summaryrefslogtreecommitdiff
path: root/mm/compaction.c
AgeCommit message (Collapse)Author
2012-10-19mm: compaction: correct the nr_strict va isolated check for CMAMel Gorman
Thierry reported that the "iron out" patch for isolate_freepages_block() had problems due to the strict check being too strict with "mm: compaction: Iron out isolate_freepages_block() and isolate_freepages_range() -fix1". It's possible that more pages than necessary are isolated but the check still fails and I missed that this fix was not picked up before RC1. This same problem has been identified in 3.7-RC1 by Tony Prisk and should be addressed by the following patch. Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Tony Prisk <linux@prisktech.co.nz> Reported-by: Thierry Reding <thierry.reding@avionic-design.de> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09CMA: migrate mlocked pagesMinchan Kim
Presently CMA cannot migrate mlocked pages so it ends up failing to allocate contiguous memory space. This patch makes mlocked pages be migrated out. Of course, it can affect realtime processes but in CMA usecase, contiguous memory allocation failing is far worse than access latency to an mlocked page being variable while CMA is running. If someone wants to make the system realtime, he shouldn't enable CMA because stalls can still happen at random times. [akpm@linux-foundation.org: tweak comment text, per Mel] Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: clear PG_migrate_skip based on compaction and reclaim activityMel Gorman
Compaction caches if a pageblock was scanned and no pages were isolated so that the pageblocks can be skipped in the future to reduce scanning. This information is not cleared by the page allocator based on activity due to the impact it would have to the page allocator fast paths. Hence there is a requirement that something clear the cache or pageblocks will be skipped forever. Currently the cache is cleared if there were a number of recent allocation failures and it has not been cleared within the last 5 seconds. Time-based decisions like this are terrible as they have no relationship to VM activity and is basically a big hammer. Unfortunately, accurate heuristics would add cost to some hot paths so this patch implements a rough heuristic. There are two cases where the cache is cleared. 1. If a !kswapd process completes a compaction cycle (migrate and free scanner meet), the zone is marked compact_blockskip_flush. When kswapd goes to sleep, it will clear the cache. This is expected to be the common case where the cache is cleared. It does not really matter if kswapd happens to be asleep or going to sleep when the flag is set as it will be woken on the next allocation request. 2. If there have been multiple failures recently and compaction just finished being deferred then a process will clear the cache and start a full scan. This situation happens if there are multiple high-order allocation requests under heavy memory pressure. The clearing of the PG_migrate_skip bits and other scans is inherently racy but the race is harmless. For allocations that can fail such as THP, they will simply fail. For requests that cannot fail, they will retry the allocation. Tests indicated that scanning rates were roughly similar to when the time-based heuristic was used and the allocation success rates were similar. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: Restart compaction from near where it left offMel Gorman
This is almost entirely based on Rik's previous patches and discussions with him about how this might be implemented. Order > 0 compaction stops when enough free pages of the correct page order have been coalesced. When doing subsequent higher order allocations, it is possible for compaction to be invoked many times. However, the compaction code always starts out looking for things to compact at the start of the zone, and for free pages to compact things to at the end of the zone. This can cause quadratic behaviour, with isolate_freepages starting at the end of the zone each time, even though previous invocations of the compaction code already filled up all free memory on that end of the zone. This can cause isolate_freepages to take enormous amounts of CPU with certain workloads on larger memory systems. This patch caches where the migration and free scanner should start from on subsequent compaction invocations using the pageblock-skip information. When compaction starts it begins from the cached restart points and will update the cached restart points until a page is isolated or a pageblock is skipped that would have been scanned by synchronous compaction. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: cache if a pageblock was scanned and no pages were isolatedMel Gorman
When compaction was implemented it was known that scanning could potentially be excessive. The ideal was that a counter be maintained for each pageblock but maintaining this information would incur a severe penalty due to a shared writable cache line. It has reached the point where the scanning costs are a serious problem, particularly on long-lived systems where a large process starts and allocates a large number of THPs at the same time. Instead of using a shared counter, this patch adds another bit to the pageblock flags called PG_migrate_skip. If a pageblock is scanned by either migrate or free scanner and 0 pages were isolated, the pageblock is marked to be skipped in the future. When scanning, this bit is checked before any scanning takes place and the block skipped if set. The main difficulty with a patch like this is "when to ignore the cached information?" If it's ignored too often, the scanning rates will still be excessive. If the information is too stale then allocations will fail that might have otherwise succeeded. In this patch o CMA always ignores the information o If the migrate and free scanner meet then the cached information will be discarded if it's at least 5 seconds since the last time the cache was discarded o If there are a large number of allocation failures, discard the cache. The time-based heuristic is very clumsy but there are few choices for a better event. Depending solely on multiple allocation failures still allows excessive scanning when THP allocations are failing in quick succession due to memory pressure. Waiting until memory pressure is relieved would cause compaction to continually fail instead of using reclaim/compaction to try allocate the page. The time-based mechanism is clumsy but a better option is not obvious. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Kyungmin Park <kyungmin.park@samsung.com> Cc: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09revert "mm: have order > 0 compaction start off where it left"Mel Gorman
This reverts commit 7db8889ab05b ("mm: have order > 0 compaction start off where it left") and commit de74f1cc ("mm: have order > 0 compaction start near a pageblock with free pages"). These patches were a good idea and tests confirmed that they massively reduced the amount of scanning but the implementation is complex and tricky to understand. A later patch will cache what pageblocks should be skipped and reimplements the concept of compact_cached_free_pfn on top for both migration and free scanners. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: acquire the zone->lock as late as possibleMel Gorman
Compaction's free scanner acquires the zone->lock when checking for PageBuddy pages and isolating them. It does this even if there are no PageBuddy pages in the range. This patch defers acquiring the zone lock for as long as possible. In the event there are no free pages in the pageblock then the lock will not be acquired at all which reduces contention on zone->lock. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Acked-by: Minchan Kim <minchan@kernel.org> Tested-by: Peter Ujfalusi <peter.ujfalusi@ti.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: acquire the zone->lru_lock as late as possibleMel Gorman
Richard Davies and Shaohua Li have both reported lock contention problems in compaction on the zone and LRU locks as well as significant amounts of time being spent in compaction. This series aims to reduce lock contention and scanning rates to reduce that CPU usage. Richard reported at https://lkml.org/lkml/2012/9/21/91 that this series made a big different to a problem he reported in August: http://marc.info/?l=kvm&m=134511507015614&w=2 Patch 1 defers acquiring the zone->lru_lock as long as possible. Patch 2 defers acquiring the zone->lock as lock as possible. Patch 3 reverts Rik's "skip-free" patches as the core concept gets reimplemented later and the remaining patches are easier to understand if this is reverted first. Patch 4 adds a pageblock-skip bit to the pageblock flags to cache what pageblocks should be skipped by the migrate and free scanners. This drastically reduces the amount of scanning compaction has to do. Patch 5 reimplements something similar to Rik's idea except it uses the pageblock-skip information to decide where the scanners should restart from and does not need to wrap around. I tested this on 3.6-rc6 + linux-next/akpm. Kernels tested were akpm-20120920 3.6-rc6 + linux-next/akpm as of Septeber 20th, 2012 lesslock Patches 1-6 revert Patches 1-7 cachefail Patches 1-8 skipuseless Patches 1-9 Stress high-order allocation tests looked ok. Success rates are more or less the same with the full series applied but there is an expectation that there is less opportunity to race with other allocation requests if there is less scanning. The time to complete the tests did not vary that much and are uninteresting as were the vmstat statistics so I will not present them here. Using ftrace I recorded how much scanning was done by compaction and got this 3.6.0-rc6 3.6.0-rc6 3.6.0-rc6 3.6.0-rc6 3.6.0-rc6 akpm-20120920 lockless revert-v2r2 cachefail skipuseless Total free scanned 360753976 515414028 565479007 17103281 18916589 Total free isolated 2852429 3597369 4048601 670493 727840 Total free efficiency 0.0079% 0.0070% 0.0072% 0.0392% 0.0385% Total migrate scanned 247728664 