1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
/*
* kernel/rt.c
*
* Real-Time Preemption Support
*
* started by Ingo Molnar:
*
* Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com>
*
* historic credit for proving that Linux spinlocks can be implemented via
* RT-aware mutexes goes to many people: The Pmutex project (Dirk Grambow
* and others) who prototyped it on 2.4 and did lots of comparative
* research and analysis; TimeSys, for proving that you can implement a
* fully preemptible kernel via the use of IRQ threading and mutexes;
* Bill Huey for persuasively arguing on lkml that the mutex model is the
* right one; and to MontaVista, who ported pmutexes to 2.6.
*
* This code is a from-scratch implementation and is not based on pmutexes,
* but the idea of converting spinlocks to mutexes is used here too.
*
* lock debugging, locking tree, deadlock detection:
*
* Copyright (C) 2004, LynuxWorks, Inc., Igor Manyilov, Bill Huey
* Released under the General Public License (GPL).
*
* Includes portions of the generic R/W semaphore implementation from:
*
* Copyright (c) 2001 David Howells (dhowells@redhat.com).
* - Derived partially from idea by Andrea Arcangeli <andrea@suse.de>
* - Derived also from comments by Linus
*
* Pending ownership of locks and ownership stealing:
*
* Copyright (C) 2005, Kihon Technologies Inc., Steven Rostedt
*
* (also by Steven Rostedt)
* - Converted single pi_lock to individual task locks.
*
* By Esben Nielsen:
* Doing priority inheritance with help of the scheduler.
*
* Copyright (C) 2006, Timesys Corp., Thomas Gleixner <tglx@timesys.com>
* - major rework based on Esben Nielsens initial patch
* - replaced thread_info references by task_struct refs
* - removed task->pending_owner dependency
* - BKL drop/reacquire for semaphore style locks to avoid deadlocks
* in the scheduler return path as discussed with Steven Rostedt
*
* Copyright (C) 2006, Kihon Technologies Inc.
* Steven Rostedt <rostedt@goodmis.org>
* - debugged and patched Thomas Gleixner's rework.
* - added back the cmpxchg to the rework.
* - turned atomic require back on for SMP.
*/
#include <linux/spinlock.h>
#include <linux/rtmutex.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/syscalls.h>
#include <linux/interrupt.h>
#include <linux/plist.h>
#include <linux/fs.h>
#include <linux/futex.h>
#include <linux/hrtimer.h>
#include "rtmutex_common.h"
/*
* struct mutex functions
*/
void __mutex_do_init(struct mutex *mutex, const char *name,
struct lock_class_key *key)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
/*
* Make sure we are not reinitializing a held lock:
*/
debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
lockdep_init_map(&mutex->dep_map, name, key, 0);
#endif
mutex->lock.save_state = 0;
}
EXPORT_SYMBOL(__mutex_do_init);
void __lockfunc _mutex_lock(struct mutex *lock)
{
mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
rt_mutex_lock(&lock->lock);
}
EXPORT_SYMBOL(_mutex_lock);
int __lockfunc _mutex_lock_interruptible(struct mutex *lock)
{
int ret;
mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
ret = rt_mutex_lock_interruptible(&lock->lock, 0);
if (ret)
mutex_release(&lock->dep_map, 1, _RET_IP_);
return ret;
}
EXPORT_SYMBOL(_mutex_lock_interruptible);
int __lockfunc _mutex_lock_killable(struct mutex *lock)
{
int ret;
mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
ret = rt_mutex_lock_killable(&lock->lock, 0);
if (ret)
mutex_release(&lock->dep_map, 1, _RET_IP_);
return ret;
}
EXPORT_SYMBOL(_mutex_lock_killable);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
void __lockfunc _mutex_lock_nested(struct mutex *lock, int subclass)
{
mutex_acquire_nest(&lock->dep_map, subclass, 0, NULL, _RET_IP_);
