summaryrefslogtreecommitdiff
path: root/arch/tile/kernel/kprobes.c
blob: 27cdcacbe81dfe3e68cb36f60d0d712d9e3792dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
/*
 * arch/tile/kernel/kprobes.c
 * Kprobes on TILE-Gx
 *
 * Some portions copied from the MIPS version.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 * Copyright 2006 Sony Corp.
 * Copyright 2010 Cavium Networks
 *
 * Copyright 2012 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>

#include <arch/opcode.h>

DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);

tile_bundle_bits breakpoint_insn = TILEGX_BPT_BUNDLE;
tile_bundle_bits breakpoint2_insn = TILEGX_BPT_BUNDLE | DIE_SSTEPBP;

/*
 * Check whether instruction is branch or jump, or if executing it
 * has different results depending on where it is executed (e.g. lnk).
 */
static int __kprobes insn_has_control(kprobe_opcode_t insn)
{
	if (get_Mode(insn) != 0) {   /* Y-format bundle */
		if (get_Opcode_Y1(insn) != RRR_1_OPCODE_Y1 ||
		    get_RRROpcodeExtension_Y1(insn) != UNARY_RRR_1_OPCODE_Y1)
			return 0;

		switch (get_UnaryOpcodeExtension_Y1(insn)) {
		case JALRP_UNARY_OPCODE_Y1:
		case JALR_UNARY_OPCODE_Y1:
		case JRP_UNARY_OPCODE_Y1:
		case JR_UNARY_OPCODE_Y1:
		case LNK_UNARY_OPCODE_Y1:
			return 1;
		default:
			return 0;
		}
	}

	switch (get_Opcode_X1(insn)) {
	case BRANCH_OPCODE_X1:	/* branch instructions */
	case JUMP_OPCODE_X1:	/* jump instructions: j and jal */
		return 1;

	case RRR_0_OPCODE_X1:   /* other jump instructions */
		if (get_RRROpcodeExtension_X1(insn) != UNARY_RRR_0_OPCODE_X1)
			return 0;
		switch (get_UnaryOpcodeExtension_X1(insn)) {
		case JALRP_UNARY_OPCODE_X1:
		case JALR_UNARY_OPCODE_X1:
		case JRP_UNARY_OPCODE_X1:
		case JR_UNARY_OPCODE_X1:
		case LNK_UNARY_OPCODE_X1:
			return 1;
		default:
			return 0;
		}
	default:
		return 0;
	}
}

int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
	unsigned long addr = (unsigned long)p->addr;

	if (addr & (sizeof(kprobe_opcode_t) - 1))
		return -EINVAL;

	if (insn_has_control(*p->addr)) {
		pr_notice("Kprobes for control instructions are not "
			  "supported\n");
		return -EINVAL;
	}

	/* insn: must be on special executable page on tile. */
	p->ainsn.insn = get_insn_slot();
	if (!p->ainsn.insn)
		return -ENOMEM;

	/*
	 * In the kprobe->ainsn.insn[] array we store the original
	 * instruction at index zero and a break trap instruction at
	 * index one.
	 */
	memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
	p->ainsn.insn[1] = breakpoint2_insn;
	p->opcode = *p->addr;

	return 0;
}

void __kprobes arch_arm_kprobe(struct kprobe *p)
{
	unsigned long addr_wr;

	/* Operate on writable kernel text mapping. */
	addr_wr = (unsigned long)p->addr - MEM_SV_START + PAGE_OFFSET;

	if (probe_kernel_write((void *)addr_wr, &breakpoint_insn,
		sizeof(breakpoint_insn)))
		pr_err("%s: failed to enable kprobe\n", __func__);

	smp_wmb();
	flush_insn_slot(p);
}

void __kprobes arch_disarm_kprobe(struct kprobe *kp)
{
	unsigned long addr_wr;

