summaryrefslogtreecommitdiff
path: root/arch/avr32/kernel/setup.c
blob: 5d68f3c6990b3d7fb40038f4e51437260051f713 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/*
 * Copyright (C) 2004-2006 Atmel Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/clk.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/console.h>
#include <linux/ioport.h>
#include <linux/bootmem.h>
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/root_dev.h>
#include <linux/cpu.h>

#include <asm/sections.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/setup.h>
#include <asm/sysreg.h>

#include <asm/arch/board.h>
#include <asm/arch/init.h>

extern int root_mountflags;

/*
 * Bootloader-provided information about physical memory
 */
struct tag_mem_range *mem_phys;
struct tag_mem_range *mem_reserved;
struct tag_mem_range *mem_ramdisk;

/*
 * Initialize loops_per_jiffy as 5000000 (500MIPS).
 * Better make it too large than too small...
 */
struct avr32_cpuinfo boot_cpu_data = {
	.loops_per_jiffy = 5000000
};
EXPORT_SYMBOL(boot_cpu_data);

static char command_line[COMMAND_LINE_SIZE];

/*
 * Should be more than enough, but if you have a _really_ complex
 * setup, you might need to increase the size of this...
 */
static struct tag_mem_range __initdata mem_range_cache[32];
static unsigned mem_range_next_free;

/*
 * Standard memory resources
 */
static struct resource mem_res[] = {
	{
		.name	= "Kernel code",
		.start	= 0,
		.end	= 0,
		.flags	= IORESOURCE_MEM
	},
	{
		.name	= "Kernel data",
		.start	= 0,
		.end	= 0,
		.flags	= IORESOURCE_MEM,
	},
};

#define kernel_code	mem_res[0]
#define kernel_data	mem_res[1]

/*
 * Early framebuffer allocation. Works as follows:
 *   - If fbmem_size is zero, nothing will be allocated or reserved.
 *   - If fbmem_start is zero when setup_bootmem() is called,
 *     fbmem_size bytes will be allocated from the bootmem allocator.
 *   - If fbmem_start is nonzero, an area of size fbmem_size will be
 *     reserved at the physical address fbmem_start if necessary. If
 *     the area isn't in a memory region known to the kernel, it will
 *     be left alone.
 *
 * Board-specific code may use these variables to set up platform data
 * for the framebuffer driver if fbmem_size is nonzero.
 */
static unsigned long __initdata fbmem_start;
static unsigned long __initdata fbmem_size;

/*
 * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
 * use as framebuffer.
 *
 * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
 * starting at yyy to be reserved for use as framebuffer.
 *
 * The kernel won't verify that the memory region starting at yyy
 * actually contains usable RAM.
 */
static int __init early_parse_fbmem(char *p)
{
	fbmem_size = memparse(p, &p);
	if (*p == '@')
		fbmem_start = memparse(p, &p);
	return 0;
}
early_param("fbmem", early_parse_fbmem);

static inline void __init resource_init(void)
{
	struct tag_mem_range *region;

	kernel_code.start = __pa(init_mm.start_code);
	kernel_code.end = __pa(init_mm.end_code - 1);
	kernel_data.start = __pa(init_mm.end_code);
	kernel_data.end = __pa(init_mm.brk - 1);

	for (region = mem_phys; region; region = region->next) {
		struct resource *res;
		unsigned long phys_start, phys_end;

		if (region->size == 0)
			continue;

		phys_start = region->addr;
		phys_end = phys_start + region->size - 1;

		res = alloc_bootmem_low(sizeof(*res));
		res->name = "System RAM";
		res->start = phys_start;
		res->end = phys_end;
		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;

		request_resource (&iomem_resource, res);

		if (kernel_code.start >= res->start &&
		    kernel_code.end <= res->end)
			request_resource (res, &kernel_code);
		if (kernel_data.start >= res->start &&
		    kernel_data.end <= res->end)
			request_resource (res, &kernel_data);
	}
}

static int __init parse_tag_core(struct tag *tag)
{
	if (tag->hdr.size > 2) {
		if ((tag->u.core.flags & 1) == 0)
			root_mountflags &= ~MS_RDONLY;
		ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
	}
	return 0;
}
__tagtable(ATAG_CORE, parse_tag_core);

static int __init parse_tag_mem_range(struct tag *tag,
				      struct tag_mem_range **root)
{
	struct tag_mem_range *cur, **pprev;
	struct tag_mem_range *new;

	/*
	 * Ignore zero-sized entries. If we're running standalone, the
	 * SDRAM code may emit such entries if something goes
	 * wrong...
	 */
	if (tag->u.mem_range.size == 0)
		return 0;