822729112 1004645830 17946827 14118903 Total migrate isolated 2555324 3245937 3437501 616359 658616 Total migrate efficiency 0.0103% 0.0039% 0.0034% 0.0343% 0.0466% The efficiency is worthless because of the nature of the test and the number of failures. The really interesting point as far as this patch series is concerned is the number of pages scanned. Note that reverting Rik's patches massively increases the number of pages scanned indicating that those patches really did make a difference to CPU usage. However, caching what pageblocks should be skipped has a much higher impact. With patches 1-8 applied, free page and migrate page scanning are both reduced by 95% in comparison to the akpm kernel. If the basic concept of Rik's patches are implemened on top then scanning then the free scanner barely changed but migrate scanning was further reduced. That said, tests on 3.6-rc5 indicated that the last patch had greater impact than what was measured here so it is a bit variable. One way or the other, this series has a large impact on the amount of scanning compaction does when there is a storm of THP allocations. This patch: Compaction's migrate scanner acquires the zone->lru_lock when scanning a range of pages looking for LRU pages to acquire. It does this even if there are no LRU pages in the range. If multiple processes are compacting then this can cause severe locking contention. To make matters worse commit b2eef8c0 ("mm: compaction: minimise the time IRQs are disabled while isolating pages for migration") releases the lru_lock every SWAP_CLUSTER_MAX pages that are scanned. This patch makes two changes to how the migrate scanner acquires the LRU lock. First, it only releases the LRU lock every SWAP_CLUSTER_MAX pages if the lock is contended. This reduces the number of times it unnecessarily disables and re-enables IRQs. The second is that it defers acquiring the LRU lock for as long as possible. If there are no LRU pages or the only LRU pages are transhuge then the LRU lock will not be acquired at all which reduces contention on zone->lru_lock. [minchan@kernel.org: augment comment] [akpm@linux-foundation.org: tweak comment text] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: Update try_to_compact_pages()kerneldoc commentMel Gorman
Parameters were added without documentation, tut tut. Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: move fatal signal check out of compact_checklock_irqsaveMel Gorman
Commit c67fe3752abe ("mm: compaction: Abort async compaction if locks are contended or taking too long") addressed a lock contention problem in compaction by introducing compact_checklock_irqsave() that effecively aborting async compaction in the event of compaction. To preserve existing behaviour it also moved a fatal_signal_pending() check into compact_checklock_irqsave() but that is very misleading. It "hides" the check within a locking function but has nothing to do with locking as such. It just happens to work in a desirable fashion. This patch moves the fatal_signal_pending() check to isolate_migratepages_range() where it belongs. Arguably the same check should also happen when isolating pages for freeing but it's overkill. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Shaohua Li <shli@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: abort compaction loop if lock is contended or run too longShaohua Li
isolate_migratepages_range() might isolate no pages if for example when zone->lru_lock is contended and running asynchronous compaction. In this case, we should abort compaction, otherwise, compact_zone will run a useless loop and make zone->lru_lock is even contended. An additional check is added to ensure that cc.migratepages and cc.freepages get properly drained whan compaction is aborted. [minchan@kernel.org: Putback pages isolated for migration if aborting] [akpm@linux-foundation.org: compact_zone_order requires non-NULL arg contended] [akpm@linux-foundation.org: make compact_zone_order() require non-NULL arg `contended'] [minchan@kernel.org: Putback pages isolated for migration if aborting] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Shaohua Li <shli@fusionio.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09cma: fix watermark checkingBartlomiej Zolnierkiewicz
* Add ALLOC_CMA alloc flag and pass it to [__]zone_watermark_ok() (from Minchan Kim). * During watermark check decrease available free pages number by free CMA pages number if necessary (unmovable allocations cannot use pages from CMA areas). Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: capture a suitable high-order page immediately when it is ↵Mel Gorman
made available While compaction is migrating pages to free up large contiguous blocks for allocation it races with other allocation requests that may steal these blocks or break them up. This patch alters direct compaction to capture a suitable free page as soon as it becomes available to reduce this race. It uses similar logic to split_free_page() to ensure that watermarks are still obeyed. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: update comment in try_to_compact_pagesMel Gorman
Allocation success rates have been far lower since 3.4 due to commit fe2c2a106663 ("vmscan: reclaim at order 0 when compaction is enabled"). This commit was introduced for good reasons and it was known in advance that the success rates would suffer but it was justified on the grounds that the high allocation success rates were achieved by aggressive reclaim. Success rates are expected to suffer even more in 3.6 due to commit 7db8889ab05b ("mm: have order > 0 compaction start off where it left") which testing has shown to severely reduce allocation success rates under load - to 0% in one case. This series aims to improve the allocation success rates without regressing the benefits of commit fe2c2a106663. The series is based on latest mmotm and takes into account the __GFP_NO_KSWAPD flag is going away. Patch 1 updates a stale comment seeing as I was in the general area. Patch 2 updates reclaim/compaction to reclaim pages scaled on the number of recent failures. Patch 3 captures suitable high-order pages freed by compaction to reduce races with parallel allocation requests. Patch 4 fixes the upstream commit [7db8889a: mm: have order > 0 compaction start off where it left] to enable compaction again Patch 5 identifies when compacion is taking too long due to contention and aborts. STRESS-HIGHALLOC 3.6-rc1-akpm full-series Pass 1 36.00 ( 0.00%) 51.00 (15.00%) Pass 2 42.00 ( 0.00%) 63.00 (21.00%) while Rested 86.00 ( 0.00%) 86.00 ( 0.00%) From http://www.csn.ul.ie/~mel/postings/mmtests-20120424/global-dhp__stress-highalloc-performance-ext3/hydra/comparison.html I know that the allocation success rates in 3.3.6 was 78% in comparison to 36% in in the current akpm tree. With the full series applied, the success rates are up to around 51% with some variability in the results. This is not as high a success rate but it does not reclaim excessively which is a key point. MMTests Statistics: vmstat Page Ins 3050912 3078892 Page Outs 8033528 8039096 Swap Ins 0 0 Swap Outs 0 0 Note that swap in/out rates remain at 0. In 3.3.6 with 78% success rates there were 71881 pages swapped out. Direct pages scanned 70942 122976 Kswapd pages scanned 1366300 1520122 Kswapd pages reclaimed 1366214 1484629 Direct pages reclaimed 70936 105716 Kswapd efficiency 99% 97% Kswapd velocity 1072.550 1182.615 Direct efficiency 99% 85% Direct velocity 55.690 95.672 The kswapd velocity changes very little as expected. kswapd velocity is around the 1000 pages/sec mark where as in kernel 3.3.6 with the high allocation success rates it was 8140 pages/second. Direct velocity is higher as a result of patch 2 of the series but this is expected and is acceptable. The direct reclaim and kswapd velocities change very little. If these get accepted for merging then there is a difficulty in how they should be handled. 7db8889a ("mm: have order > 0 compaction start off where it left") is broken but it is already in 3.6-rc1 and needs to be fixed. However, if just patch 4 from this series is applied then Jim Schutt's workload is known to break again as his workload also requires patch 5. While it would be preferred to have all these patches in 3.6 to improve compaction in general, it would at least be acceptable if just patches 4 and 5 were merged to 3.6 to fix a known problem without breaking compaction completely. On the face of it, that would force __GFP_NO_KSWAPD patches to be merged at the same time but I can do a version of this series with __GFP_NO_KSWAPD change reverted and then rebase it on top of this series. That might be best overall because I note that the __GFP_NO_KSWAPD patch should have removed deferred_compaction from page_alloc.c but it didn't but fixing that causes collisions with this series. This patch: The comment about order applied when the check was order > PAGE_ALLOC_COSTLY_ORDER which has not been the case since c5a73c3d ("thp: use compaction for all allocation orders"). Fixing the comment while I'm in the general area. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-21mm: compaction: Abort async compaction if locks are contended or taking too longMel Gorman