	/* Operate on writable kernel text mapping. */
	addr_wr = (unsigned long)kp->addr - MEM_SV_START + PAGE_OFFSET;

	if (probe_kernel_write((void *)addr_wr, &kp->opcode,
		sizeof(kp->opcode)))
		pr_err("%s: failed to enable kprobe\n", __func__);

	smp_wmb();
	flush_insn_slot(kp);
}

void __kprobes arch_remove_kprobe(struct kprobe *p)
{
	if (p->ainsn.insn) {
		free_insn_slot(p->ainsn.insn, 0);
		p->ainsn.insn = NULL;
	}
}

static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
	kcb->prev_kprobe.saved_pc = kcb->kprobe_saved_pc;
}

static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
	kcb->kprobe_status = kcb->prev_kprobe.status;
	kcb->kprobe_saved_pc = kcb->prev_kprobe.saved_pc;
}

static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
			struct kprobe_ctlblk *kcb)
{
	__this_cpu_write(current_kprobe, p);
	kcb->kprobe_saved_pc = regs->pc;
}

static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
	/* Single step inline if the instruction is a break. */
	if (p->opcode == breakpoint_insn ||
	    p->opcode == breakpoint2_insn)
		regs->pc = (unsigned long)p->addr;
	else
		regs->pc = (unsigned long)&p->ainsn.insn[0];
}

static int __kprobes kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *p;
	int ret = 0;
	kprobe_opcode_t *addr;
	struct kprobe_ctlblk *kcb;

	addr = (kprobe_opcode_t *)regs->pc;

	/*
	 * We don't want to be preempted for the entire
	 * duration of kprobe processing.
	 */
	preempt_disable();
	kcb = get_kprobe_ctlblk();

	/* Check we're not actually recursing. */
	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
			if (kcb->kprobe_status == KPROBE_HIT_SS &&
			    p->ainsn.insn[0] == breakpoint_insn) {
				goto no_kprobe;
			}
			/*
			 * We have reentered the kprobe_handler(), since
			 * another probe was hit while within the handler.
			 * We here save the original kprobes variables and
			 * just single step on the instruction of the new probe
			 * without calling any user handlers.
			 */
			save_previous_kprobe(kcb);
			set_current_kprobe(p, regs, kcb);
			kprobes_inc_nmissed_count(p);
			prepare_singlestep(p, regs);
			kcb->kprobe_status = KPROBE_REENTER;
			return 1;
		} else {
			if (*addr != breakpoint_insn) {
				/*
				 * The breakpoint instruction was removed by
				 * another cpu right after we hit, no further
				 * handling of this interrupt is appropriate.
				 */
				ret = 1;
				goto no_kprobe;
			}
			p = __this_cpu_read(current_kprobe);
			if (p->break_handler && p->break_handler(p, regs))
				goto ss_probe;
		}
		goto no_kprobe;
	}

	p = get_kprobe(addr);
	if (!p) {
		if (*addr != breakpoint_insn) {
			/*
			 * The breakpoint instruction was removed right
			 * after we hit it.  Another cpu has removed
			 * either a probepoint or a debugger breakpoint
			 * at this address.  In either case, no further
			 * handling of this interrupt is appropriate.
			 */
			ret = 1;
		}
		/* Not one of ours: let kernel handle it. */
		goto no_kprobe;
	}

	set_current_kprobe(p, regs, kcb);
	kcb->kprobe_status = KPROBE_HIT_ACTIVE;

	if (p->pre_handler && p->pre_handler(p, regs)) {
		/* Handler has already set things up, so skip ss setup. */
		return 1;
	}

ss_probe:
	prepare_singlestep(p, regs);
	kcb->kprobe_status = KPROBE_HIT_SS;
	return 1;

no_kprobe:
	preempt_enable_no_resched();
	return ret;
}

/*
 * Called after single-stepping.  p->addr is the address of the
 * instruction that has been replaced by the breakpoint. To avoid the
 * SMP problems that can occur when we temporarily put back the
 * original opcode to single-step, we single-stepped a copy of the
 * instruction.  The address of this copy is p->ainsn.insn.
 *
 * This function prepares to return from the post-single-step
 * breakpoint trap.
 */
static void __kprobes resume_execution(struct kprobe *p,
				       struct pt_regs *regs,
				       struct kprobe_ctlblk *kcb)
{
	unsigned long orig_pc = kcb->kprobe_saved_pc;
	regs->pc = orig_pc + 8;
}

static inline int post_kprobe_handler(struct pt_regs *regs)
{
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
		return 0;

	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
	}

	resume_execution(cur, regs, kcb);

	/* Restore back the original saved kprobes variables and continue. */
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
		goto out;
	}
	reset_current_kprobe();
out:
	preempt_enable_no_resched();

	return 1;
}

static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
		return 1;

	if (kcb->kprobe_status & KPROBE_HIT_SS) {
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
		 * kprobe and the ip points back to the probe address
		 * and allow the page fault handler to continue as a
		 * normal page fault.
		 */
		resume_execution(cur, regs, kcb);
		reset_current_kprobe();
		preempt_enable_no_resched();
	}
	return 0;
}

