Age | Commit message (Collapse) | Author |
|
|
|
These two functions are only stated but undefined.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
3 of 4 callers actually want file_inode()...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
rename the function -- btrfs_start_all_delalloc_inodes(), and make its
name be compatible to btrfs_wait_ordered_roots(), since they are always
used at the same place.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Originally, we introduced scrub_super_lock to synchronize
tree log code with scrubbing super.
However we can replace scrub_super_lock with device_list_mutex,
because writing super will hold this mutex, this will reduce an extra
lock holding when writing supers in sync log code.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
I'm going to be removing hole extents in the near future so I wanted to make a
sanity test for btrfs_get_extent to make sure I don't break anything in the
meantime. This patch just puts btrfs_get_extent through its paces by giving it
a completely unreasonable mapping to look at and make sure it is giving us back
maps that make sense. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
So both Liu and I made huge messes of find_lock_delalloc_range trying to fix
stuff, me first by fixing extent size, then him by fixing something I broke and
then me again telling him to fix it a different way. So this is obviously a
candidate for some testing. This patch adds a pseudo fs so we can allocate fake
inodes for tests that need an inode or pages. Then it addes a bunch of tests to
make sure find_lock_delalloc_range is acting the way it is supposed to. With
this patch and all of our previous patches to find_lock_delalloc_range I am sure
it is working as expected now. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
It is not used for anything.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Remove unused parameter, 'eb'. Unused since introduction in
5f39d397dfbe140a14edecd4e73c34ce23c4f9ee
Updated to be rebased against current upstream and correct diff supplied this time!
Signed-off-by: Ross Kirk <ross.kirk@gmail.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
While looking at somebodys corruption I became completely convinced that
btrfs_split_item was broken, so I wrote this test to verify that it was working
as it was supposed to. Thankfully it appears to be working as intended, so just
add this test to make sure nobody breaks it in the future. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Remove unused eb parameter from btrfs_item_nr
Signed-off-by: Ross Kirk <ross.kirk@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
This isn't used for anything anymore, just remove it.
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Forever ago I made the worst case calculator say that we could potentially split
into 3 blocks for every level on the way down, which isn't right. If we split
we're only going to get two new blocks, the one we originally cow'ed and the new
one we're going to split. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
If we failed to actually allocate the correct size of the extent to relocate we
will end up in an infinite loop because we won't return an error, we'll just
move on to the next extent. So fix this up by returning an error, and then fix
all the callers to return an error up the stack rather than BUG_ON()'ing.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
One of the complaints we get a lot is how many BUG_ON()'s we have. So to help
with this I'm introducing a kconfig option to enable/disable a new ASSERT()
mechanism much like what XFS does. This will allow us developers to still get
our nice panics but allow users/distros to compile them out. With this we can
go through and convert any BUG_ON()'s that we have to catch actual programming
mistakes to the new ASSERT() and then fix everybody else to return errors. This
will also allow developers to leave sanity checks in their new code to make sure
we don't trip over problems while testing stuff and vetting new features.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Internally, btrfs_header_chunk_tree_uuid() calculates an unsigned long, but
casts it to a pointer, while all callers cast it to unsigned long again.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Internally, btrfs_header_fsid() calculates an unsigned long, but casts
it to a pointer, while all callers cast it to unsigned long again.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Internally, btrfs_dev_extent_chunk_tree_uuid() calculates an unsigned long,
but casts it to a pointer, while all callers cast it to unsigned long
again.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
All callers of btrfs_device_fsid() cast its return type to unsigned long.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
All callers of btrfs_device_uuid() cast its return type to unsigned long.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
The internal btrfs device id is a u64, hence make the constant
BTRFS_DEV_REPLACE_DEVID "unsigned long long" as well, so we no longer need
a cast to print it.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
This should never be needed, but since all functions are there
to check and rebuild the UUID tree, a mount option is added that
allows to force this check and rebuild procedure.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
If the filesystem was mounted with an old kernel that was not
aware of the UUID tree, this is detected by looking at the
uuid_tree_generation field of the superblock (similar to how
the free space cache is doing it). If a mismatch is detected
at mount time, a thread is started that does two things:
1. Iterate through the UUID tree, check each entry, delete those
entries that are not valid anymore (i.e., the subvol does not
exist anymore or the value changed).
2. Iterate through the root tree, for each found subvolume, add
the UUID tree entries for the subvolume (if they are not
already there).
This mechanism is also used to handle and repair errors that
happened during the initial creation and filling of the tree.