Jim Schutt reported a problem that pointed at compaction contending heavily on locks. The workload is straight-forward and in his own words; The systems in question have 24 SAS drives spread across 3 HBAs, running 24 Ceph OSD instances, one per drive. FWIW these servers are dual-socket Intel 5675 Xeons w/48 GB memory. I've got ~160 Ceph Linux clients doing dd simultaneously to a Ceph file system backed by 12 of these servers. Early in the test everything looks fine procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu------- r b swpd free buff cache si so bi bo in cs us sy id wa st 31 15 0 287216 576 38606628 0 0 2 1158 2 14 1 3 95 0 0 27 15 0 225288 576 38583384 0 0 18 2222016 203357 134876 11 56 17 15 0 28 17 0 219256 576 38544736 0 0 11 2305932 203141 146296 11 49 23 17 0 6 18 0 215596 576 38552872 0 0 7 2363207 215264 166502 12 45 22 20 0 22 18 0 226984 576 38596404 0 0 3 2445741 223114 179527 12 43 23 22 0 and then it goes to pot procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu------- r b swpd free buff cache si so bi bo in cs us sy id wa st 163 8 0 464308 576 36791368 0 0 11 22210 866 536 3 13 79 4 0 207 14 0 917752 576 36181928 0 0 712 1345376 134598 47367 7 90 1 2 0 123 12 0 685516 576 36296148 0 0 429 1386615 158494 60077 8 84 5 3 0 123 12 0 598572 576 36333728 0 0 1107 1233281 147542 62351 7 84 5 4 0 622 7 0 660768 576 36118264 0 0 557 1345548 151394 59353 7 85 4 3 0 223 11 0 283960 576 36463868 0 0 46 1107160 121846 33006 6 93 1 1 0 Note that system CPU usage is very high blocks being written out has dropped by 42%. He analysed this with perf and found perf record -g -a sleep 10 perf report --sort symbol --call-graph fractal,5 34.63% [k] _raw_spin_lock_irqsave | |--97.30%-- isolate_freepages | compaction_alloc | unmap_and_move | migrate_pages | compact_zone | compact_zone_order | try_to_compact_pages | __alloc_pages_direct_compact | __alloc_pages_slowpath | __alloc_pages_nodemask | alloc_pages_vma | do_huge_pmd_anonymous_page | handle_mm_fault | do_page_fault | page_fault | | | |--87.39%-- skb_copy_datagram_iovec | | tcp_recvmsg | | inet_recvmsg | | sock_recvmsg | | sys_recvfrom | | system_call | | __recv | | | | | --100.00%-- (nil) | | | --12.61%-- memcpy --2.70%-- [...] There was other data but primarily it is all showing that compaction is contended heavily on the zone->lock and zone->lru_lock. commit [b2eef8c0: mm: compaction: minimise the time IRQs are disabled while isolating pages for migration] noted that it was possible for migration to hold the lru_lock for an excessive amount of time. Very broadly speaking this patch expands the concept. This patch introduces compact_checklock_irqsave() to check if a lock is contended or the process needs to be scheduled. If either condition is true then async compaction is aborted and the caller is informed. The page allocator will fail a THP allocation if compaction failed due to contention. This patch also introduces compact_trylock_irqsave() which will acquire the lock only if it is not contended and the process does not need to schedule. Reported-by: Jim Schutt <jaschut@sandia.gov> Tested-by: Jim Schutt <jaschut@sandia.gov> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-21mm: have order > 0 compaction start near a pageblock with free pagesMel Gorman
Commit 7db8889ab05b ("mm: have order > 0 compaction start off where it left") introduced a caching mechanism to reduce the amount work the free page scanner does in compaction. However, it has a problem. Consider two process simultaneously scanning free pages C Process A M S F |---------------------------------------| Process B M FS C is zone->compact_cached_free_pfn S is cc->start_pfree_pfn M is cc->migrate_pfn F is cc->free_pfn In this diagram, Process A has just reached its migrate scanner, wrapped around and updated compact_cached_free_pfn accordingly. Simultaneously, Process B finishes isolating in a block and updates compact_cached_free_pfn again to the location of its free scanner. Process A moves to "end_of_zone - one_pageblock" and runs this check if (cc->order > 0 && (!cc->wrapped || zone->compact_cached_free_pfn > cc->start_free_pfn)) pfn = min(pfn, zone->compact_cached_free_pfn); compact_cached_free_pfn is above where it started so the free scanner skips almost the entire space it should have scanned. When there are multiple processes compacting it can end in a situation where the entire zone is not being scanned at all. Further, it is possible for two processes to ping-pong update to compact_cached_free_pfn which is just random. Overall, the end result wrecks allocation success rates. There is not an obvious way around this problem without introducing new locking and state so this patch takes a different approach. First, it gets rid of the skip logic because it's not clear that it matters if two free scanners happen to be in the same block but with racing updates it's too easy for it to skip over blocks it should not. Second, it updates compact_cached_free_pfn in a more limited set of circumstances. If a scanner has wrapped, it updates compact_cached_free_pfn to the end of the zone. When a wrapped scanner isolates a page, it updates compact_cached_free_pfn to point to the highest pageblock it can isolate pages from. If a scanner has not wrapped when it has finished isolated pages it checks if compact_cached_free_pfn is pointing to the end of the zone. If so, the value is updated to point to the highest pageblock that pages were isolated from. This value will not be updated again until a free page scanner wraps and resets compact_cached_free_pfn. This is not optimal and it can still race but the compact_cached_free_pfn will be pointing to or very near a pageblock with free pages. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-21mm/compaction.c: fix deferring compaction mistakeMinchan Kim
Commit aff622495c9a ("vmscan: only defer compaction for failed order and higher") fixed bad deferring policy but made mistake about checking compact_order_failed in __compact_pgdat(). So it can't update compact_order_failed with the new order. This ends up preventing correct operation of policy deferral. This patch fixes it. Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01mm: have order > 0 compaction start off where it leftRik van Riel
Order > 0 compaction stops when enough free pages of the correct page order have been coalesced. When doing subsequent higher order allocations, it is possible for compaction to be invoked many times. However, the compaction code always starts out looking for things to compact at the start of the zone, and for free pages to compact things to at the end of the zone. This can cause quadratic behaviour, with isolate_freepages starting at the end of the zone each time, even though previous invocations of the compaction code already filled up all free memory on that end of the zone. This can cause isolate_freepages to take enormous amounts of CPU with certain workloads on larger memory systems. The obvious solution is to have isolate_freepages remember where it left off last time, and continue at that point the next time it gets invoked for an order > 0 compaction. This could cause compaction to fail if cc->free_pfn and cc->migrate_pfn are close together initially, in that case we restart from the end of the zone and try once more. Forced full (order == -1) compactions are left alone. [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: s/laste/last/, use 80 cols] Signed-off-by: Rik van Riel <riel@redhat.com> Reported-by: Jim Schutt <jaschut@sandia.gov> Tested-by: Jim Schutt <jaschut@sandia.gov> Cc: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-11mm, thp: abort compaction if migration page cannot be charged to memcgDavid Rientjes
If page migration cannot charge the temporary page to the memcg, migrate_pages() will return -ENOMEM. This isn't considered in memory compaction however, and the loop continues to iterate over all pageblocks trying to isolate and migrate pages. If a small number of very large memcgs happen to be oom, however, these attempts will mostly be futile leading to an enormous amout of cpu consumption due to the page migration failures. This patch will short circuit and fail memory compaction if migrate_pages() returns -ENOMEM. COMPACT_PARTIAL is returned in case some migrations were successful so that the page allocator will retry. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-04Revert "mm: compaction: handle incorrect MIGRATE_UNMOVABLE type pageblocks"Linus Torvalds
This reverts commit 5ceb9ce6fe9462a298bb2cd5c9f1ca6cb80a0199. That commit seems to be the cause of the mm compation list corruption issues that Dave Jones reported. The locking (or rather, absense there-of) is dubious, as is the use of the 'page' variable once it has been found to be outside the pageblock range. So revert it for now, we can re-visit this for 3.6. If we even need to: as Minchan Kim says, "The patch wasn't a bug fix and even test workload was very theoretical". Reported-and-tested-by: Dave Jones <davej@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Kyungmin Park <kyungmin.park@samsung.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/memcg: apply add/del_page to lruvecHugh Dickins
Take lruvec further: pass it instead of zone to add_page_to_lru_list() and del_page_from_lru_list(); and pagevec_lru_move_fn() pass lruvec down to its target functions. This cleanup eliminates a swathe of cruft in memcontrol.c, including mem_cgroup_lru_add_list(), mem_cgroup_lru_del_list() and mem_cgroup_lru_move_lists() - which never actually touched the lists. In their place, mem_cgroup_page_lruvec() to decide the lruvec, previously a side-effect of add, and mem_cgroup_update_lru_size() to maintain the lru_size stats. Whilst these are simplifications in their own right, the goal is to bring the evaluation of lruvec next to the spin_locking of the lrus, in preparation for a future patch. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: remove lru type checks from __isolate_lru_page()Konstantin Khlebnikov
After patch "mm: forbid lumpy-reclaim in shrink_active_list()" we can completely remove anon/file and active/inactive lru type filters from __isolate_lru_page(), because isolation for 0-order reclaim always isolates pages from right lru list. And pages-isolation for lumpy shrink_inactive_list() or memory-compaction anyway allowed to isolate pages from all evictable lru lists. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: compaction: handle incorrect MIGRATE_UNMOVABLE type pageblocksBartlomiej Zolnierkiewicz
