diff options
Diffstat (limited to 'fs/nfs/iostat.h')
-rw-r--r-- | fs/nfs/iostat.h | 119 |
1 files changed, 13 insertions, 106 deletions
diff --git a/fs/nfs/iostat.h b/fs/nfs/iostat.h index 6350ecbd..a369528 100644 --- a/fs/nfs/iostat.h +++ b/fs/nfs/iostat.h @@ -5,135 +5,41 @@ * * Copyright (C) 2005, 2006 Chuck Lever <cel@netapp.com> * - * NFS client per-mount statistics provide information about the health of - * the NFS client and the health of each NFS mount point. Generally these - * are not for detailed problem diagnosis, but simply to indicate that there - * is a problem. - * - * These counters are not meant to be human-readable, but are meant to be - * integrated into system monitoring tools such as "sar" and "iostat". As - * such, the counters are sampled by the tools over time, and are never - * zeroed after a file system is mounted. Moving averages can be computed - * by the tools by taking the difference between two instantaneous samples - * and dividing that by the time between the samples. */ #ifndef _NFS_IOSTAT #define _NFS_IOSTAT -#define NFS_IOSTAT_VERS "1.0" - -/* - * NFS byte counters - * - * 1. SERVER - the number of payload bytes read from or written to the - * server by the NFS client via an NFS READ or WRITE request. - * - * 2. NORMAL - the number of bytes read or written by applications via - * the read(2) and write(2) system call interfaces. - * - * 3. DIRECT - the number of bytes read or written from files opened - * with the O_DIRECT flag. - * - * These counters give a view of the data throughput into and out of the NFS - * client. Comparing the number of bytes requested by an application with the - * number of bytes the client requests from the server can provide an - * indication of client efficiency (per-op, cache hits, etc). - * - * These counters can also help characterize which access methods are in - * use. DIRECT by itself shows whether there is any O_DIRECT traffic. - * NORMAL + DIRECT shows how much data is going through the system call - * interface. A large amount of SERVER traffic without much NORMAL or - * DIRECT traffic shows that applications are using mapped files. - * - * NFS page counters - * - * These count the number of pages read or written via nfs_readpage(), - * nfs_readpages(), or their write equivalents. - */ -enum nfs_stat_bytecounters { - NFSIOS_NORMALREADBYTES = 0, - NFSIOS_NORMALWRITTENBYTES, - NFSIOS_DIRECTREADBYTES, - NFSIOS_DIRECTWRITTENBYTES, - NFSIOS_SERVERREADBYTES, - NFSIOS_SERVERWRITTENBYTES, - NFSIOS_READPAGES, - NFSIOS_WRITEPAGES, - __NFSIOS_BYTESMAX, -}; - -/* - * NFS event counters - * - * These counters provide a low-overhead way of monitoring client activity - * without enabling NFS trace debugging. The counters show the rate at - * which VFS requests are made, and how often the client invalidates its - * data and attribute caches. This allows system administrators to monitor - * such things as how close-to-open is working, and answer questions such - * as "why are there so many GETATTR requests on the wire?" - * - * They also count anamolous events such as short reads and writes, silly - * renames due to close-after-delete, and operations that change the size - * of a file (such operations can often be the source of data corruption - * if applications aren't using file locking properly). - */ -enum nfs_stat_eventcounters { - NFSIOS_INODEREVALIDATE = 0, - NFSIOS_DENTRYREVALIDATE, - NFSIOS_DATAINVALIDATE, - NFSIOS_ATTRINVALIDATE, - NFSIOS_VFSOPEN, - NFSIOS_VFSLOOKUP, - NFSIOS_VFSACCESS, - NFSIOS_VFSUPDATEPAGE, - NFSIOS_VFSREADPAGE, - NFSIOS_VFSREADPAGES, - NFSIOS_VFSWRITEPAGE, - NFSIOS_VFSWRITEPAGES, - NFSIOS_VFSGETDENTS, - NFSIOS_VFSSETATTR, - NFSIOS_VFSFLUSH, - NFSIOS_VFSFSYNC, - NFSIOS_VFSLOCK, - NFSIOS_VFSRELEASE, - NFSIOS_CONGESTIONWAIT, - NFSIOS_SETATTRTRUNC, - NFSIOS_EXTENDWRITE, - NFSIOS_SILLYRENAME, - NFSIOS_SHORTREAD, - NFSIOS_SHORTWRITE, - NFSIOS_DELAY, - __NFSIOS_COUNTSMAX, -}; - -#ifdef __KERNEL__ - #include <linux/percpu.h> #include <linux/cache.h> +#include <linux/nfs_iostat.h> struct nfs_iostats { unsigned long long bytes[__NFSIOS_BYTESMAX]; unsigned long events[__NFSIOS_COUNTSMAX]; } ____cacheline_aligned; -static inline void nfs_inc_server_stats(struct nfs_server *server, enum nfs_stat_eventcounters stat) +static inline void nfs_inc_server_stats(const struct nfs_server *server, + enum nfs_stat_eventcounters stat) { struct nfs_iostats *iostats; int cpu; cpu = get_cpu(); iostats = per_cpu_ptr(server->io_stats, cpu); - iostats->events[stat] ++; + iostats->events[stat]++; put_cpu_no_resched(); } -static inline void nfs_inc_stats(struct inode *inode, enum nfs_stat_eventcounters stat) +static inline void nfs_inc_stats(const struct inode *inode, + enum nfs_stat_eventcounters stat) { nfs_inc_server_stats(NFS_SERVER(inode), stat); } -static inline void nfs_add_server_stats(struct nfs_server *server, enum nfs_stat_bytecounters stat, unsigned long addend) +static inline void nfs_add_server_stats(const struct nfs_server *server, + enum nfs_stat_bytecounters stat, + unsigned long addend) { struct nfs_iostats *iostats; int cpu; @@ -144,7 +50,9 @@ static inline void nfs_add_server_stats(struct nfs_server *server, enum nfs_stat put_cpu_no_resched(); } -static inline void nfs_add_stats(struct inode *inode, enum nfs_stat_bytecounters stat, unsigned long addend) +static inline void nfs_add_stats(const struct inode *inode, + enum nfs_stat_bytecounters stat, + unsigned long addend) { nfs_add_server_stats(NFS_SERVER(inode), stat, addend); } @@ -160,5 +68,4 @@ static inline void nfs_free_iostats(struct nfs_iostats *stats) free_percpu(stats); } -#endif -#endif +#endif /* _NFS_IOSTAT */ |