The update of the uuid_tree_generation field (which indicates
that the state of the UUID tree is up to date) is blocked until
all create and repair operations are successfully completed.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
In order to be able to detect the case that a filesystem is mounted
with an old kernel, add a uuid-tree-gen field like the free space
cache is doing it. It is part of the super block and written with
each commit. Old kernels do not know this field and don't update it.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
When the UUID tree is initially created, a task is spawned that
walks through the root tree. For each found subvolume root_item,
the uuid and received_uuid entries in the UUID tree are added.
This is such a quick operation so that in case somebody wants
to unmount the filesystem while the task is still running, the
unmount is delayed until the UUID tree building task is finished.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
When a new subvolume or snapshot is created, a new UUID item is added
to the UUID tree. Such items are removed when the subvolume is deleted.
The ioctl to set the received subvolume UUID is also touched and will
now also add this received UUID into the UUID tree together with the
ID of the subvolume. The latter is also done when read-only snapshots
are created which inherit all the send/receive information from the
parent subvolume.
User mode programs use the BTRFS_IOC_TREE_SEARCH ioctl to search and
read in the UUID tree.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
This tree is not created by mkfs.btrfs. Therefore when a filesystem
is mounted writable and the UUID tree does not exist, this tree is
created if required. The tree is also added to the fs_info structure
and initialized, but this commit does not yet read or write UUID tree
elements.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Mapping UUIDs to subvolume IDs is an operation with a high effort
today. Today, the algorithm even has quadratic effort (based on the
number of existing subvolumes), which means, that it takes minutes
to send/receive a single subvolume if 10,000 subvolumes exist. But
even linear effort would be too much since it is a waste. And these
data structures to allow mapping UUIDs to subvolume IDs are created
every time a btrfs send/receive instance is started.
It is much more efficient to maintain a searchable persistent data
structure in the filesystem, one that is updated whenever a
subvolume/snapshot is created and deleted, and when the received
subvolume UUID is set by the btrfs-receive tool.
Therefore kernel code is added with this commit that is able to
maintain data structures in the filesystem that allow to quickly
search for a given UUID and to retrieve data that is assigned to
this UUID, like which subvolume ID is related to this UUID.
This commit adds a new tree to hold UUID-to-data mapping items. The
key of the items is the full UUID plus the key type BTRFS_UUID_KEY.
Multiple data blocks can be stored for a given UUID, a type/length/
value scheme is used.
Now follows the lengthy justification, why a new tree was added
instead of using the existing root tree:
The first approach was to not create another tree that holds UUID
items. Instead, the items should just go into the top root tree.
Unfortunately this confused the algorithm to assign the objectid
of subvolumes and snapshots. The reason is that
btrfs_find_free_objectid() calls btrfs_find_highest_objectid() for
the first created subvol or snapshot after mounting a filesystem,
and this function simply searches for the largest used objectid in
the root tree keys to pick the next objectid to assign. Of course,
the UUID keys have always been the ones with the highest offset
value, and the next assigned subvol ID was wastefully huge.
To use any other existing tree did not look proper. To apply a
workaround such as setting the objectid to zero in the UUID item
key and to implement collision handling would either add
limitations (in case of a btrfs_extend_item() approach to handle
the collisions) or a lot of complexity and source code (in case a
key would be looked up that is free of collisions). Adding new code
that introduces limitations is not good, and adding code that is
complex and lengthy for no good reason is also not good. That's the
justification why a completely new tree was introduced.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Cc: Josef Bacik <jbacik@fusionio.com>
Cc: Chris Mason <chris.mason@fusionio.com>
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
make C=2 fs/btrfs/ CF=-D__CHECK_ENDIAN__
I tried to filter out the warnings for which patches have already
been sent to the mailing list, pending for inclusion in btrfs-next.
All these changes should be obviously safe.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
If you are sending a snapshot and specifying a parent snapshot we will walk the
trees and figure out where they differ and send the differences only. The way
we check for differences are if the leaves aren't the same and if the keys are
not the same within the leaves. So if neither leaf is the same (ie the leaf has
been cow'ed from the parent snapshot) we walk each item in the send root and
check it against the parent root. If the items match exactly then we don't do
anything. This doesn't quite work for inode refs, since they will just have the
name and the parent objectid. If you move the file from a directory and then
remove that directory and re-create a directory with the same inode number as
the old directory and then move that file back into that directory we will
assume that nothing changed and you will get errors when you try to receive.
In order to fix this we need to do extra checking to see if the inode ref really
is the same or not. So do this by passing down BTRFS_COMPARE_TREE_SAME if the
items match. Then if the key type is an inode ref we can do some extra
checking, otherwise we just keep processing. The extra checking is to look up
the generation of the directory in the parent volume and compare it to the
generation of the send volume. If they match then they are the same directory
and we are good to go. If they don't we have to add them to the changed refs
list.