When MIGRATE_UNMOVABLE pages are freed from MIGRATE_UNMOVABLE type pageblock (and some MIGRATE_MOVABLE pages are left in it) waiting until an allocation takes ownership of the block may take too long. The type of the pageblock remains unchanged so the pageblock cannot be used as a migration target during compaction. Fix it by: * Adding enum compact_mode (COMPACT_ASYNC_[MOVABLE,UNMOVABLE], and COMPACT_SYNC) and then converting sync field in struct compact_control to use it. * Adding nr_pageblocks_skipped field to struct compact_control and tracking how many destination pageblocks were of MIGRATE_UNMOVABLE type. If COMPACT_ASYNC_MOVABLE mode compaction ran fully in try_to_compact_pages() (COMPACT_COMPLETE) it implies that there is not a suitable page for allocation. In this case then check how if there were enough MIGRATE_UNMOVABLE pageblocks to try a second pass in COMPACT_ASYNC_UNMOVABLE mode. * Scanning the MIGRATE_UNMOVABLE pageblocks (during COMPACT_SYNC and COMPACT_ASYNC_UNMOVABLE compaction modes) and building a count based on finding PageBuddy pages, page_count(page) == 0 or PageLRU pages. If all pages within the MIGRATE_UNMOVABLE pageblock are in one of those three sets change the whole pageblock type to MIGRATE_MOVABLE. My particular test case (on a ARM EXYNOS4 device with 512 MiB, which means 131072 standard 4KiB pages in 'Normal' zone) is to: - allocate 120000 pages for kernel's usage - free every second page (60000 pages) of memory just allocated - allocate and use 60000 pages from user space - free remaining 60000 pages of kernel memory (now we have fragmented memory occupied mostly by user space pages) - try to allocate 100 order-9 (2048 KiB) pages for kernel's usage The results: - with compaction disabled I get 11 successful allocations - with compaction enabled - 14 successful allocations - with this patch I'm able to get all 100 successful allocations NOTE: If we can make kswapd aware of order-0 request during compaction, we can enhance kswapd with changing mode to COMPACT_ASYNC_FULL (COMPACT_ASYNC_MOVABLE + COMPACT_ASYNC_UNMOVABLE). Please see the following thread: http://marc.info/?l=linux-mm&m=133552069417068&w=2 [minchan@kernel.org: minor cleanups] Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-21mm: mmzone: MIGRATE_CMA migration type addedMichal Nazarewicz
The MIGRATE_CMA migration type has two main characteristics: (i) only movable pages can be allocated from MIGRATE_CMA pageblocks and (ii) page allocator will never change migration type of MIGRATE_CMA pageblocks. This guarantees (to some degree) that page in a MIGRATE_CMA page block can always be migrated somewhere else (unless there's no memory left in the system). It is designed to be used for allocating big chunks (eg. 10MiB) of physically contiguous memory. Once driver requests contiguous memory, pages from MIGRATE_CMA pageblocks may be migrated away to create a contiguous block. To minimise number of migrations, MIGRATE_CMA migration type is the last type tried when page allocator falls back to other migration types when requested. Signed-off-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: Rob Clark <rob.clark@linaro.org> Tested-by: Ohad Ben-Cohen <ohad@wizery.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Robert Nelson <robertcnelson@gmail.com> Tested-by: Barry Song <Baohua.Song@csr.com>
2012-05-21mm: compaction: export some of the functionsMichal Nazarewicz
This commit exports some of the functions from compaction.c file outside of it adding their declaration into internal.h header file so that other mm related code can use them. This forced compaction.c to always be compiled (as opposed to being compiled only if CONFIG_COMPACTION is defined) but as to avoid introducing code that user did not ask for, part of the compaction.c is now wrapped in on #ifdef. Signed-off-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: Rob Clark <rob.clark@linaro.org> Tested-by: Ohad Ben-Cohen <ohad@wizery.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Robert Nelson <robertcnelson@gmail.com> Tested-by: Barry Song <Baohua.Song@csr.com>
2012-05-21mm: compaction: introduce isolate_freepages_range()Michal Nazarewicz
This commit introduces isolate_freepages_range() function which generalises isolate_freepages_block() so that it can be used on arbitrary PFN ranges. isolate_freepages_block() is left with only minor changes. Signed-off-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: Rob Clark <rob.clark@linaro.org> Tested-by: Ohad Ben-Cohen <ohad@wizery.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Robert Nelson <robertcnelson@gmail.com> Tested-by: Barry Song <Baohua.Song@csr.com>
2012-05-21mm: compaction: introduce map_pages()Michal Nazarewicz
This commit creates a map_pages() function which map pages freed using split_free_pages(). This merely moves some code from isolate_freepages() so that it can be reused in other places. Signed-off-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: Robert Nelson <robertcnelson@gmail.com> Tested-by: Barry Song <Baohua.Song@csr.com>
2012-05-21mm: compaction: introduce isolate_migratepages_range()Michal Nazarewicz
This commit introduces isolate_migratepages_range() function which extracts functionality from isolate_migratepages() so that it can be used on arbitrary PFN ranges. isolate_migratepages() function is implemented as a simple wrapper around isolate_migratepages_range(). Signed-off-by: Michal Nazarewicz <mina86@mina86.com> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Tested-by: Rob Clark <rob.clark@linaro.org> Tested-by: Ohad Ben-Cohen <ohad@wizery.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Tested-by: Robert Nelson <robertcnelson@gmail.com> Tested-by: Barry Song <Baohua.Song@csr.com>
2012-03-22mm: compaction: make compact_control order signedDan Carpenter
"order" is -1 when compacting via /proc/sys/vm/compact_memory. Making it unsigned causes a bug in __compact_pgdat() when we test: if (cc->order < 0 || !compaction_deferred(zone, cc->order)) compact_zone(zone, cc); [akpm@linux-foundation.org: make __compact_pgdat()'s comparison match other code sites] Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan@kernel.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22compact_pgdat: workaround lockdep warning in kswapdHugh Dickins
I get this lockdep warning from swapping load on linux-next, due to "vmscan: kswapd carefully call compaction". ================================= [ INFO: inconsistent lock state ] 3.3.0-rc2-next-20120201 #5 Not tainted --------------------------------- inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage. kswapd0/28 [HC0[0]:SC0[0]:HE1:SE1] takes: (pcpu_alloc_mutex){+.+.?.}, at: [<ffffffff810d6684>] pcpu_alloc+0x67/0x325 {RECLAIM_FS-ON-W} state was registered at: [<ffffffff81099b75>] mark_held_locks+0xd7/0x103 [<ffffffff8109a13c>] lockdep_trace_alloc+0x85/0x9e [<ffffffff810f6bdc>] __kmalloc+0x6c/0x14b [<ffffffff810d57fd>] pcpu_mem_zalloc+0x59/0x62 [<ffffffff810d5d16>] pcpu_extend_area_map+0x26/0xb1 [<ffffffff810d679f>] pcpu_alloc+0x182/0x325 [<ffffffff810d694d>] __alloc_percpu+0xb/0xd [<ffffffff8142ebfd>] snmp_mib_init+0x1e/0x2e [<ffffffff8185cd8d>] ipv4_mib_init_net+0x7a/0x184 [<ffffffff813dc963>] ops_init.clone.0+0x6b/0x73 [<ffffffff813dc9cc>] register_pernet_operations+0x61/0xa0 [<ffffffff813dca8e>] register_pernet_subsys+0x29/0x42 [<ffffffff8185d044>] inet_init+0x1ad/0x252 [<ffffffff810002e3>] do_one_initcall+0x7a/0x12f [<ffffffff81832bc5>] kernel_init+0x9d/0x11e [<ffffffff814e51e4>] kernel_thread_helper+0x4/0x10 irq event stamp: 656613 hardirqs last enabled at (656613): [<ffffffff814e0ddc>] __mutex_unlock_slowpath+0x104/0x128 hardirqs last disabled at (656612): [<ffffffff814e0d34>] __mutex_unlock_slowpath+0x5c/0x128 softirqs last enabled at (655568): [<ffffffff8105b4a5>] __do_softirq+0x120/0x136 softirqs last disabled at (654757): [<ffffffff814e52dc>] call_softirq+0x1c/0x30 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(pcpu_alloc_mutex); <Interrupt> lock(pcpu_alloc_mutex); *** DEADLOCK *** no locks held by kswapd0/28. stack backtrace: Pid: 28, comm: kswapd0 Not tainted 3.3.0-rc2-next-20120201 #5 Call Trace: [<ffffffff810981f4>] print_usage_bug+0x1bf/0x1d0 [<ffffffff81096c3e>] ? print_irq_inversion_bug+0x1d9/0x1d9 [<ffffffff810982c0>] mark_lock_irq+0xbb/0x22e [<ffffffff810c5399>] ? free_hot_cold_page+0x13d/0x14f [<ffffffff81098684>] mark_lock+0x251/0x331 [<ffffffff81098893>] mark_irqflags+0x12f/0x141 [<ffffffff81098e32>] __lock_acquire+0x58d/0x753 [<ffffffff810d6684>] ? pcpu_alloc+0x67/0x325 [<ffffffff81099433>] lock_acquire+0x54/0x6a [<ffffffff810d6684>] ? pcpu_alloc+0x67/0x325 [<ffffffff8107a5b8>] ? add_preempt_count+0xa9/0xae [<ffffffff814e0a21>] mutex_lock_nested+0x5e/0x315 [<ffffffff810d6684>] ? pcpu_alloc+0x67/0x325 [<ffffffff81098f81>] ? __lock_acquire+0x6dc/0x753 [<ffffffff810c9fb0>] ? __pagevec_release+0x2c/0x2c [<ffffffff810d6684>] pcpu_alloc+0x67/0x325 [<ffffffff810c9fb0>] ? __pagevec_release+0x2c/0x2c [<ffffffff810d694d>] __alloc_percpu+0xb/0xd [<ffffffff8106c35e>] schedule_on_each_cpu+0x23/0x110 [<ffffffff810c9fcb>] lru_add_drain_all+0x10/0x12 [<ffffffff810f126f>] __compact_pgdat+0x20/0x182 [<ffffffff810f15c2>] compact_pgdat+0x27/0x29 [<ffffffff810c306b>] ? zone_watermark_ok+0x1a/0x1c [<ffffffff810cdf6f>] balance_pgdat+0x732/0x751 [<ffffffff810ce0ed>] kswapd+0x15f/0x178 [<ffffffff810cdf8e>] ? balance_pgdat+0x751/0x751 [<ffffffff8106fd11>] kthread+0x84/0x8c [<ffffffff814e51e4>] kernel_thread_helper+0x4/0x10 [<ffffffff810787ed>] ? finish_task_switch+0x85/0xea [<ffffffff814e3861>] ? retint_restore_args+0xe/0xe [<ffffffff8106fc8d>] ? __init_kthread_worker+0x56/0x56 [<ffffffff814e51e0>] ? gs_change+0xb/0xb The RECLAIM_FS notations indicate that it's doing the GFP_FS checking that Nick hacked into lockdep a while back: I think we're intended to read that "<Interrupt>" in the DEADLOCK scenario as "<Direct reclaim>". I'm hazy, I have not reached any conclusion as to whether it's right to complain or not; but I believe it's uneasy about kswapd now doing the mutex_lock(&pcpu_alloc_mutex) which lru_add_drain_all() entails. Nor have I reached any conclusion as to whether it's important for kswapd to do that draining or not. But so as not to get blocked on this, with lockdep disabled from giving further reports, here's a patch which removes the lru_add_drain_all() from kswapd's callpath (and calls it only once from compact_nodes(), instead of once per node). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22vmscan: only defer compaction for failed order and higherRik van Riel