/*
 * Wrapper routine for handling exceptions.
 */
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
{
	struct die_args *args = (struct die_args *)data;
	int ret = NOTIFY_DONE;

	switch (val) {
	case DIE_BREAK:
		if (kprobe_handler(args->regs))
			ret = NOTIFY_STOP;
		break;
	case DIE_SSTEPBP:
		if (post_kprobe_handler(args->regs))
			ret = NOTIFY_STOP;
		break;
	case DIE_PAGE_FAULT:
		/* kprobe_running() needs smp_processor_id(). */
		preempt_disable();

		if (kprobe_running()
		    && kprobe_fault_handler(args->regs, args->trapnr))
			ret = NOTIFY_STOP;
		preempt_enable();
		break;
	default:
		break;
	}
	return ret;
}

int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	kcb->jprobe_saved_regs = *regs;
	kcb->jprobe_saved_sp = regs->sp;

	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));

	regs->pc = (unsigned long)(jp->entry);

	return 1;
}

/* Defined in the inline asm below. */
void jprobe_return_end(void);

void __kprobes jprobe_return(void)
{
	asm volatile(
		"bpt\n\t"
		".globl jprobe_return_end\n"
		"jprobe_return_end:\n");
}

int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (regs->pc >= (unsigned long)jprobe_return &&
	    regs->pc <= (unsigned long)jprobe_return_end) {
		*regs = kcb->jprobe_saved_regs;
		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
		preempt_enable_no_resched();

		return 1;
	}
	return 0;
}

/*
 * Function return probe trampoline:
 * - init_kprobes() establishes a probepoint here
 * - When the probed function returns, this probe causes the
 *   handlers to fire
 */
static void __used kretprobe_trampoline_holder(void)
{
	asm volatile(
		"nop\n\t"
		".global kretprobe_trampoline\n"
		"kretprobe_trampoline:\n\t"
		"nop\n\t"
		: : : "memory");
}

void kretprobe_trampoline(void);

void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
				      struct pt_regs *regs)
{
	ri->ret_addr = (kprobe_opcode_t *) regs->lr;

	/* Replace the return addr with trampoline addr */
	regs->lr = (unsigned long)kretprobe_trampoline;
}

/*
 * Called when the probe at kretprobe trampoline is hit.
 */
static int __kprobes trampoline_probe_handler(struct kprobe *p,
						struct pt_regs *regs)
{
	struct kretprobe_instance *ri = NULL;
	struct hlist_head *head, empty_rp;
	struct hlist_node *tmp;
	unsigned long flags, orig_ret_address = 0;
	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;

	INIT_HLIST_HEAD(&empty_rp);
	kretprobe_hash_lock(current, &head, &flags);

	/*
	 * It is possible to have multiple instances associated with a given
	 * task either because multiple functions in the call path have
	 * a return probe installed on them, and/or more than one return
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
	 *     - instances are always inserted at the head of the list
	 *     - when multiple return probes are registered for the same
	 *       function, the first instance's ret_addr will point to the
	 *       real return address, and all the rest will point to
	 *       kretprobe_trampoline
	 */
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
		if (ri->task != current)
			/* another task is sharing our hash bucket */
			continue;

		if (ri->rp && ri->rp->handler)
			ri->rp->handler(ri, regs);

		orig_ret_address = (unsigned long)ri->ret_addr;
		recycle_rp_inst(ri, &empty_rp);

		if (orig_ret_address != trampoline_address) {
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
		}
	}

	kretprobe_assert(ri, orig_ret_address, trampoline_address);
	instruction_pointer(regs) = orig_ret_address;

	reset_current_kprobe();
	kretprobe_hash_unlock(current, &flags);
	preempt_enable_no_resched();

	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
		hlist_del(&ri->hlist);
		kfree(ri);
	}
	/*
	 * By returning a non-zero value, we are telling
	 * kprobe_handler() that we don't want the post_handler
	 * to run (and have re-enabled preemption)
	 */
	return 1;
}

int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
		return 1;

	return 0;
}

static struct kprobe trampoline_p = {
	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
	.pre_handler = trampoline_probe_handler
};

int __init arch_init_kprobes(void)
{
	register_kprobe(&trampoline_p);
	return 0;
}