6232 upstream.
Using the nlmsg_len member of the netlink header to test if the message
is valid is wrong as it includes the size of the netlink header itself.
Thereby allowing to send short netlink messages that pass those checks.
Use nlmsg_len() instead to test for the right message length. The result
of nlmsg_len() is guaranteed to be non-negative as the netlink message
already passed the checks of nlmsg_ok().
Also switch to min_t() to please checkpatch.pl.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric Paris <eparis@redhat.com>
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0868a5e150bc4c47e7a003367cd755811eb41e0b upstream.
When the audit=1 kernel parameter is absent and auditd is not running,
AUDIT_USER_AVC messages are being silently discarded.
AUDIT_USER_AVC messages should be sent to userspace using printk(), as
mentioned in the commit message of 4a4cd633 ("AUDIT: Optimise the
audit-disabled case for discarding user messages").
When audit_enabled is 0, audit_receive_msg() discards all user messages
except for AUDIT_USER_AVC messages. However, audit_log_common_recv_msg()
refuses to allocate an audit_buffer if audit_enabled is 0. The fix is to
special case AUDIT_USER_AVC messages in both functions.
It looks like commit 50397bd1 ("[AUDIT] clean up audit_receive_msg()")
introduced this bug.
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric Paris <eparis@redhat.com>
Cc: linux-audit@redhat.com
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6a0c7cd33075f6b7f1d80145bb19812beb3fc5c9 upstream.
I have received a report about the BUG_ON() in free_basic_memory_bitmaps()
triggering mysteriously during an aborted s2disk hibernation attempt.
The only way I can explain that is that /dev/snapshot was first
opened for writing (resume mode), then closed and then opened again
for reading and closed again without freezing tasks. In that case
the first invocation of snapshot_open() would set the free_bitmaps
flag in snapshot_state, which is a static variable. That flag
wouldn't be cleared later and the second invocation of snapshot_open()
would just leave it like that, so the subsequent snapshot_release()
would see data->frozen set and free_basic_memory_bitmaps() would be
called unnecessarily.
To prevent that from happening clear data->free_bitmaps in
snapshot_open() when the file is being opened for reading (hibernate
mode).
In addition to that, replace the BUG_ON() in free_basic_memory_bitmaps()
with a WARN_ON() as the kernel can continue just fine if the condition
checked by that macro occurs.
Fixes: aab172891542 (PM / hibernate: Fix user space driven resume regression)
Reported-by: Oliver Lorenz <olli@olorenz.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|