Currently a failed order-9 (transparent hugepage) compaction can lead to memory compaction being temporarily disabled for a memory zone. Even if we only need compaction for an order 2 allocation, eg. for jumbo frames networking. The fix is relatively straightforward: keep track of the highest order at which compaction is succeeding, and only defer compaction for orders at which compaction is failing. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22vmscan: kswapd carefully call compactionRik van Riel
With CONFIG_COMPACTION enabled, kswapd does not try to free contiguous free pages, even when it is woken for a higher order request. This could be bad for eg. jumbo frame network allocations, which are done from interrupt context and cannot compact memory themselves. Higher than before allocation failure rates in the network receive path have been observed in kernels with compaction enabled. Teach kswapd to defragment the memory zones in a node, but only if required and compaction is not deferred in a zone. [akpm@linux-foundation.org: reduce scope of zones_need_compaction] Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-02-09mm: compaction: check for overlapping nodes during isolation for migrationMel Gorman
When isolating pages for migration, migration starts at the start of a zone while the free scanner starts at the end of the zone. Migration avoids entering a new zone by never going beyond the free scanned. Unfortunately, in very rare cases nodes can overlap. When this happens, migration isolates pages without the LRU lock held, corrupting lists which will trigger errors in reclaim or during page free such as in the following oops BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 IP: [<ffffffff810f795c>] free_pcppages_bulk+0xcc/0x450 PGD 1dda554067 PUD 1e1cb58067 PMD 0 Oops: 0000 [#1] SMP CPU 37 Pid: 17088, comm: memcg_process_s Tainted: G X RIP: free_pcppages_bulk+0xcc/0x450 Process memcg_process_s (pid: 17088, threadinfo ffff881c2926e000, task ffff881c2926c0c0) Call Trace: free_hot_cold_page+0x17e/0x1f0 __pagevec_free+0x90/0xb0 release_pages+0x22a/0x260 pagevec_lru_move_fn+0xf3/0x110 putback_lru_page+0x66/0xe0 unmap_and_move+0x156/0x180 migrate_pages+0x9e/0x1b0 compact_zone+0x1f3/0x2f0 compact_zone_order+0xa2/0xe0 try_to_compact_pages+0xdf/0x110 __alloc_pages_direct_compact+0xee/0x1c0 __alloc_pages_slowpath+0x370/0x830 __alloc_pages_nodemask+0x1b1/0x1c0 alloc_pages_vma+0x9b/0x160 do_huge_pmd_anonymous_page+0x160/0x270 do_page_fault+0x207/0x4c0 page_fault+0x25/0x30 The "X" in the taint flag means that external modules were loaded but but is unrelated to the bug triggering. The real problem was because the PFN layout looks like this Zone PFN ranges: DMA 0x00000010 -> 0x00001000 DMA32 0x00001000 -> 0x00100000 Normal 0x00100000 -> 0x01e80000 Movable zone start PFN for each node early_node_map[14] active PFN ranges 0: 0x00000010 -> 0x0000009b 0: 0x00000100 -> 0x0007a1ec 0: 0x0007a354 -> 0x0007a379 0: 0x0007f7ff -> 0x0007f800 0: 0x00100000 -> 0x00680000 1: 0x00680000 -> 0x00e80000 0: 0x00e80000 -> 0x01080000 1: 0x01080000 -> 0x01280000 0: 0x01280000 -> 0x01480000 1: 0x01480000 -> 0x01680000 0: 0x01680000 -> 0x01880000 1: 0x01880000 -> 0x01a80000 0: 0x01a80000 -> 0x01c80000 1: 0x01c80000 -> 0x01e80000 The fix is straight-forward. isolate_migratepages() has to make a similar check to isolate_freepage to ensure that it never isolates pages from a zone it does not hold the LRU lock for. This was discovered in a 3.0-based kernel but it affects 3.1.x, 3.2.x and current mainline. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-02-04mm: compaction: check pfn_valid when entering a new MAX_ORDER_NR_PAGES block ↵Mel Gorman
during isolation for migration When isolating for migration, migration starts at the start of a zone which is not necessarily pageblock aligned. Further, it stops isolating when COMPACT_CLUSTER_MAX pages are isolated so migrate_pfn is generally not aligned. This allows isolate_migratepages() to call pfn_to_page() on an invalid PFN which can result in a crash. This was originally reported against a 3.0-based kernel with the following trace in a crash dump. PID: 9902 TASK: d47aecd0 CPU: 0 COMMAND: "memcg_process_s" #0 [d72d3ad0] crash_kexec at c028cfdb #1 [d72d3b24] oops_end at c05c5322 #2 [d72d3b38] __bad_area_nosemaphore at c0227e60 #3 [d72d3bec] bad_area at c0227fb6 #4 [d72d3c00] do_page_fault at c05c72ec #5 [d72d3c80] error_code (via page_fault) at c05c47a4 EAX: 00000000 EBX: 000c0000 ECX: 00000001 EDX: 00000807 EBP: 000c0000 DS: 007b ESI: 00000001 ES: 007b EDI: f3000a80 GS: 6f50 CS: 0060 EIP: c030b15a ERR: ffffffff EFLAGS: 00010002 #6 [d72d3cb4] isolate_migratepages at c030b15a #7 [d72d3d14] zone_watermark_ok at c02d26cb #8 [d72d3d2c] compact_zone at c030b8de #9 [d72d3d68] compact_zone_order at c030bba1 #10 [d72d3db4] try_to_compact_pages at c030bc84 #11 [d72d3ddc] __alloc_pages_direct_compact at c02d61e7 #12 [d72d3e08] __alloc_pages_slowpath at c02d66c7 #13 [d72d3e78] __alloc_pages_nodemask at c02d6a97 #14 [d72d3eb8] alloc_pages_vma at c030a845 #15 [d72d3ed4] do_huge_pmd_anonymous_page at c03178eb #16 [d72d3f00] handle_mm_fault at c02f36c6 #17 [d72d3f30] do_page_fault at c05c70ed #18 [d72d3fb0] error_code (via page_fault) at c05c47a4 EAX: b71ff000 EBX: 00000001 ECX: 00001600 EDX: 00000431 DS: 007b ESI: 08048950 ES: 007b EDI: bfaa3788 SS: 007b ESP: bfaa36e0 EBP: bfaa3828 GS: 6f50 CS: 0073 EIP: 080487c8 ERR: ffffffff EFLAGS: 00010202 It was also reported by Herbert van den Bergh against 3.1-based kernel with the following snippet from the console log. BUG: unable to handle kernel paging request at 01c00008 IP: [<c0522399>] isolate_migratepages+0x119/0x390 *pdpt = 000000002f7ce001 *pde = 0000000000000000 It is expected that it also affects 3.2.x and current mainline. The problem is that pfn_valid is only called on the first PFN being checked and that PFN is not necessarily aligned. Lets say we have a case like this H = MAX_ORDER_NR_PAGES boundary | = pageblock boundary m = cc->migrate_pfn f = cc->free_pfn o = memory hole H------|------H------|----m-Hoooooo|ooooooH-f----|------H The migrate_pfn is just below a memory hole and the free scanner is beyond the hole. When isolate_migratepages started, it scans from migrate_pfn to migrate_pfn+pageblock_nr_pages which is now in a memory hole. It checks pfn_valid() on the first PFN but then scans into the hole where there are not necessarily valid struct pages. This patch ensures that isolate_migratepages calls pfn_valid when necessary. Reported-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com> Tested-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-13mm: compaction: introduce sync-light migration for use by compactionMel Gorman
This patch adds a lightweight sync migrate operation MIGRATE_SYNC_LIGHT mode that avoids writing back pages to backing storage. Async compaction maps to MIGRATE_ASYNC while sync compaction maps to MIGRATE_SYNC_LIGHT. For other migrate_pages users such as memory hotplug, MIGRATE_SYNC is used. This avoids sync compaction stalling for an excessive length of time, particularly when copying files to a USB stick where there might be a large number of dirty pages backed by a filesystem that does not support ->writepages. [aarcange@redhat.com: This patch is heavily based on Andrea's work] [akpm@linux-foundation.org: fix fs/nfs/write.c build] [akpm@linux-foundation.org: fix fs/btrfs/disk-io.c build] Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Jones <davej@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Andy Isaacson <adi@hexapodia.org> Cc: Nai Xia <nai.xia@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-13mm: compaction: make isolate_lru_page() filter-aware againMel Gorman
Commit 39deaf85 ("mm: compaction: make isolate_lru_page() filter-aware") noted that compaction does not migrate dirty or writeback pages and that is was meaningless to pick the page and re-add it to the LRU list. This had to be partially reverted because some dirty pages can be migrated by compaction without blocking. This patch updates "mm: compaction: make isolate_lru_page" by skipping over pages that migration has no possibility of migrating to minimise LRU disruption. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel<riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Dave Jones <davej@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Andy Isaacson <adi@hexapodia.org> Cc: Nai Xia <nai.xia@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-13mm: compaction: use synchronous compaction for /proc/sys/vm/compact_memoryMel Gorman
When asynchronous compaction was introduced, the /proc/sys/vm/compact_memory handler should have been updated to always use synchronous compaction. This did not happen so this patch addresses it. The assumption is if a user writes to /proc/sys/vm/compact_memory, they are willing for that process to stall. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Jones <davej@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Andy Isaacson <adi@hexapodia.org> Cc: Nai Xia <nai.xia@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-13mm: compaction: allow compaction to isolate dirty pagesMel Gorman