This means we have to track the generation of the ref we're trying to lookup
when we iterate all the refs for a particular inode. So in the case of looking
for new refs we have to get the generation from the parent volume, and in the
case of looking for deleted refs we have to get the generation from the send
volume to compare with.
There was also the issue of using a ulist to keep track of the directories we
needed to check. Because we can get a deleted ref and a new ref for the same
inode number the ulist won't work since it indexes based on the value. So
instead just dup any directory ref we find and add it to a local list, and then
process that list as normal and do away with using a ulist for this altogether.
Before we would fail all of the tests in the far-progs that related to moving
directories (test group 32). With this patch we now pass these tests, and all
of the tests in the far-progs send testing suite. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
I noticed while looking at a deadlock that we are always starting a transaction
in cow_file_range(). This isn't really needed since we only need a transaction
if we are doing an inline extent, or if the allocator needs to allocate a chunk.
So push down all the transaction start stuff to be closer to where we actually
need a transaction in all of these cases. This will hopefully reduce our write
latency when we are committing often. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
I added a patch where we started taking the ordered operations mutex when we
waited on ordered extents. We need this because we splice the list and process
it, so if a flusher came in during this scenario it would think the list was
empty and we'd usually get an early ENOSPC. The problem with this is that this
lock is used in transaction committing. So we end up with something like this
Transaction commit
-> wait on writers
Delalloc flusher
-> run_ordered_operations (holds mutex)
->wait for filemap-flush to do its thing
flush task
-> cow_file_range
->wait on btrfs_join_transaction because we're commiting
some other task
-> commit_transaction because we notice trans->transaction->flush is set
-> run_ordered_operations (hang on mutex)
We need to disentangle the ordered operations flushing from the delalloc
flushing, since they are separate things. This solves the deadlock issue I was
seeing. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
I'ts hardcoded to 30 seconds which is fine for most users. Higher values
defer data being synced to permanent storage with obvious consequences
when the system crashes. The upper bound is not forced, but a warning is
printed if it's more than 300 seconds (5 minutes).
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Alex Lyakas reported a bug where wait_block_group_cache_progress() would wait
forever if a drive failed. This is because we just bail out if there is an
error while trying to cache a block group, we don't update anybody who may be
waiting. So this introduces a new enum for the cache state in case of error and
makes everybody bail out if we have an error. Alex tested and verified this
patch fixed his problem. This fixes bz 59431. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Before applying this patch, we cached the csum value into the extent state
tree when reading some data from the disk, this operation increased the lock
contention of the state tree.
Now, we just store the csum value into the bio structure or other unshared
structure, so we can reduce the lock contention.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
Some codes still use the cpu_to_lexx instead of the
BTRFS_SETGET_STACK_FUNCS declared in ctree.h.
Also added some BTRFS_SETGET_STACK_FUNCS for btrfs_header btrfs_timespec
and other structures.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Miao Xie <miaoxie@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
I recently did some ENOSPC testing that involved filling the disk
while create and removing snapshots in a loop. During the test cycle,
I ran into an ENOSPC when trying to remove a snapshot, leaving the fs
stuck in ENOSPC even after a umount/mount cycle.
This patch allow subvolume removal to fall back onto the global
block reservation in order to succeed when it would have failed
otherwise.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
We always just try and reserve data space when we write, but if we are out of
space but have prealloc'ed extents we should still successfully write. This
patch will try and see if we can write to prealloc'ed space and if we can go
ahead and allow the write to continue. With this patch we now pass xfstests
generic/274. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
There are all of these checks in the ENOSPC code to see if committing the
transaction would free up enough space to make the allocation. This is because
early on we just committed the transaction and hoped and prayed, which resulted
in cases where it took _forever_ to get an ENOSPC when we really were out of
space. So we check space_info->bytes_pinned, except this isn't completely true
because it doesn't account for space we may free but are stuck in delayed refs.