rt_mutex_lock(&lock->lock);
}
EXPORT_SYMBOL(_mutex_lock_nested);
void __lockfunc _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
{
mutex_acquire_nest(&lock->dep_map, 0, 0, nest, _RET_IP_);
rt_mutex_lock(&lock->lock);
}
EXPORT_SYMBOL(_mutex_lock_nest_lock);
int __lockfunc _mutex_lock_interruptible_nested(struct mutex *lock, int subclass)
{
int ret;
mutex_acquire_nest(&lock->dep_map, subclass, 0, NULL, _RET_IP_);
ret = rt_mutex_lock_interruptible(&lock->lock, 0);
if (ret)
mutex_release(&lock->dep_map, 1, _RET_IP_);
return ret;
}
EXPORT_SYMBOL(_mutex_lock_interruptible_nested);
int __lockfunc _mutex_lock_killable_nested(struct mutex *lock, int subclass)
{
int ret;
mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
ret = rt_mutex_lock_killable(&lock->lock, 0);
if (ret)
mutex_release(&lock->dep_map, 1, _RET_IP_);
return ret;
}
EXPORT_SYMBOL(_mutex_lock_killable_nested);
#endif
int __lockfunc _mutex_trylock(struct mutex *lock)
{
int ret = rt_mutex_trylock(&lock->lock);
if (ret)
mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
return ret;
}
EXPORT_SYMBOL(_mutex_trylock);
void __lockfunc _mutex_unlock(struct mutex *lock)
{
mutex_release(&lock->dep_map, 1, _RET_IP_);
rt_mutex_unlock(&lock->lock);
}
EXPORT_SYMBOL(_mutex_unlock);
/*
* rwlock_t functions
*/
int __lockfunc rt_write_trylock(rwlock_t *rwlock)
{
int ret = rt_mutex_trylock(&rwlock->lock);
if (ret) {
rwlock_acquire(&rwlock->dep_map, 0, 1, _RET_IP_);
migrate_disable();
}
return ret;
}
EXPORT_SYMBOL(rt_write_trylock);
int __lockfunc rt_write_trylock_irqsave(rwlock_t *rwlock, unsigned long *flags)
{
int ret;
*flags = 0;
ret = rt_write_trylock(rwlock);
return ret;
}
EXPORT_SYMBOL(rt_write_trylock_irqsave);
int __lockfunc rt_read_trylock(rwlock_t *rwlock)
{
struct rt_mutex *lock = &rwlock->lock;
int ret = 1;
/*
* recursive read locks succeed when current owns the lock,
* but not when read_depth == 0 which means that the lock is
* write locked.
*/
if (rt_mutex_owner(lock) != current) {
ret = rt_mutex_trylock(lock);
if (ret) {
rwlock_acquire(&rwlock->dep_map, 0, 1, _RET_IP_);
migrate_disable();
}
} else if (!rwlock->read_depth) {
ret = 0;
}
if (ret)
rwlock->read_depth++;
return ret;
}
EXPORT_SYMBOL(rt_read_trylock);
void __lockfunc rt_write_lock(rwlock_t *rwlock)
{
rwlock_acquire(&rwlock->dep_map, 0, 0, _RET_IP_);
migrate_disable();
__rt_spin_lock(&rwlock->lock);
}
EXPORT_SYMBOL(rt_write_lock);
void __lockfunc rt_read_lock(rwlock_t *rwlock)
{
struct rt_mutex *lock = &rwlock->lock;
/*
* recursive read locks succeed when current owns the lock
*/
if (rt_mutex_owner(lock) != current) {
rwlock_acquire(&rwlock->dep_map, 0, 0, _RET_IP_);
__rt_spin_lock(lock);
migrate_disable();
}
rwlock->read_depth++;
}
EXPORT_SYMBOL(rt_read_lock);
void __lockfunc rt_write_unlock(rwlock_t *rwlock)
{
/* NOTE: we always pass in '1' for nested, for simplicity */
rwlock_release(&rwlock->dep_map, 1, _RET_IP_);
__rt_spin_unlock(&rwlock->lock);
migrate_enable();
}
EXPORT_SYMBOL(rt_write_unlock);
void __lockfunc rt_read_unlock(rwlock_t *rwlock)
{
/* Release the lock only when read_depth is down to 0 */
if (--rwlock->read_depth == 0) {
rwlock_release(&rwlock->dep_map, 1, _RET_IP_);
__rt_spin_unlock(&rwlock->lock);
migrate_enable();
}
}
EXPORT_SYMBOL(rt_read_unlock);
unsigned long __lockfunc rt_write_lock_irqsave(rwlock_t *rwlock)
{
rt_write_lock(rwlock);
return 0;
}
EXPORT_SYMBOL(rt_write_lock_irqsave);
unsigned long __lockfunc rt_read_lock_irqsave(rwlock_t *rwlock)
{
rt_read_lock(rwlock);
return 0;
}
EXPORT_SYMBOL(rt_read_lock_irqsave);
void __rt_rwlock_init(rwlock_t *rwlock, char *name, struct lock_class_key *key)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