Short summary: There are severe stalls when a USB stick using VFAT is used with THP enabled that are reduced by this series. If you are experiencing this problem, please test and report back and considering I have seen complaints from openSUSE and Fedora users on this as well as a few private mails, I'm guessing it's a widespread issue. This is a new type of USB-related stall because it is due to synchronous compaction writing where as in the past the big problem was dirty pages reaching the end of the LRU and being written by reclaim. Am cc'ing Andrew this time and this series would replace mm-do-not-stall-in-synchronous-compaction-for-thp-allocations.patch. I'm also cc'ing Dave Jones as he might have merged that patch to Fedora for wider testing and ideally it would be reverted and replaced by this series. That said, the later patches could really do with some review. If this series is not the answer then a new direction needs to be discussed because as it is, the stalls are unacceptable as the results in this leader show. For testers that try backporting this to 3.1, it won't work because there is a non-obvious dependency on not writing back pages in direct reclaim so you need those patches too. Changelog since V5 o Rebase to 3.2-rc5 o Tidy up the changelogs a bit Changelog since V4 o Added reviewed-bys, credited Andrea properly for sync-light o Allow dirty pages without mappings to be considered for migration o Bound the number of pages freed for compaction o Isolate PageReclaim pages on their own LRU list This is against 3.2-rc5 and follows on from discussions on "mm: Do not stall in synchronous compaction for THP allocations" and "[RFC PATCH 0/5] Reduce compaction-related stalls". Initially, the proposed patch eliminated stalls due to compaction which sometimes resulted in user-visible interactivity problems on browsers by simply never using sync compaction. The downside was that THP success allocation rates were lower because dirty pages were not being migrated as reported by Andrea. His approach at fixing this was nacked on the grounds that it reverted fixes from Rik merged that reduced the amount of pages reclaimed as it severely impacted his workloads performance. This series attempts to reconcile the requirements of maximising THP usage, without stalling in a user-visible fashion due to compaction or cheating by reclaiming an excessive number of pages. Patch 1 partially reverts commit 39deaf85 to allow migration to isolate dirty pages. This is because migration can move some dirty pages without blocking. Patch 2 notes that the /proc/sys/vm/compact_memory handler is not using synchronous compaction when it should be. This is unrelated to the reported stalls but is worth fixing. Patch 3 checks if we isolated a compound page during lumpy scan and account for it properly. For the most part, this affects tracing so it's unrelated to the stalls but worth fixing. Patch 4 notes that it is possible to abort reclaim early for compaction and return 0 to the page allocator potentially entering the "may oom" path. This has not been observed in practice but the rest of the series potentially makes it easier to happen. Patch 5 adds a sync parameter to the migratepage callback and gives the callback responsibility for migrating the page without blocking if sync==false. For example, fallback_migrate_page will not call writepage if sync==false. This increases the number of pages that can be handled by asynchronous compaction thereby reducing stalls. Patch 6 restores filter-awareness to isolate_lru_page for migration. In practice, it means that pages under writeback and pages without a ->migratepage callback will not be isolated for migration. Patch 7 avoids calling direct reclaim if compaction is deferred but makes sure that compaction is only deferred if sync compaction was used. Patch 8 introduces a sync-light migration mechanism that sync compaction uses. The objective is to allow some stalls but to not call ->writepage which can lead to significant user-visible stalls. Patch 9 notes that while we want to abort reclaim ASAP to allow compation to go ahead that we leave a very small window of opportunity for compaction to run. This patch allows more pages to be freed by reclaim but bounds the number to a reasonable level based on the high watermark on each zone. Patch 10 allows slabs to be shrunk even after compaction_ready() is true for one zone. This is to avoid a problem whereby a single small zone can abort reclaim even though no pages have been reclaimed and no suitably large zone is in a usable state. Patch 11 fixes a problem with the rate of page scanning. As reclaim is rarely stalling on pages under writeback it means that scan rates are very high. This is particularly true for direct reclaim which is not calling writepage. The vmstat figures implied that much of this was busy work with PageReclaim pages marked for immediate reclaim. This patch is a prototype that moves these pages to their own LRU list. This has been tested and other than 2 USB keys getting trashed, nothing horrible fell out. That said, I am a bit unhappy with the rescue logic in patch 11 but did not find a better way around it. It does significantly reduce scan rates and System CPU time indicating it is the right direction to take. What is of critical importance is that stalls due to compaction are massively reduced even though sync compaction was still allowed. Testing from people complaining about stalls copying to USBs with THP enabled are particularly welcome. The following tests all involve THP usage and USB keys in some way. Each test follows this type of pattern 1. Read from some fast fast storage, be it raw device or file. Each time the copy finishes, start again until the test ends 2. Write a large file to a filesystem on a USB stick. Each time the copy finishes, start again until the test ends 3. When memory is low, start an alloc process that creates a mapping the size of physical memory to stress THP allocation. This is the "real" part of the test and the part that is meant to trigger stalls when THP is enabled. Copying continues in the background. 4. Record the CPU usage and time to execute of the alloc process 5. Record the number of THP allocs and fallbacks as well as the number of THP pages in use a the end of the test just before alloc exited 6. Run the test 5 times to get an idea of variability 7. Between each run, sync is run and caches dropped and the test waits until nr_dirty is a small number to avoid interference or caching between iterations that would skew the figures. The individual tests were then writebackCPDeviceBasevfat Disable THP, read from a raw device (sda), vfat on USB stick writebackCPDeviceBaseext4 Disable THP, read from a raw device (sda), ext4 on USB stick writebackCPDevicevfat THP enabled, read from a raw device (sda), vfat on USB stick writebackCPDeviceext4 THP enabled, read from a raw device (sda), ext4 on USB stick writebackCPFilevfat THP enabled, read from a file on fast storage and USB, both vfat writebackCPFileext4 THP enabled, read from a file on fast storage and USB, both ext4 The kernels tested were 3.1 3.1 vanilla 3.2-rc5 freemore Patches 1-10 immediate Patches 1-11 andrea The 8 patches Andrea posted as a basis of comparison The results are very long unfortunately. I'll start with the case where we are not using THP at all writebackCPDeviceBasevfat 3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1 System Time 1.28 ( 0.00%) 54.49 (-4143.46%) 48.63 (-3687.69%) 4.69 ( -265.11%) 51.88 (-3940.81%) +/- 0.06 ( 0.00%) 2.45 (-4305.55%) 4.75 (-8430.57%) 7.46 (-13282.76%) 4.76 (-8440.70%) User Time 0.09 ( 0.00%) 0.05 ( 40.91%) 0.06 ( 29.55%) 0.07 ( 15.91%) 0.06 ( 27.27%) +/- 0.02 ( 0.00%) 0.01 ( 45.39%) 0.02 ( 25.07%) 0.00 ( 77.06%) 0.01 ( 52.24%) Elapsed Time 110.27 ( 0.00%) 56.38 ( 48.87%) 49.95 ( 54.70%) 11.77 ( 89.33%) 53.43 ( 51.54%) +/- 7.33 ( 0.00%) 3.77 ( 48.61%) 4.94 ( 32.63%) 6.71 ( 8.50%) 4.76 ( 35.03%) THP Active 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) +/- 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Fault Alloc 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) +/- 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Fault Fallback 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) +/- 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) The THP figures are obviously all 0 because THP was enabled. The main thing to watch is the elapsed times and how they compare to times when THP is enabled later. It's also important to note that elapsed time is improved by this series as System CPu time is much reduced. writebackCPDevicevfat 3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1 System Time 1.22 ( 0.00%) 13.89 (-1040.72%) 46.40 (-3709.20%) 4.44 ( -264.37%) 47.37 (-3789.33%) +/- 0.06 ( 0.00%) 22.82 (-37635.56%) 3.84 (-6249.44%) 6.48 (-10618.92%) 6.60 (-10818.53%) User Time 0.06 ( 0.00%) 0.06 ( -6.90%) 0.05 ( 17.24%) 0.05 ( 13.79%) 0.04 ( 31.03%) +/- 0.01 ( 0.00%) 0.01 ( 33.33%) 0.01 ( 33.33%) 0.01 ( 39.14%) 0.01 ( 25.46%) Elapsed Time 10445.54 ( 0.00%) 2249.92 ( 78.46%) 70.06 ( 99.33%) 16.59 ( 99.84%) 472.43 ( 95.48%) +/- 643.98 ( 0.00%) 811.62 ( -26.03%) 10.02 ( 98.44%) 7.03 ( 98.91%) 59.99 ( 90.68%) THP Active 15.60 ( 0.00%) 35.20 ( 225.64%) 65.00 ( 416.67%) 70.80 ( 453.85%) 62.20 ( 398.72%) +/- 18.48 ( 0.00%) 51.29 ( 277.59%) 15.99 ( 86.52%) 37.91 ( 205.18%) 22.02 ( 119.18%) Fault Alloc 121.80 ( 0.00%) 76.60 ( 62.89%) 155.40 ( 127.59%) 181.20 ( 148.77%) 286.60 ( 235.30%) +/- 73.51 ( 0.00%) 61.11 ( 83.12%) 34.89 ( 47.46%) 31.88 ( 43.36%) 68.13 ( 92.68%) Fault Fallback 881.20 ( 0.00%) 926.60 ( -5.15%) 847.60 ( 3.81%) 822.00 ( 6.72%) 716.60 ( 18.68%) +/- 73.51 ( 0.00%) 61.26 ( 16.67%) 34.89 ( 52.54%) 31.65 ( 56.94%) 67.75 ( 7.84%) MMTests Statistics: duration User/Sys Time Running Test (seconds) 3540.88 1945.37 716.04 64.97 1937.03 Total Elapsed Time (seconds) 52417.33 11425.90 501.02 230.95 2520.28 The first thing to note is the "Elapsed Time" for the vanilla kernels of 2249 seconds versus 56 with THP disabled which might explain the reports of USB stalls with THP enabled. Applying the patches brings performance in line with THP-disabled performance while isolating pages for immediate reclaim from the LRU cuts down System CPU time. The "Fault Alloc" success rate figures are also improved. The vanilla kernel only managed to allocate 76.6 pages on average over the course of 5 iterations where as applying the series allocated 181.20 on average albeit it is well within variance. It's worth noting that applies the series at least descreases the amount of variance which implies an improvement. Andrea's series had a higher success rate for THP allocations but at a severe cost to elapsed time which is still better than vanilla but still much worse than disabling THP altogether. One can bring my series close to Andrea's by removing this check /* * If compaction is deferred for high-order allocations, it is because * sync compaction recently failed. In this is the case and the caller * has requested the system not be heavily disrupted, fail the * allocation now instead of entering