So tests like xfstests 226 would fail because we wouldn't commit the transaction
to free up the data space. So instead add a percpu counter that will be a
little fuzzier, it will add bytes as soon as we try to free up the space, and
remove any space it doesn't actually free up when we get around to doing the
actual free. We then 0 out this counter every transaction period so we have a
better idea of how much space we will actually free up by committing this
transaction. With this patch we now pass xfstests 226. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
Dave has this fs_mark script that can make btrfs abort with sufficient amount of
ram. This is because with more ram we can keep more dirty metadata in cache
which in a round about way makes for many more pending delayed refs. What
happens is we end up not throttling the transaction enough so when we go to
commit the transaction when we've completely filled the file system we'll
abort() because we use all of the space in the global reserve and we still have
delayed refs to run. To fix this we need to make the delayed ref flushing and
the transaction throttling dependant upon the number of delayed refs that we
have instead of how much reserved space is left in the global reserve. With
this patch we not only stop aborting transactions but we also get a smoother run
speed with fs_mark and it makes us about 10% faster. Thanks,
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
With non-mixed block groups we replay the logs before we're allowed to do any
writes, so we get away with not pinning/removing the data extents until right
when we replay them. However with mixed block groups we allocate out of the
same pool, so we could easily allocate a metadata block that was logged in our
tree log. To deal with this we just need to notice that we have mixed block
groups and do the normal excluding/removal dance during the pin stage of the log
replay and that way we don't allocate metadata blocks from areas we have logged
data extents. With this patch we now pass xfstests generic/311 with mixed
block groups turned on. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
When called during mount, we cannot start the rescan worker thread until
open_ctree is done. This commit restuctures the qgroup rescan internals to
enable a clean deferral of the rescan resume operation.
First of all, the struct qgroup_rescan is removed, saving us a malloc and
some initialization synchronizations problems. Its only element (the worker
struct) now lives within fs_info just as the rest of the rescan code.
Then setting up a rescan worker is split into several reusable stages.
Currently we have three different rescan startup scenarios:
(A) rescan ioctl
(B) rescan resume by mount
(C) rescan by quota enable
Each case needs its own combination of the four following steps:
(1) set the progress [A, C: zero; B: state of umount]
(2) commit the transaction [A]
(3) set the counters [A, C: zero; B: state of umount]
(4) start worker [A, B, C]
qgroup_rescan_init does step (1). There's no extra function added to commit
a transaction, we've got that already. qgroup_rescan_zero_tracking does
step (3). Step (4) is nothing more than a call to the generic
btrfs_queue_worker.
We also get rid of a double check for the rescan progress during
btrfs_qgroup_account_ref, which is no longer required due to having step 2
from the list above.
As a side effect, this commit prepares to move the rescan start code from
btrfs_run_qgroups (which is run during commit) to a less time critical
section.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
Dave pointed out a problem where if you filled up a file system as much as
possible you couldn't remove any files. The whole unlink reservation thing is
convoluted because it tries to guess if it's going to add space to unlink
something or not, and has all these odd uncommented cases where it simply does
not try. So to fix this I've added a way to conditionally steal from the global
reserve if we can't make our normal reservation. If we have more than half the
space in the global reserve free we will go ahead and steal from the global
reserve. With this patch Dave's reproducer now works and I can rm all the files
on the file system. Thanks,
Reported-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
We used 3 variants to track the state of the transaction, it was complex
and wasted the memory space. Besides that, it was hard to understand that
which types of the transaction handles should be blocked in each transaction
state, so the developers often made mistakes.
This patch improved the above problem. In this patch, we define 6 states
for the transaction,
enum btrfs_trans_state {
TRANS_STATE_RUNNING = 0,
TRANS_STATE_BLOCKED = 1,
TRANS_STATE_COMMIT_START = 2,
TRANS_STATE_COMMIT_DOING = 3,
TRANS_STATE_UNBLOCKED = 4,
TRANS_STATE_COMPLETED = 5,
TRANS_STATE_MAX = 6,
}
and just use 1 variant to track those state.
In order to make the blocked handle types for each state more clear,
we introduce a array:
unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
[TRANS_STATE_RUNNING] = 0U,
[TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
__TRANS_START),
[TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH),
[TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN),
[TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN |
__TRANS_JOIN_NOLOCK),
[TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN |
__TRANS_JOIN_NOLOCK),
}
it is very intuitionistic.
Besides that, because we remove ->in_commit in transaction structure, so
the lock ->commit_lock which was used to protect it is unnecessary, remove
->commit_lock.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
The reason we introduce per-subvolume ordered extent list is the same
as the per-subvolume delalloc inode list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
When we create a snapshot, we need flush all delalloc inodes in the
fs, just flushing the inodes in the source tree is OK. So we introduce
per-subvolume delalloc inode list.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
The grab/put funtions will be used in the next patch, which need grab
the root object and ensure it is not freed. We use reference counter
instead of the srcu lock is to aovid blocking the memory reclaim task,
which invokes synchronize_srcu().
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
There are several functions whose code is similar, such as
btrfs_find_last_root()
btrfs_read_fs_root_no_radix()
Besides that, some functions are invoked twice, it is unnecessary,
for example, we are sure that all roots which is found in
btrfs_find_orphan_roots()
have their orphan items, so it is unnecessary to check the orphan
item again.
So cleanup it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|