/*
* Make sure we are not reinitializing a held lock:
*/
debug_check_no_locks_freed((void *)rwlock, sizeof(*rwlock));
lockdep_init_map(&rwlock->dep_map, name, key, 0);
#endif
rwlock->lock.save_state = 1;
rwlock->read_depth = 0;
}
EXPORT_SYMBOL(__rt_rwlock_init);
/*
* rw_semaphores
*/
void rt_up_write(struct rw_semaphore *rwsem)
{
rwsem_release(&rwsem->dep_map, 1, _RET_IP_);
rt_mutex_unlock(&rwsem->lock);
}
EXPORT_SYMBOL(rt_up_write);
void rt_up_read(struct rw_semaphore *rwsem)
{
if (--rwsem->read_depth == 0) {
rwsem_release(&rwsem->dep_map, 1, _RET_IP_);
rt_mutex_unlock(&rwsem->lock);
}
}
EXPORT_SYMBOL(rt_up_read);
/*
* downgrade a write lock into a read lock
* - just wake up any readers at the front of the queue
*/
void rt_downgrade_write(struct rw_semaphore *rwsem)
{
BUG_ON(rt_mutex_owner(&rwsem->lock) != current);
rwsem->read_depth = 1;
}
EXPORT_SYMBOL(rt_downgrade_write);
int rt_down_write_trylock(struct rw_semaphore *rwsem)
{
int ret = rt_mutex_trylock(&rwsem->lock);
if (ret)
rwsem_acquire(&rwsem->dep_map, 0, 1, _RET_IP_);
return ret;
}
EXPORT_SYMBOL(rt_down_write_trylock);
void rt_down_write(struct rw_semaphore *rwsem)
{
rwsem_acquire(&rwsem->dep_map, 0, 0, _RET_IP_);
rt_mutex_lock(&rwsem->lock);
}
EXPORT_SYMBOL(rt_down_write);
void rt_down_write_nested(struct rw_semaphore *rwsem, int subclass)
{
rwsem_acquire(&rwsem->dep_map, subclass, 0, _RET_IP_);
rt_mutex_lock(&rwsem->lock);
}
EXPORT_SYMBOL(rt_down_write_nested);
void rt_down_write_nested_lock(struct rw_semaphore *rwsem,
struct lockdep_map *nest)
{
rwsem_acquire_nest(&rwsem->dep_map, 0, 0, nest, _RET_IP_);
rt_mutex_lock(&rwsem->lock);
}
int rt_down_read_trylock(struct rw_semaphore *rwsem)
{
struct rt_mutex *lock = &rwsem->lock;
int ret = 1;
/*
* recursive read locks succeed when current owns the rwsem,
* but not when read_depth == 0 which means that the rwsem is
* write locked.
*/
if (rt_mutex_owner(lock) != current) {
ret = rt_mutex_trylock(&rwsem->lock);
if (ret)
rwsem_acquire(&rwsem->dep_map, 0, 1, _RET_IP_);
} else if (!rwsem->read_depth) {
ret = 0;
}
if (ret)
rwsem->read_depth++;
return ret;
}
EXPORT_SYMBOL(rt_down_read_trylock);
static void __rt_down_read(struct rw_semaphore *rwsem, int subclass)
{
struct rt_mutex *lock = &rwsem->lock;
if (rt_mutex_owner(lock) != current) {
rwsem_acquire(&rwsem->dep_map, subclass, 0, _RET_IP_);
rt_mutex_lock(&rwsem->lock);
}
rwsem->read_depth++;
}
void rt_down_read(struct rw_semaphore *rwsem)
{
__rt_down_read(rwsem, 0);
}
EXPORT_SYMBOL(rt_down_read);
void rt_down_read_nested(struct rw_semaphore *rwsem, int subclass)
{
__rt_down_read(rwsem, subclass);
}
EXPORT_SYMBOL(rt_down_read_nested);
void __rt_rwsem_init(struct rw_semaphore *rwsem, const char *name,
struct lock_class_key *key)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
/*
* Make sure we are not reinitializing a held lock:
*/
debug_check_no_locks_freed((void *)rwsem, sizeof(*rwsem));
lockdep_init_map(&rwsem->dep_map, name, key, 0);
#endif
rwsem->read_depth = 0;
rwsem->lock.save_state = 0;
}
EXPORT_SYMBOL(__rt_rwsem_init);
/**
* atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
* @cnt: the atomic which we are to dec
* @lock: the mutex to return holding if we dec to 0
*
* return true and hold lock if we dec to 0, return false otherwise
*/
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
{
/* dec if we can't possibly hit 0 */
if (atomic_add_unless(cnt, -1, 1))
return 0;
/* we might hit 0, so take the lock */
mutex_lock(lock);
if (!atomic_dec_and_test(cnt)) {
/* when we actually did the dec, we didn't hit 0 */
mutex_unlock(lock);
return 0;
}
/* we hit 0, and we hold the lock */
return 1;
}
EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
|