	/*
	 * Copy the data so the bootmem init code doesn't need to care
	 * about it.
	 */
	if (mem_range_next_free >=
	    (sizeof(mem_range_cache) / sizeof(mem_range_cache[0])))
		panic("Physical memory map too complex!\n");

	new = &mem_range_cache[mem_range_next_free++];
	*new = tag->u.mem_range;

	pprev = root;
	cur = *root;
	while (cur) {
		pprev = &cur->next;
		cur = cur->next;
	}

	*pprev = new;
	new->next = NULL;

	return 0;
}

static int __init parse_tag_mem(struct tag *tag)
{
	return parse_tag_mem_range(tag, &mem_phys);
}
__tagtable(ATAG_MEM, parse_tag_mem);

static int __init parse_tag_cmdline(struct tag *tag)
{
	strlcpy(saved_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
	return 0;
}
__tagtable(ATAG_CMDLINE, parse_tag_cmdline);

static int __init parse_tag_rdimg(struct tag *tag)
{
	return parse_tag_mem_range(tag, &mem_ramdisk);
}
__tagtable(ATAG_RDIMG, parse_tag_rdimg);

static int __init parse_tag_clock(struct tag *tag)
{
	/*
	 * We'll figure out the clocks by peeking at the system
	 * manager regs directly.
	 */
	return 0;
}
__tagtable(ATAG_CLOCK, parse_tag_clock);

static int __init parse_tag_rsvd_mem(struct tag *tag)
{
	return parse_tag_mem_range(tag, &mem_reserved);
}
__tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);

static int __init parse_tag_ethernet(struct tag *tag)
{
#if 0
	const struct platform_device *pdev;

	/*
	 * We really need a bus type that supports "classes"...this
	 * will do for now (until we must handle other kinds of
	 * ethernet controllers)
	 */
	pdev = platform_get_device("macb", tag->u.ethernet.mac_index);
	if (pdev && pdev->dev.platform_data) {
		struct eth_platform_data *data = pdev->dev.platform_data;

		data->valid = 1;
		data->mii_phy_addr = tag->u.ethernet.mii_phy_addr;
		memcpy(data->hw_addr, tag->u.ethernet.hw_address,
		       sizeof(data->hw_addr));
	}
#endif
	return 0;
}
__tagtable(ATAG_ETHERNET, parse_tag_ethernet);

/*
 * Scan the tag table for this tag, and call its parse function. The
 * tag table is built by the linker from all the __tagtable
 * declarations.
 */
static int __init parse_tag(struct tag *tag)
{
	extern struct tagtable __tagtable_begin, __tagtable_end;
	struct tagtable *t;

	for (t = &__tagtable_begin; t < &__tagtable_end; t++)
		if (tag->hdr.tag == t->tag) {
			t->parse(tag);
			break;
		}

	return t < &__tagtable_end;
}

/*
 * Parse all tags in the list we got from the boot loader
 */
static void __init parse_tags(struct tag *t)
{
	for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
		if (!parse_tag(t))
			printk(KERN_WARNING
			       "Ignoring unrecognised tag 0x%08x\n",
			       t->hdr.tag);
}

void __init setup_arch (char **cmdline_p)
{
	struct clk *cpu_clk;

	parse_tags(bootloader_tags);

	setup_processor();
	setup_platform();

	cpu_clk = clk_get(NULL, "cpu");
	if (IS_ERR(cpu_clk)) {
		printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
	} else {
		unsigned long cpu_hz = clk_get_rate(cpu_clk);

		/*
		 * Well, duh, but it's probably a good idea to
		 * increment the use count.
		 */
		clk_enable(cpu_clk);

		boot_cpu_data.clk = cpu_clk;
		boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
		printk("CPU: Running at %lu.%03lu MHz\n",
		       ((cpu_hz + 500) / 1000) / 1000,
		       ((cpu_hz + 500) / 1000) % 1000);
	}

	init_mm.start_code = (unsigned long) &_text;
	init_mm.end_code = (unsigned long) &_etext;
	init_mm.end_data = (unsigned long) &_edata;
	init_mm.brk = (unsigned long) &_end;

	strlcpy(command_line, saved_command_line, COMMAND_LINE_SIZE);
	*cmdline_p = command_line;
	parse_early_param();

	setup_bootmem();

	board_setup_fbmem(fbmem_start, fbmem_size);

#ifdef CONFIG_VT
	conswitchp = &dummy_con;
#endif

	paging_init();

	resource_init();
}