direct reclaim */ if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD)) goto nopage; I didn't include a patch that removed the above check because hurting overall performance to improve the THP figure is not what the average user wants. It's something to consider though if someone really wants to maximise THP usage no matter what it does to the workload initially. This is summary of vmstat figures from the same test. 3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1 Page Ins 3257266139 1111844061 17263623 10901575 161423219 Page Outs 81054922 30364312 3626530 3657687 8753730 Swap Ins 3294 2851 6560 4964 4592 Swap Outs 390073 528094 620197 790912 698285 Direct pages scanned 1077581700 3024951463 1764930052 115140570 5901188831 Kswapd pages scanned 34826043 7112868 2131265 1686942 1893966 Kswapd pages reclaimed 28950067 4911036 1246044 966475 1497726 Direct pages reclaimed 805148398 280167837 3623473 2215044 40809360 Kswapd efficiency 83% 69% 58% 57% 79% Kswapd velocity 664.399 622.521 4253.852 7304.360 751.490 Direct efficiency 74% 9% 0% 1% 0% Direct velocity 20557.737 264745.137 3522673.849 498551.938 2341481.435 Percentage direct scans 96% 99% 99% 98% 99% Page writes by reclaim 722646 529174 620319 791018 699198 Page writes file 332573 1080 122 106 913 Page writes anon 390073 528094 620197 790912 698285 Page reclaim immediate 0 2552514720 1635858848 111281140 5478375032 Page rescued immediate 0 0 0 87848 0 Slabs scanned 23552 23552 9216 8192 9216 Direct inode steals 231 0 0 0 0 Kswapd inode steals 0 0 0 0 0 Kswapd skipped wait 28076 786 0 61 6 THP fault alloc 609 383 753 906 1433 THP collapse alloc 12 6 0 0 6 THP splits 536 211 456 593 1136 THP fault fallback 4406 4633 4263 4110 3583 THP collapse fail 120 127 0 0 4 Compaction stalls 1810 728 623 779 3200 Compaction success 196 53 60 80 123 Compaction failures 1614 675 563 699 3077 Compaction pages moved 193158 53545 243185 333457 226688 Compaction move failure 9952 9396 16424 23676 45070 The main things to look at are 1. Page In/out figures are much reduced by the series. 2. Direct page scanning is incredibly high (264745.137 pages scanned per second on the vanilla kernel) but isolating PageReclaim pages on their own list reduces the number of pages scanned significantly. 3. The fact that "Page rescued immediate" is a positive number implies that we sometimes race removing pages from the LRU_IMMEDIATE list that need to be put back on a normal LRU but it happens only for 0.07% of the pages marked for immediate reclaim. writebackCPDeviceext4 3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1 System Time 1.51 ( 0.00%) 1.77 ( -17.66%) 1.46 ( 2.92%) 1.15 ( 23.77%) 1.89 ( -25.63%) +/- 0.27 ( 0.00%) 0.67 ( -148.52%) 0.33 ( -22.76%) 0.30 ( -11.15%) 0.19 ( 30.16%) User Time 0.03 ( 0.00%) 0.04 ( -37.50%) 0.05 ( -62.50%) 0.07 ( -112.50%) 0.04 ( -18.75%) +/- 0.01 ( 0.00%) 0.02 ( -146.64%) 0.02 ( -97.91%) 0.02 ( -75.59%) 0.02 ( -63.30%) Elapsed Time 124.93 ( 0.00%) 114.49 ( 8.36%) 96.77 ( 22.55%) 27.48 ( 78.00%) 205.70 ( -64.65%) +/- 20.20 ( 0.00%) 74.39 ( -268.34%) 59.88 ( -196.48%) 7.72 ( 61.79%) 25.03 ( -23.95%) THP Active 161.80 ( 0.00%) 83.60 ( 51.67%) 141.20 ( 87.27%) 84.60 ( 52.29%) 82.60 ( 51.05%) +/- 71.95 ( 0.00%) 43.80 ( 60.88%) 26.91 ( 37.40%) 59.02 ( 82.03%) 52.13 ( 72.45%) Fault Alloc 471.40 ( 0.00%) 228.60 ( 48.49%) 282.20 ( 59.86%) 225.20 ( 47.77%) 388.40 ( 82.39%) +/- 88.07 ( 0.00%) 87.42 ( 99.26%) 73.79 ( 83.78%) 109.62 ( 124.47%) 82.62 ( 93.81%) Fault Fallback 531.60 ( 0.00%) 774.60 ( -45.71%) 720.80 ( -35.59%) 777.80 ( -46.31%) 614.80 ( -15.65%) +/- 88.07 ( 0.00%) 87.26 ( 0.92%) 73.79 ( 16.22%) 109.62 ( -24.47%) 82.29 ( 6.56%) MMTests Statistics: duration User/Sys Time Running Test (seconds) 50.22 33.76 30.65 24.14 128.45 Total Elapsed Time (seconds) 1113.73 1132.19 1029.45 759.49 1707.26 Similar test but the USB stick is using ext4 instead of vfat. As ext4 does not use writepage for migration, the large stalls due to compaction when THP is enabled are not observed. Still, isolating PageReclaim pages on their own list helped completion time largely by reducing the number of pages scanned by direct reclaim although time spend in congestion_wait could also be a factor. Again, Andrea's series had far higher success rates for THP allocation at the cost of elapsed time. I didn't look too closely but a quick look at the vmstat figures tells me kswapd reclaimed 8 times more pages than the patch series and direct reclaim reclaimed roughly three times as many pages. It follows that if memory is aggressively reclaimed, there will be more available for THP. writebackCPFilevfat 3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1 System Time 1.76 ( 0.00%) 29.10 (-1555.52%) 46.01 (-2517.18%) 4.79 ( -172.35%) 54.89 (-3022.53%) +/- 0.14 ( 0.00%) 25.61 (-18185.17%) 2.15 (-1434.83%) 6.60 (-4610.03%) 9.75 (-6863.76%) User Time 0.05 ( 0.00%) 0.07 ( -45.83%) 0.05 ( -4.17%) 0.06 ( -29.17%) 0.06 ( -16.67%) +/- 0.02 ( 0.00%) 0.02 ( 20.11%) 0.02 ( -3.14%) 0.01 ( 31.58%) 0.01 ( 47.41%) Elapsed Time 22520.79 ( 0.00%) 1082.85 ( 95.19%) 73.30 ( 99.67%) 32.43 ( 99.86%) 291.84 ( 98.70%) +/- 7277.23 ( 0.00%) 706.29 ( 90.29%) 19.05 ( 99.74%) 17.05 ( 99.77%) 125.55 ( 98.27%) THP Active 83.80 ( 0.00%) 12.80 ( 15.27%) 15.60 ( 18.62%) 13.00 ( 15.51%) 0.80 ( 0.95%) +/- 66.81 ( 0.00%) 20.19 ( 30.22%) 5.92 ( 8.86%) 15.06 ( 22.54%) 1.17 ( 1.75%) Fault Alloc 171.00 ( 0.00%) 67.80 ( 39.65%) 97.40 ( 56.96%) 125.60 ( 73.45%) 133.00 ( 77.78%) +/- 82.91 ( 0.00%) 30.69 ( 37.02%) 53.91 ( 65.02%) 55.05 ( 66.40%) 21.19 ( 25.56%) Fault Fallback 832.00 ( 0.00%) 935.20 ( -12.40%) 906.00 ( -8.89%) 877.40 ( -5.46%) 870.20 ( -4.59%) +/- 82.91 ( 0.00%) 30.69 ( 62.98%) 54.01 ( 34.86%) 55.05 ( 33.60%) 20.91 ( 74.78%) MMTests Statistics: duration User/Sys Time Running Test (seconds) 7229.81 928.42 704.52 80.68 1330.76 Total Elapsed Time (seconds) 112849.04 5618.69 571.11 360.54 1664.28 In this case, the test is reading/writing only from filesystems but as it's vfat, it's slow due to calling writepage during compaction. Little to observe really - the time to complete the test goes way down with the series applied and THP allocation success rates go up in comparison to 3.2-rc5. The success rates are lower than 3.1.0 but the elapsed time for that kernel is abysmal so it is not really a sensible comparison. As before, Andrea's series allocates more THPs at the cost of overall performance. writebackCPFileext4 3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1 System Time 1.51 ( 0.00%) 1.77 ( -17.66%) 1.46 ( 2.92%) 1.15 ( 23.77%) 1.89 ( -25.63%) +/- 0.27 ( 0.00%) 0.67 ( -148.52%) 0.33 ( -22.76%) 0.30 ( -11.15%) 0.19 ( 30.16%) User Time 0.03 ( 0.00%) 0.04 ( -37.50%) 0.05 ( -62.50%) 0.07 ( -112.50%) 0.04 ( -18.75%) +/- 0.01 ( 0.00%) 0.02 ( -146.64%) 0.02 ( -97.91%) 0.02 ( -75.59%) 0.02 ( -63.30%) Elapsed Time 124.93 ( 0.00%) 114.49 ( 8.36%) 96.77 ( 22.55%) 27.48 ( 78.00%) 205.70 ( -64.65%) +/- 20.20 ( 0.00%) 74.39 ( -268.34%) 59.88 ( -196.48%) 7.72 ( 61.79%) 25.03 ( -23.95%) THP Active 161.80 ( 0.00%) 83.60 ( 51.67%) 141.20 ( 87.27%) 84.60 ( 52.29%) 82.60 ( 51.05%) +/- 71.95 ( 0.00%) 43.80 ( 60.88%) 26.91 ( 37.40%) 59.02 ( 82.03%) 52.13 ( 72.45%) Fault Alloc 471.40 ( 0.00%) 228.60 ( 48.49%) 282.20 ( 59.86%) 225.20 ( 47.77%) 388.40 ( 82.39%) +/- 88.07 ( 0.00%) 87.42 ( 99.26%) 73.79 ( 83.78%) 109.62 ( 124.47%) 82.62 ( 93.81%) Fault Fallback 531.60 ( 0.00%) 774.60 ( -45.71%) 720.80 ( -35.59%) 777.80 ( -46.31%) 614.80 ( -15.65%) +/- 88.07 ( 0.00%) 87.26 ( 0.92%) 73.79 ( 16.22%) 109.62 ( -24.47%) 82.29 ( 6.56%) MMTests Statistics: duration User/Sys Time Running Test (seconds) 50.22 33.76 30.65 24.14 128.45 Total Elapsed Time (seconds) 1113.73 1132.19 1029.45 759.49 1707.26 Same type of story - elapsed times go down. In this case, allocation success rates are roughtly the same. As before, Andrea's has higher success rates but takes a lot longer. Overall the series does reduce latencies and while the tests are inherency racy as alloc competes with the cp processes, the variability was included. The THP allocation rates are not as high as they could be but that is because we would have to be more aggressive about reclaim and compaction impacting overall performance. This patch: Commit 39deaf85 ("mm: compaction: make isolate_lru_page() filter-aware") noted that compaction does not migrate dirty or writeback pages and that is was meaningless to pick the page and re-add it to the LRU list. What was missed during review is that asynchronous migration moves dirty pages if their ->migratepage callback is migrate_page() because these can be moved without blocking. This potentially impacted hugepage allocation success rates by a factor depending on how many dirty pages are in the system. This patch partially reverts 39deaf85 to allow migration to isolate dirty pages again. This increases how much compaction disrupts the LRU but that is addressed later in the series. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Dave Jones <davej@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Andy Isaacson <adi@hexapodia.org> Cc: Nai Xia <nai.xia@gmail.com> Cc: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-11mm: compaction: push isolate search base of compact control one pfn aheadHillf Danton
After isolated the current pfn will no longer be scanned and isolated if the next round is necessary, so push the isolate_migratepages search base of the given compact_control one step ahead. Signed-off-by: Hillf Danton <dhillf@gmail.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-21convert 'memory' sysdev_class to a regular subsystemKay Sievers
This moves the 'memory sysdev_class' over to a regular 'memory' subsystem and converts the devices to regular devices. The sysdev drivers are implemented as subsystem interfaces now. After all sysdev classes are ported to regular driver core entities, the sysdev implementation will be entirely removed from the kernel. Signed-off-by: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-11-01mm: compaction: make compact_zone_order() staticKyungmin Park
There's no compact_zone_order() user outside file scope, so make it static. Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01mm: compaction: make isolate_lru_page() filter-awareMinchan Kim
In async mode, compaction doesn't migrate dirty or writeback pages. So, it's meaningless to pick the page and re-add it to lru list. Of course, when we isolate the page in compaction, the page might be dirty or writeback but when we try to migrate the page, the page would be not dirty, writeback. So it could be migrated. But it's very unlikely as isolate and migration cycle is much faster than writeout. So, this patch helps cpu overhead and prevent unnecessary LRU churning. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01mm: change isolate mode from #define to bitwise typeMinchan Kim
Change ISOLATE_XXX macro with bitwise isolate_mode_t type. Normally, macro isn't recommended as it's type-unsafe and making debugging harder as symbol cannot be passed throught to the debugger. Quote from Johannes " Hmm, it would probably be cleaner to fully convert the isolation mode into independent flags. INACTIVE, ACTIVE, BOTH is currently a tri-state among flags, which is a bit ugly." This patch moves isolate mode from swap.h to mmzone.h by memcontrol.h Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01mm: compaction: trivial clean up in acct_isolated()Minchan Kim
acct_isolated of compaction uses page_lru_base_type which returns only base type of LRU list so it never returns LRU_ACTIVE_ANON or LRU_ACTIVE_FILE. In addtion, cc->nr_[anon|file] is used in only acct_isolated so it doesn't have fields in conpact_control. This patch removes fields from compact_control and makes clear function of acct_issolated which counts the number of anon|file pages isolated. Signed-off-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-16mm: compaction: abort compaction if too many pages are isolated and caller ↵Mel Gorman
is asynchronous V2 Asynchronous compaction is used when promoting to huge pages. This is all very nice but if there are a number of processes in compacting memory, a large number of pages can be isolated. An "asynchronous" process can stall for long periods of time as a result with a user reporting that firefox can stall for 10s of seconds. This patch aborts asynchronous compaction if too many pages are isolated as it's better to fail a hugepage promotion than stall a process. [minchan.kim@gmail.com: return COMPACT_PARTIAL for abort] Reported-and-tested-by: Ury Stankevich <urykhy@gmail.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-16mm: compaction: ensure that the compaction free scanner does not move to the ↵Mel Gorman
next zone Compaction works with two scanners, a migration and a free scanner. When the scanners crossover, migration within the zone is complete. The location of the scanner is recorded on each cycle to avoid excesive scanning. When a zone is small and mostly reserved, it's very easy for the migration scanner to be close to the end of the zone. Then the following situation can occurs o migration scanner isolates some pages near the end of the zone o free scanner starts at the end of the zone but finds that the migration scanner is already there o free scanner gets reinitialised for the next cycle as cc->migrate_pfn + pageblock_nr_pages moving the free scanner into the next zone o migration scanner moves into the next zone When this happens, NR_ISOLATED accounting goes haywire because some of the accounting happens against the wrong zone. One zones counter remains positive while the other goes negative even though the overall global count is accurate. This was reported on X86-32 with !SMP because !SMP allows the negative counters to be visible. The fact that it is the bug should theoritically be possible there. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-16compaction: checks correct fragmentation indexShaohua Li
fragmentation_index() returns -1000 when the allocation might succeed This doesn't match the comment and code in compaction_suitable(). I thought compaction_suitable should return COMPACT_PARTIAL in -1000 case, because in this case allocation could succeed depending on watermarks. The impact of this is that compaction starts and compact_finished() is called which rechecks the watermarks and the free lists. It should have the same result in that compaction should not start but is more expensive. Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Shaohua Li <shaohua.li@intel.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-16mm: compaction: fix special case -1 order checksMichal Hocko
Commit 56de7263fcf3 ("mm: compaction: direct compact when a high-order allocation fails") introduced a check for cc->order == -1 in compact_finished. We should continue compacting in that case because the request came from userspace and there is no particular order to compact for. Similar check has been added by 82478fb7 (mm: compaction: prevent division-by-zero during user-requested compaction) for compaction_suitable. The check is, however, done after zone_watermark_ok which uses order as a right hand argument for shifts. Not only watermark check is pointless if we can break out without it but it also uses 1 << -1 which is not well defined (at least from C standard). Let's move the -1 check above zone_watermark_ok. [minchan.kim@gmail.com> - caught compaction_suitable] Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hioryu@jp.fujitsu.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23mm: compaction: minimise the time IRQs are disabled while isolating pages ↵Andrea Arcangeli
for migration compaction_alloc() isolates pages for migration in isolate_migratepages. While it's scanning, IRQs are disabled on the mistaken assumption the scanning should be short. Tests show this to be true for the most part but contention times on the LRU lock can be increased. Before this patch, the IRQ disabled times for a simple test looked like Total sampled time IRQs off (not real total time): 5493 Event shrink_inactive_list..shrink_zone 1596 us count 1 Event shrink_inactive_list..shrink_zone 1530 us count 1 Event shrink_inactive_list..shrink_zone 956 us count 1 Event shrink_inactive_list..shrink_zone 541 us count 1 Event shrink_inactive_list..shrink_zone 531 us count 1 Event split_huge_page..add_to_swap 232 us count 1 Event save_args..call_softirq 36 us count 1 Event save_args..call_softirq 35 us count 2 Event __wake_up..__wake_up 1 us count 1 This patch reduces the worst-case IRQs-disabled latencies by releasing the lock every SWAP_CLUSTER_MAX pages that are scanned and releasing the CPU if necessary. The cost of this is that the processing performing compaction will be slower but IRQs being disabled for too long a time has worse consequences as the following report shows; Total sampled time IRQs off (not real total time): 4367 Event shrink_inactive_list..shrink_zone 881 us count 1 Event shrink_inactive_list..shrink_zone 875 us count 1 Event shrink_inactive_list..shrink_zone 868 us count 1 Event shrink_inactive_list..shrink_zone 555 us count 1 Event split_huge_page..add_to_swap 495 us count 1 Event compact_zone..compact_zone_order 269 us count 1 Event split_huge_page..add_to_swap 266 us count 1 Event shrink_inactive_list..shrink_zone 85 us count 1 Event save_args..call_softirq 36 us count 2 Event __wake_up..__wake_up 1 us count 1 [akpm@linux-foundation.org: simplify with s/unlocked/locked/] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Arthur Marsh <arthur.marsh@internode.on.net> Cc: Clemens Ladisch <cladisch@googlemail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23mm: compaction: minimise the time IRQs are disabled while isolating free pagesMel Gorman
compaction_alloc() isolates free pages to be used as migration targets. While its scanning, IRQs are disabled on the mistaken assumption the scanning should be short. Analysis showed that IRQs were in fact being disabled for substantial time. A simple test was run using large anonymous mappings with transparent hugepage support enabled to trigger frequent compactions. A monitor sampled what the worst IRQ-off latencies were and a post-processing tool found the following; Total sampled time IRQs off (not real total time): 22355 Event compaction_alloc..compaction_alloc 8409 us count 1 Event compaction_alloc..compaction_alloc 7341 us count 1 Event compaction_alloc..compaction_alloc 2463 us count 1 Event compaction_alloc..compaction_alloc 2054 us count 1 Event shrink_inactive_list..shrink_zone 1864 us count 1 Event shrink_inactive_list..shrink_zone 88 us count 1 Event save_args..call_softirq 36 us count 1 Event save_args..call_softirq 35 us count 2 Event __make_request..__blk_run_queue 24 us count 1 Event __alloc_pages_nodemask..__alloc_pages_nodemask 6 us count 1 i.e. compaction is disabled IRQs for a prolonged period of time - 8ms in one instance. The full report generated by the tool can be found at http://www.csn.ul.ie/~mel/postings/minfree-20110225/irqsoff-vanilla-micro.report This patch reduces the time IRQs are disabled by simply disabling IRQs at the last possible minute. An updated IRQs-off summary report then looks like; Total sampled time IRQs off (not real total time): 5493 Event shrink_inactive_list..shrink_zone 1596 us count 1 Event shrink_inactive_list..shrink_zone 1530 us count 1 Event shrink_inactive_list..shrink_zone 956 us count 1 Event shrink_inactive_list..shrink_zone 541 us count 1 Event shrink_inactive_list..shrink_zone 531 us count 1 Event split_huge_page..add_to_swap 232 us count 1 Event save_args..call_softirq 36 us count 1 Event save_args..call_softirq 35 us count 2 Event __wake_up..__wake_up 1 us count 1 A full report is again available at http://www.csn.ul.ie/~mel/postings/minfree-20110225/irqsoff-minimiseirq-free-v1r4-micro.report As should be obvious, IRQ disabled latencies due to compaction are almost elimimnated for this particular test. [aarcange@redhat.com: Fix initialisation of isolated] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujisu.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Arthur Marsh <arthur.marsh@internode.on.net> Cc: Clemens Ladisch <cladisch@googlemail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>